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Abstract. In this article, we present a third-order weighted essentially non-oscillatory
(WENO) method for generalized Rosenau-KdV-RLW equation. The third order finite
difference WENO reconstruction and central finite differences are applied to discrete
advection terms and other terms, respectively, in spatial discretization. In order to
achieve the third order accuracy both in space and time, four stage third-order L-stable
SSP Implicit-Explicit Runge-Kutta method (Third-order SSP EXRK method and third-
order DIRK method) is applied to temporal discretization. The high order accuracy
and essentially non-oscillatory property of finite difference WENO reconstruction are
shown for solitary wave and shock wave for Rosenau-KdV and Rosenau-KdV-RLW
equations. The efficiency, reliability and excellent SSP property of the numerical scheme
are demonstrated by several numerical experiments with large CFL number.
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1 Introduction

The nonlinear wave behavior is one of the active scientific research areas during the
past several decades. Numerical solution of nonlinear wave equations is significantly
necessary since most of these types of equations are not solvable analytically in the case
of the nonlinear terms are included.

Many mathematical models, especially nonlinear partial differential equations de-
scribe various types of wave behavior in nature. Typically, the KdV equation (Korteweg-
de Vries equation) is suitable for small-amplitude long waves on the surface of the sub-
ject, such as shallow water waves, ion sound waves, and longitudinal astigmatic waves.
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RLW equation (Regularized Long-Wave equation) can describe not only shallow water
waves, but also nonlinear dispersive waves, ion-acoustic plasma waves, magnetohydro-
dynamic plasma waves. The Rosenau equation [1] was proposed for explaining the dy-
namic of dense discrete systems since the case of wave-wave and wave-wall interactions
can not be explained by the KdV and RLW equations.

In order to further consider the nonlinear wave behavior, the viscous term uxxx or uxxt

need to be included in Rosenau equation, which leads to the achievement of Rosenau-
RLW equation:

ut+αux+δuxxt+νuxxxxt+ε(up)x =0. (1.1)

or Rosenau-KdV equation:

ut+νuxxxxt+αux+θuxxx+ε(up)x =0. (1.2)

There have been many difficulties in evaluating analytical solutions of nonlinear dis-
persive wave equations and so on the development of numerical schemes. Even so, one
derived the solitary wave solution and singular soliton solution for the Rosenau-KdV e-
quation by the ansatz method as well as the semi-inverse variational principle [2] while
the shock wave solution of this equation was determined for two particular values of the
power law nonlinearity parameter p=3 and p=5 by Ebadi [3].

Significant numerical studies have been done on the Rosenau-KdV equation [4, 5].
Two-level nonlinear implicit Crank-Nicolson difference scheme and three-level linear-
implicit difference scheme were presented to solve two-dimensional generalized Rosenau-
KdV equation by Atouani [4]. Their experiment proved that both schemes were unique-
ly solvable, unconditionally stable and second-order convergent in L1 norm, the lin-
earized scheme was more effective in terms of accuracy and computational cost. Wang
and Dai [5] proposed a conservative unconditionally stable finite difference scheme with
O(h4+τ2) for the generalized Rosenau-KdV equation in both one and two dimension,
where h is spatial step and τ is temporal step, respectively.

A mass-preserving scheme which combined a high-order compact scheme and a three-
level average difference iterative algorithm was analyzed and tested for the Rosenau-
RLW equation in [6]. In their work, they focused on the development of the approach
for solving the nonlinear implicit scheme in aim to improve the accuracy of approximate
solutions. The Rosenau-RLW equation was also solved by second-order nonlinear finite
element Galerkin-Crank-Nicolson method which was linearized by predictor-correction
extrapolation technique in [7]. An energy conservative two-level fourth-order nonlinear
implicit compact difference scheme for three dimensional Rosenau-RLW equation was
designed by Li [8] and an iterative algorithm was introduced to generate this nonlinear
algebraical system.

In this paper, we focus on one-dimensional generalized Rosenau-KdV-RLW equation.
This model is difficult to solve numerically because of the excessive computational cost
caused by high order mixed derivative term and the selective wave behavior caused by
the power law nonlinearity term. In order to keep this model in a generalized setting, the
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Rosenau-KdV-RLW equation is written as:

ut+δuxxt+νuxxxxt+αux+θuxxx+ε(up)x =0. (1.3)

where u(x,t) denote the profile of the wave while x and t are the spatial and temporal
variables, respectively. α> 0, ε> 0 are the parameters of linear and nonlinear advection
terms, p≥2 is the parameter of power law nonlinearity. θ,δ,ν are the parameters of KdV,
RLW, Rosenau terms, respectively.

Rosenau-KdV-RLW equation has been studied both theoretically and numerically in
recent years. Ansatz approach and semi-inverse variational principle were used to de-
termine the solitary and shock solution, and the conservation laws of the Rosenau-KdV-
RLW equation with power law nonlinearity were computed by the aid of multiplier ap-
proach in Lie symmetry analysis in [9] and [10]. A three-level second-order accurate
weighted average implicit finite difference scheme was presented by Wongsaijai [11] to
solve the Rosenau-KdV-RLW equation. Wang [12] introduced a three-level linear con-
servative implicit finite difference scheme for solving this equation which was easy to
implement and had simple computational structure. A multi-symplectic scheme and an
energy-preserving scheme based on the multi-symplectic Hamiltonian formulation of the
equation were tested for the generalized Rosenau-type equation in [13]. These methods
were implemented efficiently by the discrete fast Fourier transform with spectral accura-
cy in space while second-order accuracy in time.

To the best of our knowledge, many numerical schemes are employed to simulate the
solitary wave of the Rosenau-KdV and Rosenau-KdV-RLW equations. But as far as we
know, there is very few numerical scheme has bees presented for the shock wave of these
equations. In this paper, We’re going to fill this gap effectively.

The Implicit-Explicit (IMEX) Runge-Kutta method is an effective time solver with the
advantages of loosening the CFL restriction caused by the Explicit scheme and reducing
the computational cost caused by Implicit method reasonably for PDEs which contains
stiff and non-stiff terms all together, and applied generally for this type of PDEs [15–17].
In order to ensure the stability stands for this type of large ODE system obtained from
spatial discretization, It is much safer to use IMEX Runge-Kutta methods with strong
stability preserving (SSP) properties [18–20].

The weighted essentially non-oscillatory (WENO) method is mostly applied for hy-
perbolic conservation laws with the advantages of the capability to achieve high-order
accuracy in smooth regions while maintaining stable, non-oscillatory property in sharp
or stiff region [21–23]. Here, we use the same approach for the solitary wave solution and
shock wave solution of Rosenau-KdV-RLW equation.

The advantages of finite difference WENO reconstruction [22] is exploited in wave
motions, especially shock wave for Rosenau-KdV equation and Rosenau-KdV-RLW
equation with power law nonlinearity parameter p = 3 and p = 5 as given in [3, 9] to
deal with stiff wave motion. Instead of using third order TVD Runge-Kutta scheme in
time direction, we choose the SSP IMEX Runge-Kutta scheme [20] to avoid the strict
CFL restriction and large computational cost. To be specific, we use third-order finite
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difference WENO scheme for advection terms of (1.3) and treat explicitly in the time
direction. The rest of (1.3) is treated by high order central finite difference method in
space and treated implicitly in time.

The paper is arranged as follows. In Section 2, the third-order finite difference WENO
scheme and high order finite difference method are performed. In Section 3, the third-
order SSP IMEX Runge-Kutta scheme is given for the treatment in time. Extensive nu-
merical results are proposed in Section 4 to illustrate the accuracy and efficiency of the
present method. Concluding remarks are given in the final section.

2 Spatial discretization

We use a uniform mesh of cell size h in space. The uniform mesh is distributed as
follows:

x∈ [xl ,xr], xi = xl+ih, i=1 : N−1, x1= xl , xN = xr,

Ii=[xi− 1
2
,xi+ 1

2
], xi+ 1

2
=

xi+1+xi−1

2
.

We will give a brief sketch of the algorithms about third order finite difference WENO
scheme with Lax-Friedrichs flux splitting which is used to treat f (u)=au+εup , here f (u)x

can be reformulated as

f (u)x|x=xi
≈

1

h
( f̂i+ 1

2
− f̂i− 1

2
). (2.1)

where f̂i+ 1
2
, f̂i− 1

2
are the numerical fluxes such that right hand side of (2.1) is a third order

approximation to f (u)x|x=xi
. ui(t) is defined as a nodal point value u(xi,t).

In finite difference WENO reconstruction, flux splitting has to be done for the purpose
of stability. For flux f(u), we perform the ”Lax-Friedrichs flux splitting” :

f+(u)=
1

2
( f (u)+αu), f−(u)=

1

2
( f (u)−αu), (2.2)

where α=maxu| f ′(u)|, so that

f (u)= f−(u)+ f+(u), (2.3)

satisfying
d

du
f+(u)≥0,

d

du
f−(u)≤0. (2.4)

In here, we only recall the reconstruction of f+(u) at point xi+ 1
2
. We choose big stencil

Γ=[Ii−1, Ii, Ii+1]. In this stencil, we can obtain a second degree polynomial H(x) which is
based on the nodal point information of the flux splitting and satisfying:

1

h

∫ x
j+ 1

2

x
j− 1

2

H(x)dx= f+j , j= i−1,i,i+1 ⇒ H(xi+ 1
2
)=−

1

6
f+i−1+

5

6
f+i +

1

3
f+i+1. (2.5)
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In two small stencil Γ1 =[Ii−1, Ii], Γ2 =[Ii, Ii+1], we can obtain two linear polynomial
H1(x),H2(x) respectively.

1

h

∫ x
j+ 1

2

x
j− 1

2

H1(x)dx= f+j , j= i−1,i ⇒ H1(xi+ 1
2
)=−

1

2
f+i−1+

3

2
f+i , (2.6)

1

h

∫ x
j+ 1

2

x
j− 1

2

H2(x)dx= f+j , j= i,i+1 ⇒ H2(xi+ 1
2
)=

1

2
f+i +

1

2
f+i+1. (2.7)

Define the linear weights r1,r2, such that

H(xi+ 1
2
)= r1H1(xi+ 1

2
)+r2H2(xi+ 1

2
). (2.8)

We have r1 =
1
3 ,r2 =

2
3 . The smoothness indicators to measure the smoothness of H1(x)

and H2(x) are defined as

β1=( f+i − f+i−1)
2, β2=( f+i+1− f+i )2. (2.9)

then we define the nonlinear weights as follows:

wj=
w̃j

w̃1+w̃2
, w̃j=

rj

(ǫ+β j)2
, j=1,2.

where ǫ is very small and positive, which is chosen to avoid the denominator becoming
0 and typically chosen to be ǫ=10−6 in the calculation.

Finally, we obtain the third-order approximation:

f̂+
i+ 1

2

=w1H1(xi+ 1
2
)+w2H2(xi+ 1

2
). (2.10)

f̂−
i+ 1

2

also can be obtained in the same way, so that

f̂i+ 1
2
= f̂+

i+ 1
2

+ f̂−
i+ 1

2

. (2.11)

For the second, third and fourth derivative at (xi,t) in (1.3), we simply use high order
central finite difference to approximate them.

− 1
12 ui+2+

4
3 ui+1−

5
2 ui+

4
3 ui−1−

1
12 ui−2

h2
=
(∂2u

∂x2

)

i
+O(h4), (2.12)

− 1
8 ui+3+ui+2−

13
8 ui+1+

13
8 ui−1−ui−2+

1
8 ui−3

h3
=
(∂3u

∂x3

)

i
+O(h4), (2.13)

− 1
6 ui+3+2ui+2−

13
2 ui+1+

28
3 ui−

13
2 ui−1+2ui−2−

1
6 ui−3

h4
=
(∂4u

∂x4

)

i
+O(h4). (2.14)
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3 The third order SSP IMEX Runge-Kutta method

We now rewrite (1.3) as

(u+δuxx+νuxxxx)t=−αux−θuxxx−ε(up)x. (3.1)

and obtain the semi-discrete form by discretizing (3.1) at (xi,t):

(

ui+δ(uxx)i+ν(uxxxx)i

)

t
=−α(ux)i−ε((up)x)i−θ(uxxx)i. (3.2)

We use the above third-order finite difference WENO reconstruction and finite difference
discretization procedure for (3.2):

d

dt

[

ui+δ
− 1

12 ui+2+
4
3 ui+1−

5
2 ui+

4
3 ui−1−

1
12 ui−2

h2

+ν
− 1

6 ui+3+2ui+2−
13
2 ui+1+

28
3 ui−

13
2 ui−1+2ui−2−

1
6 ui−3

h4

]

= L
(

u(xi,t)
)

+
[

−θ
− 1

8 ui+3+ui+2−
13
8 ui+1+

13
8 ui−1−ui−2+

1
8 ui−3

h3

]

. (3.3)

and write the whole system in matrix form:

d

dt
[AU]= L(U)+BU. (3.4)

where L(u) is the high order spatial discrete formulation of − fx(u) obtained from WENO
reconstruction. Finally, we obtain the matrix form of the semi-discrete system (1.3):

dU

dt
=A−1L(U)+A−1BU. (3.5)

where

A=



























1− 5δ
4h2 + 14ν

3h4
4δ

3h2 − 13ν
2h4 − δ

12h2 + 2ν
h4 − ν

6h4
5δ

4h2 − 14ν
3h4 1− 5δ

2h2 + 28ν
3h4

4δ
3h2 − 13ν

2h4 − δ
12h2 + 2ν

h4 − ν
6h4

− δ
12h2 + 11ν

6h4
4δ

3h2 − 13ν
2h4

. .
.

− ν
6h4 − δ

12h2 + 2ν
h4

. . . − ν
6h4

− ν
6h4

. . . − δ
12h2 + 2ν

h4 − ν
6h4

. . . 4δ
3h2 − 13ν

2h4
5δ

4h2 − 14ν
3h4

− ν
6h4 − δ

12h2 + 2ν
h4

4δ
3h2 − 13ν

2h4 1− 5δ
2h2 + 28ν

3h4 − δ
12h2 + 11ν

6h4

− ν
6h4 − δ

12h2 + 2ν
h4

4δ
3h2 − 13ν

2h4 1− 5δ
4h2 + 14ν

3h4



























N×N

,
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and

B=



































− 13θ
8h3 +

θ
h3 −

θ
8h3

13θ
8h3 − θ

h3
θ

8h3

− 13θ
8h3 +

θ
h3 −

θ
8h3 0 13θ

8h3 − θ
h3

θ
8h3

θ
h3 −

θ
8h3 − 13θ

8h3

. . .

− θ
8h3

θ
h3

. . . θ
8h3

− θ
8h3

. . . − θ
h3

θ
8h3

. . . 13θ
8h3 − θ

h3 +
θ

8h3

− θ
8h3

θ
h3 − 13θ

8h3 0 13θ
8h3 −

θ
h3 +

θ
8h3

− θ
8h3

θ
h3 − 13θ

8h3
13θ
8h3 −

θ
h3 +

θ
8h3



































N×N

.

(3.6)

Since the wave amplitude near the boundaries tends to be constant for long wave
behavior, so we use inflow and outflow boundary at n-th time level. In order to make sure
the scheme is also third order at the boundary, we need three cell information outside of
the computational domain for each side and add these ghost cell values into the first and
last column of matrix B for numerical simplicity.

Further, we will use S-stage SSP IMEX-RK scheme for the temporal discretization,
specifically S-stage SSP Explicit Runge-Kutta method for advection terms which are com-
puted by third-order WENO reconstruction, and L-stable diagonally implicit Runge-
Kutta (DIRK) method for stiff parts caused by high order spatial derivation. This method
has the following form when it is applied to (3.5):

U(m)=Un+τ
m−1

∑
q=1

ãmq A−1L(U(q))+τ
S

∑
q=1

âmq A−1BU(q),

Un+1=Un+τ
S

∑
q=1

b̃q A−1L(U(q))+τ
S

∑
q=1

b̂q A−1BU(q).

(3.7)

with the double Butchar tableau

c̃ Ã

b̃

ĉ Â

b̂

Explicit Implicit

where b̃=(b̃1,b̃2,··· ,b̃S)
T, c̃=(c̃1, c̃2,··· , c̃S)

T, b̂=(b̂1,b̂2,··· ,b̂S)
T, ĉ=(ĉ1, ĉ2,··· , ĉS)

T are coef-
ficient vectors and Ã=(ãmq), ãmq =0 for q≥m and Â=(âmq) are S×S matrices.

By using the above procedure, we present the algorithm for numerical solution.
• Explicit term

U
(m)
∗ =Un+τ

m−2

∑
q=1

ãmq A−1L(U(q))+τãm,m−1A−1L(U(m−1)),
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• Implicit term

U(m)=U
(m)
∗ +τ

m−1

∑
q=1

âmq A−1BU(q)+τâmm A−1BU(m),

• Final solution at next time level

Un+1=Un+τ
S

∑
q=1

b̃q A−1L(U(q))+τ
S

∑
q=1

b̂q A−1BU(q).

In this paper, we apply the third-order L-stable SSP IMEX Runge-Kutta method with
the Butchar tableau given as in [20]:

c̃ Ã

b̃
=

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
1
2 0 1

4
1
4 0

0 1
6

1
6

2
3

,
ĉ Â

b̂
=

α̂ α̂ 0 0 0
0 −α̂ α̂ 0 0
1 0 1− α̂ α̂ 0
1
2 β̂ η̂ 1

2− β̂− η̂− α̂ α̂

0 1
6

1
6

2
3

. (3.8)

with α̂ = 0.24169426078821, β̂ = α̂
4 ,η̂ = 0.12915286960590. Hence we have the following

temporal operation:

m=1 U
(1)
∗ =Un,

U(1)=U
(1)
∗ +τâ11 A−1BU(1).

m=2 U
(2)
∗ =Un+τã21 A−1L(U(1)),

U(2)=U
(2)
∗ +τâ21 A−1BU(1)+τâ22 A−1BU(2).

m=3 U
(3)
∗ =Un+τã31 A−1L(U(1))+τã32 A−1L(U(2)), (3.9)

U(3)=U
(3)
∗ +τâ31 A−1BU(1)+τâ32 A−1BU(2)+τâ33 A−1BU(3).

m=4 U
(4)
∗ =Un+τã41 A−1L(U(1))+τã42 A−1L(U(2))+τã43 A−1L(U(3)),

U(4)=U
(4)
∗ +τâ41 A−1BU(1)+τâ42 A−1BU(2)+τâ43 A−1BU(3)+τâ44 A−1BU(4).

Un+1=Un+τb̃1A−1L(U(1))+τb̃2A−1L(U(2))+τb̃3A−1L(U(3))+τb̃4A−1L(U(4))

+τb̂1A−1BU(1)+τb̂2 A−1BU(2)+τb̂3 A−1BU(3)+τb̂4 A−1BU(4).

4 Numerical results

In this section, we will discuss computational results of the scheme (3.9) on some
numerical examples for the solitary wave solution and shock wave solution of Rosenau-
KdV equation and Rosenau-KdV-RLW equation.
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Table 1: Errors and rates of convergence when CFL=1,h=τ at T=20 for Example 4.1.

h L1 order L∞ order

0.2 3.2085e-05 4.7295e-04
0.1 3.7105e-06 3.1122 5.4363e-05 3.1210

0.05 4.1275e-07 3.1683 5.9524e-06 3.1911
0.025 4.2519e-08 3.2791 6.0110e-07 3.3078

We consider the linear version of (1.3) with parameter δ=−1,ν=1,θ=1,α+ε=1,p=1.
We obtain stability restriction ∆t

∆x ≤1 by standard Fourier analysis and computation, and
take CFL=1 for all numerical simulation in this paper.

Example 4.1. Consider Rosenau-KdV equation (1.2) with parameters δ=0,ν=1,α=1,θ=
1,ε= 1

2 ,p=2:

ut+uxxxxt+uxxx+ux+(
1

2
u2)x =0, x∈ [−70,100], t∈ [0,T].

and choose the initial condition to be u(x,0)=Msech
4

p−1 (Wx), so that the analytical soli-

tary wave solution of Rosenau-KdV equation is u(x,t) = Msech
4

p−1 [W(x−Vt)] as in [2]
with wave width

W=
p−1

p+1

[−αν(p2+2p+5)+
√

α2ν2(p2+2p+5)2+16θ2ν(p+1)2

32θν

]
1
2
,

-60 -40 -20 0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5 exact
numerical

-60 -40 -20 0 20 40 60 80 100

×10-5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
error

Figure 1: Wave graph of u(x,t) at T=20 and numerical solution of Rosenau-KdV equation with h=τ=0.1 at
T=20 (left) and error (right) for Example 4.1.
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-60 -40 -20 0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5 T=0
T=10
T=20

Figure 2: Numerical solution of Rosenau-KdV equation with h=τ=0.1 at T=0,10,20 for Example 4.1.

]

-60 -40 -20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 p=2
p=4
p=6
p=8
p=10

Figure 3: Numerical solution of Rosenau-KdV equation with p=2,4,6,8,10,ǫ= 1
p and h=τ=0.1 at T=20 for

Example 4.1.

wave velocity

V=
θ(p−1)2

4νW2(p2+2p+5)
,

and wave amplitude

M=
[ [−αν(p2+2p+5)+

√

α2ν2(p2+2p+5)2+16θ2ν(p+1)2](p+3)(3p+1)

16νǫ(p+1)(p2+2p+5)

]
1

p−1
.

Errors and rates of convergence in terms of L1 and L∞ at T = 20 for τ =CFL·h with
CFL=1 in interval x∈ [−70,100] are listed in Table 1 for Example 4.1. The third order ac-
curacy of the numerical method is achieved as we expected in the theoretical procedure,
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Table 2: Comparison of L∞ errors at T=20 for Example 4.1.

Scheme h=τ=0.2 h=τ=0.1 h=τ=0.05 h=τ=0.025

Scheme [12] 7.8920e-04 1.8771e-04 4.6987e-05 1.1751e-05

Scheme [11](− 1
3 ) 1.0192e-03 2.5411e-04 6.3501e-05 1.5876e-05

Scheme [11]( 1
3 ) 4.9510e-04 1.2372e-04 3.0934e-05 7.7336e-05

Scheme(3.9) 4.7295e-04 5.4363e-05 5.9524e-06 6.0110e-07

Table 3: L1,L∞ errors of numerical solutions for Rosenau-KdV equation with h= τ,T= 20,ε= 1
p for Example

4.1.

L1 L∞

p
h

0.2 0.1 0.05 0.2 0.1 0.05

2 3.2085e-05 3.7105e-06 4.1275e-07 4.7295e-04 5.4363e-05 5.9524e-06
3.1122 3.1683 3.1210 3.1911

4 1.2393e-04 1.5684e-05 1.9626e-06 1.7057e-03 2.1598e-04 2.6539e-05
2.9822 2.9984 2.9814 3.0247

6 1.5405e-04 1.9329e-05 2.5037e-06 2.0945e-03 2.6151e-04 3.4664e-05
2.9946 2.9487 3.0017 2.9154

8 1.5433e-04 1.9268e-05 2.5311e-06 2.1308e-03 2.6494e-04 3.5590e-05
3.0017 2.9284 3.0077 2.8961

10 1.4411e-04 1.8034e-05 2.4683e-06 2.0081e-03 2.4933e-04 3.3461e-05
2.9983 2.8691 3.0097 2.8975

and works well with large time step. We can observe from the left of Figure 1 that the
solitary wave curve matches excellently with exact solution when h= τ = 0.1 at T = 20.
From the right of Figure 1, it can be seen that error mostly generates at two sides of the
solidary wave.

We compare the L∞ errors of our scheme with the results of other three numerical
schemes [11, 12] under various mesh steps h= τ at T= 20 in Table 2. The better compu-
tational accuracy of the present scheme can be seen with the smallest error among other
schemes referred above. The solitary wave graphs at T = 10,20 agree with the one at
T=0 quite well. The solitary wave curve propagates with constant speed V to the right
through time T in Figure 2.

To observe the effect of power law nonlinear term to the solitary wave of Rosenau-
KdV equation, we draw the wave curves for p= 2,4,6,8,10 and ε= 1

p with h= τ = 0.1 at

T= 20 in Figure 3, The wave amplitude and width are increasing while p increases. We
compute L1,L∞ errors for p= 2,4,6,8,10 and ε= 1

p at T= 20 on three different meshes in

Table 3 and also achieve third-order convergence in each case.

Next, we refer shock wave solutions of Rosenau-KdV equation from [3] which is avail-
able only for two particular values of power law nonlinearity parameter p = 3,5. Our
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scheme simulates this wave phenomena efficiently with its essentially non-oscillatory
property.

Example 4.2. Consider Rosenau-KdV equation (1.2) with parameters δ= 0,ν =−10,α=
0.05,θ=0.001,ǫ=−5,p=5:

ut+0.05ux+0.001uxxx−10uxxxxt−5(u5)x =0, x∈ [−10,10], t∈ [0,T].

and choose the initial condition to be u0(x) = Mtanh(Wx), so that the analytical shock
wave solution of Rosenau-KdV equation for p=5 is u(x,t)= Mtanh[W(x−Vt)] as in [3]
with

W=
1

2

[5α

3θ
−

1

3θ

√

6θ2+25α2ν

ν

]
1
2
, V=

α−2θW2

16νW4+1
,

and M=W( 24Vν
ε )

1
4 .

These parameters have to be chosen carefully to make sure that the three quantities
are all real. In Table 4, we show errors and rates of convergence to highlight the efficiency
of the WENO reconstruction for shock wave in the case of p= 5. Figure 4 displays the

Table 4: Errors and rates of convergence when CFL=1,h=τ at T=10 for Example 4.2.

h L1 order L∞ order

0.2 2.5912e-03 7.8227e-03
0.1 7.2593e-04 1.8357 2.1876e-03 1.8383

0.05 1.2977e-04 2.4839 3.8145e-04 2.5198
0.025 1.6055e-05 3.0148 4.6823e-05 3.0262

-10 -8 -6 -4 -2 0 2 4 6 8 10

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
exact
numerical

-10 -8 -6 -4 -2 0 2 4 6 8 10

×10-3

0

0.5

1

1.5

2

error

Figure 4: Wave graph of u(x,t) at T=10 and numerical solution of Rosenau-KdV equation with h=τ=0.1,p=5
at T=10 (left) and error (right) for Example 4.2.
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shock wave at T = 10 with h= τ = 0.1 on the left and error on the right. As we can see
there is no oscillatory nearby the stiff region.

Example 4.3. Consider Rosenau-KdV equation (1.2) with parameters δ= 0,ν =−10,α=
0.4,θ=0.01,ǫ=−3,p=3:

ut+0.4ux+0.01uxxx−10uxxxxt−3(u3)x =0, x∈ [−10,10], t∈ [0,T].

and choose the initial condition to be u0(x)= Mtanh2(Wx), so that the analytical shock
wave solution of Rosenau-KdV equation for p=3 is u(x,t)=Mtanh2[W(x−Vt)] as in [3]
with

W=
1

2

[10α

23θ
−

1

23θ

√

100α2ν+46θ2

ν

]
1
2
, V=

α−8θW2

136νW4+1
,

and M=2W2( 30Vν
ε )

1
2 .

Table 5: Errors and rates of convergence when CFL=1,h=τ at T=10 for Example 4.3.

h L1 order L∞ order

0.2 2.1529e-03 5.7931e-03
0.1 7.5346e-04 1.5147 2.2966e-03 1.3348

0.05 1.3853e-04 2.4433 4.5664e-04 2.3304
0.025 1.7016e-05 3.0252 5.9426e-05 2.9419

In Table 5, we give error and rate of convergence for shock wave when p= 3. Obvi-
ously here we achieve order that smaller than three at first, but it will converge to three

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

exact
numerical

-10 -8 -6 -4 -2 0 2 4 6 8 10

×10-3

0

0.5

1

1.5

2

error

Figure 5: Wave graph of u(x,t) at T=10 and numerical solution of Rosenau-KdV equation with h=τ=0.1,p=3
at T=10 (left) and error (right) for Example 4.3.
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Table 6: The Comparison of L∞ errors with CFL=1,h=τ at T=10 between four different schemes for Example
4.4.

(h,τ) (0.4,0.4) (0.2,0.2) (0.1,0.1) (0.05,0.05)

Scheme [11](− 1
3 ) 6.3995e-02 1.5250e-02 3.7908e-03 9.4866e-04

Scheme [11]( 1
3 ) 1.2031e-01 3.0396e-02 7.6198e-03 1.9070e-03

Scheme [12] 1.1194e-01 2.8840e-02 7.2669e-03 1.8199e-03
Scheme(3.9) 5.4870e-02 7.6075e-03 9.8854e-04 1.2479e-04

Table 7: Errors and rates of convergence with CFL=1,h=τ at T=10 for Example 4.4.

h L1 rate L∞ rate

0.2 8.4789e-04 7.6075e-03
0.1 1.1027e-04 2.9428 9.8854e-04 2.9441

0.05 1.3908e-05 2.9871 1.2479e-04 2.9858
0.025 1.7632e-06 2.9796 1.5496e-05 3.0096

eventually as the mesh is refined. Figure 5 displays the shock wave at T = 10 when
h=τ=0.1 on the left and error on the right.

Example 4.4. Consider Rosenau-KdV-RLW equation (1.3) with parameters δ =−1,ν =
1,α=1,θ=1,ε= 1

2 ,p=2:

ut−uxxt+uxxxxt+ux+uxxx+
1

2
(u2)x =0, x∈ [−40,60], t∈ [0,T].

and choose the initial condition to be u(x,0)= Msech
4

p−1 (Wx), so that the analytical soli-

tary wave solution of Rosenau-KdV-RLW equation is u(x,t) = Msech
4

p−1 [W(x−Vt)] as
in [9] with

D=
√

α2ν2(p2+2p+5)2+16(p+1)2θν(θ−αδ),

wave width

W=
p−1

p+1

√

D−(p2+2p+5)αν

32θν
,

wave speed

V=
θ(p−1)2

(p−1)2δ+4νW2(p2+2p+5)
,

and amplitude

M=
[ 8(p+1)(p+3)(3p+1)θνW4

ε(p−1)2
(

(p−1)2δ+4(p2+2p+5)νW2
)

]
1

p−1
.
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Figure 6: Wave graph of u(x,t) at T=10 and numerical solution of Rosenau-KdV-RLW equation with h=τ=0.1
at T=10 (left) and error (right) for Example 4.4.
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Figure 7: Numerical solution of Rosenau-KdV-RLW equation with h=τ=0.1 at T=2,4,6,8,10 for Example 4.4.

The L∞ errors of the numerical solutions at T=10 under various mesh steps h=τ are
listed in Table 6 and compare with other three types of schemes studied earlier about the
same equation, which shows that our scheme has the smallest error in any cases.

On the left of Figure 6, the numerical wave curve totally matches with the analytical
solidary solution at T = 10 with mesh h= τ = 0.1 over the interval x∈ [−40,60] and the
corresponding distribution of the error is drawn for solitary wave in the right of Figure
6.

As shown in Table 7, the third-order convergence of the numerical solutions is verified
at T=10 for the solitary wave problem of the Rosenau-KdV-RLW equation. In Figure 7,
perspective views of the traveling solutions are graphed at various time levels for h=τ=
0.1.

In order to observe the effect of power law nonlinear term to the solidary wave
of Rosenau-KdV-RLW equation, The L1,L∞ errors and third-order convergence for p =
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Figure 8: Numerical solution of Rosenau-KdV-RLW equation with p=2,4,6,8,10,ǫ= 1
p and h=τ=0.1 at T=10

for Example 4.4.

Table 8: L1,L∞ errors of numerical solutions for Rosenau-KdV-RLW equation with h=τ,T=10,ε= 1
p for Example

4.4.

L1 L∞

p
h

0.2 0.1 0.05 0.2 0.1 0.05

2 8.4789e-04 1.1027e-04 1.3908e-05 7.6075e-03 9.8854e-04 1.2479e-04
2.9428 2.9871 2.9440 2.9858

4 1.9237e-03 2.5823e-04 3.2477e-05 2.1641e-02 2.8915e-03 3.6262e-04
2.8971 2.9912 2.9039 2.9953

6 1.9993e-03 2.7505e-04 3.4557e-05 2.3003e-02 3.1681e-03 3.9806e-04
2.8617 2.9926 2.8601 2.9925

8 1.8389e-03 2.5682e-04 3.2327e-05 2.0847e-02 2.9226e-03 3.6689e-04
2.8400 2.9899 2.8345 2.9938

10 1.6504e-03 2.3332e-04 3.0234e-05 1.8439e-02 2.6109e-03 3.2730e-04
2.8224 2.9481 2.8202 2.9958

2,4,6,8,10 and ε= 1/p on three different mesh are listed in Table 8. We draw the wave
curves for these p at T=10 with CFL=1,h=τ=0.1 and ε=1/p in the interval x∈[−40,60]
for give further description in Figure 8. It can be observed that wave amplitude and
speed decreases along with p increases, this also fits the power law.

Based on earlier studies on the shock solution of the Rosenau-KdV equation, the
shock wave solutions for the Rosenau-KdV-RLW equation were extracted by balancing
principle only for p=3 and p=5 in [9]. Here we will review related formulation for wave
amplitude, width, velocity mentioned in [9,10], and then simulate both cases numerically
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as example.

Example 4.5. Consider Rosenau-KdV-RLW equation (1.3) with parameters δ=1,ν=−0.001,
α=0.01,θ=0.001,ε=−1,p=3:

ut+0.01ux+0.001uxxx+uxxt−0.001uxxxxt−(u3)x =0, x∈ [−10,10], t∈ [0,T].

and choose the initial condition to be u0(x)= Mtanh2(Wx), so that the analytical shock
wave solution of Rosenau-KdV-RLW equation for p=3 is u(x,t)=Mtanh2[W(x−Vt)] as
in [9] with

W=
[10αν−

√

100α2ν2+46θν(θ−αδ)

92θν

]
1
2
, V=

α−8θW2

136νW4−8δW2+1
,

and M=2W2( 30Vν
ε )

1
2 .

In Table 9, the error comparisons in L∞,L1 are obtained by present method for shock
wave solution in the case of p = 3 of the Rosenau-KdV-RLW equation in interval x ∈
[−10,10] with h = τ = 0.2,0.1,0.05,0.025 respectively and the simulations are run up to

Table 9: Errors and rates of convergence with CFL=1,h=τ at T=10 for Example 4.5.

h L1 rate L∞ rate

0.2 8.0600e-06 1.6909e-04
0.1 7.8356e-07 3.3627 2.8062e-05 2.5911

0.05 6.7878e-08 3.5290 2.5392e-06 3.4662
0.025 6.9675e-09 3.2842 2.3362e-07 3.4421
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Figure 9: Wave graph of u(x,t) at T=10 and numerical solution of Rosenau-KdV-RLW equation with h=τ=
0.1,p=3 at T=10 (left) and error (right) for Example 4.5.
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time T=10 to obtain the error norms. It can be easily found that the errors are small, and
the third-order convergence of the numerical solutions are also verified. From Figure 9,
we can catch the point that numerical solution fits with exact one, and numerical method
approximate the exact solution even in stiff concave region successfully.

Example 4.6. Consider Rosenau-KdV-RLW equation (1.3) with parameters δ=1,ν=−10,α=
0.05,θ=0.001,ε=−5,p=5:

ut+uxxt−10uxxxxt+0.05ux+0.001uxxx−5(u5)x =0 x∈ [−10,10],t∈ [0,T].

and choose the initial condition to be u0(x) = Mtanh(Wx) so that the analytical shock
wave solution of Rosenau-KdV-RLW equation for p=5 is u(x,t)= Mtanh[W(x−Vt)] as
in [9] with

W=

[

5αν−
√

25α2ν2+6θν(θ−αδ)

12θν

]
1
2

, V=
α−2θW2

16νW4−2δW2+1
,

and M=W( 24Vν
ε )

1
4 .

The computation of error and order is completed at time t= 10 when CFL= 1,h= τ
on various mesh in interval x∈ [−10,10] and displayed in Table 10. The numerical shock
wave curve of Rosenau-KdV-RLW equation for p=5 is agree with exact solution with no
oscillatory near the point x=0 when h=τ=0.1 at T=10 on the left of Figure 10 .

Example 4.7. Consider Rosenau-KdV-RLW equation (1.3) with parameters δ=−0.01,ν=
0.01,α=0.01,θ=0.01,ε=1,p=3:

ut−0.01uxxt+0.01uxxxxt+0.01ux+0.01uxxx+(u3)x =0 x∈ [0,120],t∈ [0,T].
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Figure 10: Wave graph of u(x,t) at T=10 and numerical solution of Rosenau-KdV-RLW equation with h=τ=
0.1,p=5 at T=10 (left) and error (right) for Example 4.6.
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Table 10: Errors and rates of convergence with CFL=1,h=τ at T=10 for Example 4.6.

h L1 rate L∞ rate

0.2 2.1778e-03 5.2701e-03
0.1 6.6553e-04 1.7103 1.8419e-03 1.5167

0.05 1.2634e-04 2.3972 3.6413e-04 2.3387
0.025 1.5887e-05 2.9914 4.6009e-05 2.9845
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Figure 11: Wave graph of Rosenau-KdV-RLW equation at T = 0,5,10 with the Maxwellian initial condition
u0=exp(−0.005(x−60)2) for Example 4.7.

and Maxwellian initial condition to be u0(x)=exp
(

−0.005(x−60)2
)

.

As a final example, we plot a high-frequency oscillatory behavior of u(x,t) with above
Maxwell initial condition in Figure 11 to illustrate the characteristic of dispersive shock
wave behavior of (1.3). The steepening of the leading front repeats several times and
decays until it is no longer present on the back of the wave.

5 Concluding Remark

To solve the solitary wave and shock wave problem of Rosenau-KdV equation and
Rosenau-KdV-RLW equation, we use the third-order finite difference WENO reconstruc-
tion for advection terms, and central finite difference method for other terms in spa-
tial discretization, then we use third-order SSP IMEX Runge-Kutta method for time dis-
cretization, in which the advection terms are treated by explicitly and remaining terms
are treated by implicitly. In order to verify the effectiveness of the numerical scheme,
some numerical examples are given for numerical experiment. Numerical simulations
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show that the method is very efficient with the advantages of non-oscillatory and loosely-
restricted CFL condition.
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