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Abstract. In this paper, by using the Hermitian metric and Chern connection, we
study the case of a strictly pseudoconvex domain G with non-smooth boundaries in a
complex manifold. By constructing a new integral kernel, we obtain a new Koppelman–
Leray–Norguet formula of type (p,q) on G, and get the continuous solutions of ∂̄–
equations on G under a suitable condition. The new formula doesn’t involve integrals
on the boundary, thus one can avoid complex estimations of the boundary integrals,
and the density of integral may be not defined on the boundary but only in the domain.
As some applications, we discuss the Koppelman–Leray–Norguet formula of type
(p,q) for general strictly pseudoconvex polyhedrons (unnecessarily non-degenerate)
on Stein manifolds, also get the continuous solutions of ∂̄–equations under a suitable
condition.
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1 Introduction

As early as 1831, Cauchy found the famous Cauchy integral formula, which named by his
name. Many mathematicians were aware of the importance of integral representation in
complex analysis. Later, the integral representation method gradually became one of the
main methods of complex analysis in several variables, because one of its main virtues
is that it is easy to estimate like the Cauchy integral formula in one complex variable. It
is well known that the integral representations and their applications for (0,q) differen-
tial form in Cn have been deeply studied(see, for instance [1–10]). But the research for
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integral representations on complex manifolds began in 1980s. Most of the results, so
far, have been concerned with Stein manifolds(see, for instance [4,5,11-13]). In the early
1990s, Berndtsson B [14] studied the theory of integral representations on general com-
plex manifolds and gained in a quite general integral kernel under a suitable condition.
Using this kernel, the Koppelman formula on complex manifolds was obtained. Based
on it, Zhong T [15] got the Koppelman–Leray–Norguet formula of type (p,q) on a bound-
ed domain G with piecewise C1 smooth boundaries in a complex manifold, and gave the
continuous solutions of ∂̄–equations on G under a suitable condition.

In this paper, by using the Hermitian metric and Chern connection, the case of a strict-
ly pseudoconvex domain G with non-smooth boundaries in a complex manifold is stud-
ied. By constructing a new integral kernel, a new Koppelman–Leray–Norguet formula
of type (p,q) on G is obtained, and the continuous solution of ∂̄–equations on G under a
suitable condition is given. The new formula doesn’t involve integrals on the boundary,
thus complex estimations of the boundary integrals can be avoided, and the density of
integral may be not defined on the boundary but only in the domain. As an applica-
tion, Cn and Stein manifold are taken as examples to discuss the relationship between
the conclusion of this paper and the corresponding conclusion in [4]. The Koppelman–
Leray–Norguet formula of type (p,q) for general strictly pseudoconvex polyhedrons with
unnecessarily non-degenerate on Stein manifolds is also discussed, and the continuous
solution of ∂̄–equations under a suitable condition is given, it implies the corresponding
result in paper [13].

2 Basic knowledge and lemma

Let M be a complex manifold, X = M×M, E is supposed to be a holomorphic vector
bundle of rank n over X, and η is a holomorphic section to E such that

{η=0}=Y={(ζ,z)∈X|ζ= z}.

Let ξ be any smooth section to E∗ that is a dual bundle of E, which is admissible for
η, i.e. For any compact set B⊆X, we have

|ξ|≤ cB |η| and |〈ξ,η〉|≥CB |η|
2,

where cB and CB are constants only concerned with B, e.g. ξ is dual vector of η on some
measurement, then ξ is admissible for η. We consider extensional equation

dK=[Y]−Cn[Θ], (2.1)

where Θ is a formal curvature of some connections for E, Cn[Θ] is the nth Chern form of
Θ. Berndtsson B obtained explicit solution of (2.1)(name it Berndtsson’s kernel)

K[ξ,η](z,ζ)Λ=
ξ∧Dη

n!(2πi)n

n−1

∑
k=0

(
n
k

)
(−1)k (D∗ξ∧Dη)n−k−1

〈ξ,η〉n−k
∧Θ̃k, (2.2)
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where Λ= e∗1∧e1∧···∧e∗n∧en, e1,··· ,en is a local frame for E, e∗1 ,··· ,e∗n is a dual frame for
E∗,

(
i

2π

)k
1

n!
Θ̃k =Ck[Θ]e∗1∧e1∧···∧e∗k ∧ek.

We denote

P(N) :={K=(k1,··· ,kl)∈Nl : 1≤ k1,··· ,kl ≤N},

P′(N) :={K=(k1,··· ,kl)∈P(N) : 1≤ k1 < ···< kl ≤N}.

Definition 2.1. Let M be a complex manifold of complex dimension n. An open set G⊂⊂ M
is said to be possess piecewise C1 smooth boundaries, whenever there are finite open covering
{Uk}

N
k=1 of neighborhood U of ∂G, and C1 functions ρk :Uk→R,(1≤ k≤N), which matches the

following conditions:
(i) G∩U={x∈U|for all 1≤k≤N,we have x /∈Uk, or ρk(x)<0};
(ii) For all K=(k1,··· ,kl)∈P′(N), we have

dρk1
(z)∧···∧dρkl

(z) 6=0, ∀z∈Uk1
∩···∩Ukl

.

We call {Uk,ρk}
N
k=1 is a frame for G.

Let Si={z∈∂G∩Ui|ρi(z)=0},(i=1,··· ,N), for K=(k1,··· ,kl)∈P(N), define

SK =





Sk1
∩···∩Skl

, if integers k1,··· ,kl are different in pairs;

∅, otherwise.

Choose the orientation on SK such that

∂G=
N

∑
k=1

Sk, ∂SK =
N

∑
j=1

SKj,

where Kj :=(k1,··· ,kl , j), the orientation of ∂G and ∂SK is induced by the orientation of G
and SK, respectively. Then the orientation on SK is skew symmetric in the component of
K. Let

△=

{
λ=(λ0,··· ,λN)∈RN+1

∣∣∣∣λj ≥0,
N

∑
j=0

λj =1

}
,

be a standard N-simplex in RN+1.For every ordered subset J={j1,··· , jm} of {0,1,··· ,N},
define

△J ={λ∈△|∑
j∈J

λj =1},
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and the orientation of △J is chosen such that

∂△J =
m

∑
r=1

(−1)r−1△j1 ,···, ĵr,···,jm
,

where ĵr means that jr is omitted. With this orientation, we have

∂(SK×△J)=∂SK×△J+(−1)|K|SK×∂△J ,

where |K| is the length of the index set K.
We set N(ρk) :={z∈Uk|ρk(z)=0} and suppose that N(ρk)⊂⊂Uk,(k=1,··· ,N), (where

it’s not necessary to assume dρk(ζ) 6=0, (k=1,··· ,N) when ζ∈∂G), so we can use θk⊂⊂Uk

to denote neighbour of N(ρk).
Similar to Theorem 4.8.3 and Lemma 4.8.2 in paper [4], after shrinking θk, we can find

numbers ε, α>0, as well as C1 functions Φk(z,ζ) and Φ̃k(z,ζ), defined for z∈G∪θk ,ζ∈θk,
such that the following conditions are fulfilled:

(i) Φk(z,ζ), Φ̃k(z,ζ) are holmorphic in z∈G∪θk, and C1 continuous in ζ∈θk .
(ii) For z∈G∪θk , ζ∈θk , with dist(z,ζ)≥ ε, we have

Φk(z,ζ) 6=0 , Φ̃k(z,ζ) 6=0. (2.3)

For z∈G∪θk,ζ∈θk with dist(z,ζ)≤ ε, we have

|Φk(z,ζ)|≥α(ρk(ζ)−ρk(z)+[dist(z,ζ)]2), (2.4)

|Φ̃k(z,ζ)|≥α(−ρk(ζ)−ρk(z)+[dist(z,ζ)]2). (2.5)

For every z∈θk , we have

Φk(z,z)=0. (2.6)

(iii) For z∈G∪θk , ζ∈N(ρk), we have

Φ̃k(z,ζ)=Φk(z,ζ). (2.7)

Similar to Corollary 4.9.4 in paper [4], after shrinking θk, we can find T∗(M)-valued
C1 maps ξk(z,ζ) such that the following conditions are fulfilled:

(iv) ξk(z,ζ)∈T∗
z (M), z∈G∪θk , ζ∈θk , (k=1,··· ,N).

(v) ξk(z,ζ) are holmorphic in z∈G∪θk , (k=1,··· ,N).
(vi)

Φk(z,ζ)= 〈ξk(z,ζ), η(z,ζ)〉, z∈D∪θk, ζ∈θk ,(k=1,··· ,N). (2.8)

Let F be a C∞ metric over E, which induces a antilinear map µ:E→E∗, η 7→〈·,η〉F, let D
be a connection of E about F, D∗ is a connection of E∗ about F∗, where F∗ is induced by the
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metric F over E∗. Suppose η̂ is a C∞ section: M×M→E∗(M×M), which is defined by η̂=

µ◦η, such that: ∀η∈E(M×M),we have 〈µη,η〉F≥0, and the map ‖η(z,ζ)‖µ :=(〈µη,η〉F)
1
2 ,

η∈E(M×M) define a norm on each fiber in E(M×M), denote 〈µη,η〉F = |η(z,ζ)|2F .

In M×M×△, we use Ẽ∗(M×M×△) to denote the pullback of dual bundle E∗(M×
M) with respect to map (z,ζ,λ) 7→ (z,ζ) . The metric F̃∗ on Ẽ∗(M×M×△) is induced by
the metric F over the vector bundle E(M×M). Let ∇ be a connection of Ẽ∗(M×M×△)
about F̃∗, which is holomorphic on the metric.

We use the notation C∞
k (M×M×△,Ẽ∗) to mean k-order differential form space on

M×M×△, which is valued at Ẽ∗= Ẽ∗(M×M×△) and has the following decomposition

C∞
k (M×M×△,Ẽ∗)=

⊕

p+q+r=k

C∞
p,q,r(M×M×△,Ẽ∗),

where C∞
p,q,r(M×M×△,Ẽ∗) denotes differential form space of type (p,q) about varibales

(z,ζ) and type r about variable λ.

The connection ∇ can be decomposed to ∇=∇′+∇′′, such that

∇′ : C∞
p,q,r(M×M×△,Ẽ∗)−→C∞

p+1,q,r(M×M×△,Ẽ∗),

∇′′ : C∞
p,q,r(M×M×△,Ẽ∗)−→C∞

p,q+1,r(M×M×△,Ẽ∗)
⊕

C∞
p,q,r+1(M×M×△,Ẽ∗).

When 〈ξk(z,ζ),η(z,ζ)〉 6=0, (z,ζ,λ) in some neighborhood of G×SK×△0K, we define

t∗(z,ζ,λ) :=λ0
η̂(z,ζ)

|η(z,ζ)|2F
+ ∑

k∈K

λk
ξk(z,ζ)

〈ξk(z,ζ),η(z,ζ)〉
. (2.9)

According to the properties of η and ξk(k∈K), the map (z,ζ,λ) 7→ t∗(z,ζ,λ) defines a
C1 section on a neighborhood of G×∂G×△. So this differential form

Ω̃[t∗,η̂,η](z,ζ,λ)Λ=
t∗∧Dη

n!(2πi)n

n−1

∑
k=0

(
n
k

)
(−1)k(∇′′t∗∧Dη)n−k−1∧Θ̃k,

is continuous on a neighborhood of G×∂G×△,we denote

Ω̃[t∗,η̂,η](z,ζ,λ)Λ= ∑
1≤p≤n,1≤q≤n−1

Ωp,q(z,ζ,λ),

where Ωp,q(z,ζ,λ) is a component type (p,q) about variable z of Ω̃[t∗,η̂,η](z,ζ,λ)Λ, which

is abbreviated as Ω̃(z,ζ,λ)). For a bounded domain with piecewise C1 smooth boundaries
in a complex manifold, the following conclusions have been proved in [15].

Lemma 2.1. ([15]) Let M be a a complex manifold of complex dimension n, G is a bounded
domain with piecewise C1 smooth boundaries in M, f ∈C(p,q)(G), ∂̄ f is also continuous on G,
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0≤ p≤n, 1≤q≤n, then for all z∈G, we have

(−1)p+q f (z)= ∂̄z

[
∑

|K|≤n−q

(−1)|K|
∫

SK×△0K

f (ζ)∧Ωp,q−1(z,ζ,λ)

+
∫

G×△0

f (ζ)∧Ωp,q−1(z,ζ,λ)
]

−
[

∑
|K|≤n−q−1

(−1)|K|
∫

SK×△0K

∂̄ζ f (ζ)∧Ωp,q(z,ζ,λ)

+
∫

G×△0

∂ζ f (ζ)∧Ωp,q(z,ζ,λ)
]

+(−1)p+q+1 ∑
|K|≤n−q

(−1)|K|
∫

SK×△0K

f (ζ)∧Qp,q(z,ζ,λ)

+
∫

G×△0

f (ζ)∧Cn [Θ]p,q(z,ζ),

where Qp,q(z,ζ,λ) and Cn[Θ]p,q(z,ζ) are the component type (p,q) about variable z of dΩ̃(z,ζ,λ)=

(∂̄z,ζ+dλ)Ω̃(z,ζ,λ) and Cn[Θ](z,ζ), respectively.
In particular, if we add the condition Θe=D2e=0, ∂̄ f =0, then

g(z)= (−1)p+q
[

∑
|K|≤n−q

(−1)|K|
∫

SK×△0K

f (ζ)∧Ωp,q−1(z,ζ,λ)

+
∫

G×△0

f (ζ)∧Ωp,q−1(z,ζ,λ)
]

is the continuous solution of ∂̄–equation ∂̄g= f in G.

3 New Koppelman–Leray-Norguet formula

For K=(k1,··· ,kl)∈P(N), define

UK
G

:=





{ζ∈UG |ρk1
(ζ)= ···=ρkl

(ζ)}, if integers k1,··· ,kl are different in pairs;

∅, otherwise.

By the definition of local q-convex wedge (see [16]), we can be sure that UK
G

is a closed

C2 submanifold of UG, and denote ρK(ζ)= ρkr
(ζ) (ζ ∈UK

G
, r= 1,··· ,l). For K∈ P(N), we

define
ΓK :={ζ∈UK

G
|ρj(ζ)≤ρK(ζ)≤0, j=1,··· ,N}.

It is not difficult to verify that ΓK is a C2 submanifold with piecewise C2 smooth bound-
aries of G. We can also verify the following conclusion:

G=Γ1∪···∪ΓN , ∂ΓK =SK∪ΓK1∪···∪ΓKN , K∈P(N),
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Select the orientation on ΓK such that the component of the orientation with respect to K is
skew symmetric and that the following conditions hold: Γ1,··· ,ΓN carry the orientation
on Cn; If K∈P(N), 1≤ j≤N, j /∈K, then the orientation on ΓKj is consistent with that on
−∂ΓK.

Lemma 3.1. ([16]) The following identity holds

∑
K∈P′(N)

(−1)|K|∂(ΓK×△0K)=G×△0+ ∑
K∈P′(N)

(−1)|K|SK×△0K− ∑
K∈P′(N)

ΓK×△K.

Selecting χk ∈C∞
0 (θk) (k= 1,··· ,N), such that χk(ζ)= 1 on a neighborhood of N(ρk).

From formula (2.3) and (2.5), for each z∈G , the neighborhood Vk⊆θk of N(ρk) exists that
makes for ζ∈(G∩θk)∪Vk, we have Φ̃k(z,ζ) 6=0. Since supp(χk)⊂⊂θk, for each fixed z∈G,
the map χk(ζ)ξk(z,ζ)/Φ̃k(z,ζ) is C1 continuous with respect to ζ∈G∪Vk. We denote

t̃∗(z,ζ,λ) :=λ0
η̂(z,ζ)

|η(z,ζ)|2F
+ ∑

k∈K

λk
χk(ζ)ξk(z,ζ)

Φ̃k(z,ζ)
. (3.1)

So the differential form

Ω[̃t∗,η̂,η](z,ζ,λ)Λ :=
t̃∗∧Dη

n!(2πi)n

n−1

∑
k=0

(
n
k

)
(−1)k(∇′′ t̃∗∧Dη)n−k−1∧Θ̃k, (3.2)

is continuous on a neighborhood of G×∂G×△. We denote

Ω[t∗,η̂,η](z,ζ,λ)Λ= ∑
1≤p≤n,1≤q≤n−1

Ωp,q(z,ζ,λ),

where Ωp,q(z,ζ,λ) is the component type (p,q) about variable z of Ω[t∗,η̂,η](z,ζ,λ)Λ,

which is abbreviated as Ω(z,ζ,λ). We denote

Ω̂[̃t∗,η̂,η](z,ζ,λ)Λ :=dΩ[̃t∗,η̂,η](z,ζ,λ)Λ,

which is abbreviated as Ω̂(z,ζ,λ). So we have

dζ,λ[ f (ζ)∧Ω(z,ζ,λ)]

= ∂̄ζ f (ζ)∧Ω(z,ζ,λ)+(−1)p+q f (ζ)∧Ω̂(z,ζ,λ)− ∂̄z [ f (ζ)∧Ω(z,ζ,λ)]. (3.3)

If λ=(λ0,··· .λN)∈△0, then

λ0=1, t̃∗= t∗=
η̂(z,ζ)

|η(z,ζ)|2F
,

when denote

Ω0[η̂,η](z,ζ)Λ=
η̂∧Dη

n!(2πi)n

n−1

∑
k=0

(
n
k

)
(−1)k (∇

′′η̂∧Dη)n−k−1

|η|
2(n−k)
F

∧Θ̃k,

we obtain the following lemmas.
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Lemma 3.2. Ω(z,ζ,λ)|△0
=Ω0[η̂,η](z,ζ)Λ= Ω̃(z,ζ,λ)|△0

.

Lemma 3.3. When ζ∈∂G , we have

Ω(z,ζ,λ)= Ω̃(z,ζ,λ).

Proof. If ζ∈∂G , we have χk(ζ)=1, Φ̃k(z,ζ)=Φk(z,ζ). Then by formula (2.8) , we can get

χk(ζ)ξk(z,ζ)

Φ̃k(z,ζ)
=

ξk(z,ζ)

Φk(z,ζ)
=

ξk(z,ζ)

〈ξk(z,ζ),η(z,ζ)〉
.

So t̃∗|ζ∈∂G = t∗|ζ∈∂G, thus this Lemma holds.

Lemma 3.4. For continuous bounded (p,q) differential form f on G, the following conclusions
are valid.

(i)
∫

ΓK×△K

f (ζ)∧Ω(z,ζ,λ)=0, (z∈G, q 6=1); (3.4)

(ii) ∂̄z

∫

ΓK×△K

f (ζ)∧Ω(z,ζ,λ)=0, (z∈G). (3.5)

Proof. (i) If (ζ,λ)∈ΓK×△K, then

t̃∗= ∑
k∈K

λkχk(ζ)ξk(z,ζ)/Φ̃k(z,ζ),

Since ξk(z,ζ) , Φ̃k(z,ζ) (k=1,··· ,N) are holomorphic with respect to the variable z, Ω(z,ζ,λ)|(ζ,λ)∈(ΓK×△K)

is zero-order about ∂̄z, so the order sum, with respect to the variable ζ and λ, of f (ζ)∧
Ω(z,ζ,λ) is equal to 2n+1−q, however dimR(ΓK×△K)=2n, thus the formula (3.4) holds
when z∈G, q 6=1.

(ii) Since ξk(z,ζ) , Φ̃k(z,ζ) (k= 1,··· ,N) are holomorphic with respect to the variable
z, so the formula (3.5) holds.

Theorem 3.1. Suppose G is a strictly pseudoconvex domain with non-smooth boundaries in a n-
dimensional complex manifold M, and there are holomorphic support functions Φ̃k(z,ζ), Φk(z,ζ),
(k=1,··· ,N) that satisfy formula (2.3) to (2.8) in G, f ∈C(p,q)(G), ∂̄ f is also continuous on G,

0≤ p≤n, 1≤q≤n, Θe=D2e=0, then for all z∈G, we have

f (z)= ∑
|K|≤n−q+1

(−1)|K| ∂̄z

∫

ΓK×△0K

f (ζ)∧Ω̂p,q−1(z,ζ,λ)

+ ∑
|K|≤n−q

(−1)|K|
∫

ΓK×△0K

∂̄ f (ζ)∧Ω̂p,q(z,ζ,λ). (3.6)
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In particular, if ∂̄ f =0 , then

g(z)= ∑
|K|≤n−q+1

(−1)|K|
∫

ΓK×△0K

f (ζ)∧Ω̂p,q−1(z,ζ,λ),

is the continuous solution of ∂̄-equation ∂̄g= f in G. Where Ω̂p,q(z,ζ,λ) is the component type

(p,q) about variable z of Ω̂(z,ζ,λ).

Proof. Let us first prove the special case when ζ∈∂G, dρk(ζ) 6=0 (k=1,··· ,N). f and ∂̄ f are
continuous on G, we apply Stokes Formula to the differential form f (ζ)∧Ωp,q−1(z,ζ,λ)

on ∑K∈P′(N)(−1)|K|ΓK×△0K,

∑
K∈P′(N)

(−1)|K|
∫

ΓK×△0K

dζ,λ[ f (ζ)∧Ωp,q−1(z,ζ,λ)]

= ∑
K∈P′(N)

(−1)|K|
∫

∂(ΓK×△0K)
f (ζ)∧Ωp,q−1(z,ζ,λ).

By Lemma 3.1 and formula (3.3), we have

∑
K∈P′(N)

(−1)|K|
∫

ΓK×△0K

∂̄ζ f (ζ)∧Ωp,q−1(z,ζ,λ)

+(−1)p+q ∑
K∈P′(N)

(−1)|K|
∫

ΓK×△0K

f (ζ)∧Ω̂p,q−1(z,ζ,λ)

+ ∑
K∈P′(N)

(−1)|K|∂̄z

∫

ΓK×△0K

f (ζ)∧Ωp,q−2(z,ζ,λ)

=
∫

G×△0

f (ζ)∧Ωp,q−1(z,ζ,λ)+ ∑
K∈P′(N)

(−1)|K|
∫

SK×△0K

f (ζ)∧Ωp,q−1(z,ζ,λ)

− ∑
K∈P′(N)

∫

ΓK×△K

f (ζ)∧Ωp,q−1(z,ζ,λ).

Then we have

∑
K∈P′(N)

(−1)|K|
∫

ΓK×△0K

f (ζ)∧Ω̂p,q−1(z,ζ,λ)

= (−1)p+q
[∫

G×△0

f (ζ)∧Ωp,q−1(z,ζ,λ)+ ∑
K∈P′(N)

(−1)|K|
∫

SK×△0K

f (ζ)∧Ωp,q−1(z,ζ,λ)
]

+(−1)p+q+1
[

∑
K∈P′(N)

(−1)|K|∂̄z

∫

ΓK×△0K

f (ζ)∧Ωp,q−2(z,ζ,λ)

+ ∑
K∈P′(N)

∫

ΓK×△K

f (ζ)∧Ωp,q−1(z,ζ,λ)

+ ∑
K∈P′(N)

(−1)|K|
∫

ΓK×△0K

∂̄ζ f (ζ)∧Ωp,q−1(z,ζ,λ)
]

. (3.7)
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Using ∂̄z to act on both sides of formula (3.7), we get

∑
K∈P′(N)

(−1)|K|∂̄z

∫

ΓK×△0K

f (ζ)∧Ω̂p,q−1(z,ζ,λ)

= (−1)p+q∂̄z

[∫

D×△0

f (ζ)∧Ωp,q−1(z,ζ,λ)+ ∑
K∈P′(N)

(−1)|K|
∫

SK×△0K

f (ζ)∧Ωp,q−1(z,ζ,λ)

]

+(−1)p+q+1∂̄z

[
∑

K∈P′(N)

∫

ΓK×△K

f (ζ)∧Ωp,q−1(z,ζ,λ)

+ ∑
K∈P′(N)

(−1)|K|
∫

ΓK×△0K

∂̄ζ f (ζ)∧Ωp,q−1(z,ζ,λ)

]
, (3.8)

Substitute ∂̄ζ f (ζ) for f (ζ) in formula (3.7), we have

∑
K∈P′(N)

(−1)|K|
∫

ΓK×△0K

∂̄ζ f (ζ)∧Ω̂p,q(z,ζ,λ)

= (−1)p+q+1
[∫

G×△0

∂̄ζ f (ζ)∧Ωp,q(z,ζ,λ)+ ∑
K∈P′(N)

(−1)|K|
∫

SK×△0K

∂̄ζ f (ζ)∧Ωp,q(z,ζ,λ)
]

+(−1)p+q
[

∑
K∈P′(N)

(−1)|K|∂̄z

∫

ΓK×△0K

∂̄ζ f (ζ)∧Ωp,q−1(z,ζ,λ)

+ ∑
K∈P′(N)

∫

ΓK×△K

∂̄ζ f (ζ)∧Ωp,q(z,ζ,λ)
]

. (3.9)

From Lemma 3.4, for any K∈P′(N), we have
∫

ΓK×△K

∂̄ζ f (ζ)∧Ωp,q(z,ζ,λ)=0, (∵q≥1),

∂̄z

∫

ΓK×△K

f (ζ)∧Ωp,q−1(z,ζ,λ)=0.

Moreover, add formula (3.8) to (3.9) , and we can get

∑
K∈P′(N)

(−1)|K|∂̄z

∫

ΓK×△0K

f (ζ)∧Ω̂p,q−1(z,ζ,λ)

+ ∑
K∈P′(N)

(−1)|K|
∫

ΓK×△0K

∂̄ζ f (ζ)∧Ω̂p,q(z,ζ,λ)

= (−1)p+q∂̄z

[∫

D×△0

f (ζ)∧Ωp,q−1(z,ζ,λ)

+ ∑
K∈P′(N)

(−1)|K|
∫

SK×△0K

f (ζ)∧Ωp,q−1(z,ζ,λ)
]

+(−1)p+q+1
[∫

D×△0

∂̄ζ f (ζ)∧Ωp,q(z,ζ,λ)
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+ ∑
K∈P′(N)

(−1)|K|
∫

SK×△0K

∂̄ζ f (ζ)∧Ωp,q(z,ζ,λ)
]

. (3.10)

Also pay attention to
∫

SK×△0K

f (ζ)∧ ∂̄zΩp,q−1(z,ζ,λ)=0, |K|>n−q, (3.11)

this is because if |K|>n−q, then dimRSK =2n−|K|<n+q, but the order with respect to
the variable ζ of f (ζ)∧ ∂̄zΩp,q−1 is no less than n+q. Hence this integral of (3.11) is equal
to zero when |K|>n−q . In the same way, we can draw the following conclusions:

∫

SK×△0K

∂̄ζ f (ζ)∧Ωp,q(z,ζ,λ)=0, |K|>n−q−1, (3.12)

∫

ΓK×△0K

f (ζ)∧Ω̂p,q−1(z,ζ,λ)=0, |K|>n−q+1, (3.13)

∫

ΓK×△0K

∂̄ζ f (ζ)∧Ω̂p,q(z,ζ,λ)=0, |K|>n−q. (3.14)

If Θe = D2e = 0, then we have Qp,q(z,ζ,λ) = 0, Cn[Θ]p,q(z,ζ) = 0. From Lemma 3.2,
Lemma 3.3, formula (3.10) to (3.14) and Koppelman–Leray–Norguet formula (Lemma
2.1) , the formula (3.6) holds when ζ∈∂G and dρk(ζ) 6=0.

Second, we consider the general case that we do not have to assume dρk(ζ) 6=0, (k=
1,··· ,N), when ζ ∈ ∂G. In this case, we prove the theorem by considering a sequence of
strictly pseudoconvex domains Gm which are infinitely close to G . And all constructions
in this section are uniform convergence with respect to m . From this we complete the
proof of the Theorem 3.1 .

Example 3.1. If M = Cn, then the vector bundle E is chosen as an trivial bundle of or-
der n, the section η is usually chosen as η = ζ−z, and ξk is chosen as the section of the
Cauchy–Leray vector bundle. It is clear that the corresponding results for strictly pseu-
doconvex domains with non-smooth boundaries in Cn can be obtained from Theorem
3.1, it contains the Theorem 3.1.3 in paper [4].

Example 3.2. If M is a Stein manifold of complex dimension n, G is a strictly pseudocon-
vex domain with non-smooth boundary in M, s(z,ζ), ϕ(z,ζ), κ is the same as Lemma
4.2.4 in paper [4] , T(M) and T∗(M) are the complex tangent bundle and the complex
cotangent bundle of M, respectively, T̃(M) and T̃∗(M) are pullback maps of T(M) and
T∗(M) with respect to projection M×M→ M, (z,ζ) 7→ z. E and E∗ are chosen as T̃(M)
and T̃∗(M) , respectively. The sections ξ1, ··· , ξN of E∗, which are taken as s∗1 , ··· , s∗N ,
respectively. We choose holomorphic cross section η = s(z,ζ) such that {η = 0}=Y∪P,
where P is a closed set disconnected to Y, the exceptional zero point of η leads to new
difficulty. To overcome this difficulty, we introduce a holomorphic function ϕ, which has
the property ϕ(z,z) = 1. From Theorem 3.1, we obtain Koppelman–leray–norguet for-
mula with weight factor ϕν(z,ζ) (ν≥max{nκ∗,nκ}). This is the corresponding result of
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strictly pseudoconvex domain with non-smooth boundary in Stein manifolds. It contains
Theorem 4.10.4 in paper [4].

4 New formula for general strictly pseudoconvex polyhedron on

Stein manifold

Definition 4.1. Let M be a Stein manifold of complex dimension n, an open set G⊂⊂M is said
to be a strictly pseudoconvex polyhedron, that is, if there is a neighborhood UG of G, finitely many
Stein manifolds M1, ···, MN whose complex dimensions are no more than n, holomorphic maps
Fk :UG→Mk, (k=1,··· ,N), as well as strictly pseudoconvex open sets Gk⊂⊂Mk, (k=1,··· ,N),
such that

G=F−1
1 (G1)∩···∩F−1

1 (GN).

If ρ1, ··· , ρN are strictly plurisubharmonic C2 functions in some neighborhoods θ1, ··· , θN of ∂G1,
··· , ∂GN , respectively, such that

Gk∩θk ={z∈θk |ρk(z)<0}, (k=1,··· ,N),

then ∂G⊆F−1
1 (θ1)∪···∪F−1

N (θN), and a point z∈F−1
1 (θ1)∪···∪F−1

N (θN) belongs to G , if and

only if ∀k∈{1≤ k≤N|z∈F−1
k (θk)} , we have ρk(Fk(z))<0.

G is called a real non-degenerate strictly pseudoconvex polyhedron, when we can choose func-
tions Fk and ρk such that: for every index set (k1,··· ,kl)∈P′(N) , as well as every point z which
satisfies z∈∂G with ρk1

(Fk1
(z))= ···=ρkl

(Fkl
(z))=0, we have

d(ρk1
◦Fk1

)(z)∧···∧d(ρkl
◦Fkl

)(z) 6=0.

Remark 4.1. The boundary of a real non-degenerate strictly pseudoconvex polyhedron
is piecewise C1 in the sense of Definition 2.1.

For general strictly pseudoconvex polyhedron ( it’s not necessary to assume real non-
degeneracy) which possess holomorphic support functions Φ̃k(z,ζ), from Corollary 4.9.4
in paper [4], there are T∗(M)-valued C1 maps h∗k (z,ζ) such that

ϕ(z,ζ)Ψ̃k(z,ζ)= 〈h∗k (z,ζ),s(z,ζ)〉,

where Ψ̃k(z,ζ)= Φ̃k(Fk(z),Fk(ζ)), z∈F−1
k (Gk∪θk), ζ∈F−1

k (θk), (k=1,··· ,N) . By the prop-

erty of Ψ̃k, we have Φ̃k(Fk(z),Fk(ζ)) 6=0, then

ϕ(z,ζ)h∗k (z,ζ)

〈h∗k (z,ζ),s(z,ζ)〉
=

χk(ζ)h
∗
k (z,ζ)

Φ̃k(Fk(z),Fk(ζ))

are C1 for any z ∈ F−1
k (Gk∪θk), ζ ∈ F−1

k (θk), (k = 1,··· ,N). Therefore (h∗1 ,··· ,h∗N ,1) is a
Leray–Norguet section for G.
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If we set

t
∗
(h∗1 ,···,h∗N ,ŝ,s)(z,ζ,λ) :=λ0

ŝ(z,ζ)

|s(z,ζ)|2F
+ ∑

k∈K

λk
χk(ζ)h

∗
k (z,ζ)

Φ̃k(Fk(z),Fk(ζ))
,

Ω[t
∗
, ŝ,s](z,ζ,λ)Λ :=

ϕν(z,ζ)t
∗
∧Ds

n!(2πi)n

n−1

∑
k=0

(
n
k

)
(−1)k(∇′′t

∗
∧Ds)n−k−1∧Θ̃k,

then the following theorem can be obtained.

Theorem 4.1. Let M be a Stein manifold, and G⊂⊂ M is a strictly pseudoconvex polyhedron
(unnecessarily real non-degeneracy), which possess holomorphic support functions Φ̃k(z,ζ), ν≥
2nκ, f ∈C(p,q)(G), ∂̄ f is also continuous on G, 0≤ p≤ n,1≤ q≤ n,Θe= D2e= 0, then for all
z∈G, we have

f (z)= ∑
|K|≤n−q+1

(−1)|K|∂̄z

∫

ΓK×△0K

f (ζ)∧Ω̂p,q−1(z,ζ,λ)

+ ∑
|K|≤n−q

(−1)|K|
∫

ΓK×△0K

∂̄ f (ζ)∧Ω̂p,q(z,ζ,λ),

where we need to be aware of Ω̂p,q(z,ζ,λ) is the component type (p,q) about variable z of

Ω̂(z,ζ,λ) :=dΩ[t
∗
, ŝ,s](z,ζ,λ)Λ.

In particular, if ∂̄ f =0, then

g(z)= ∑
|K|≤n−q+1

(−1)|K|
∫

ΓK×△0K

f (ζ)∧Ω̂p,q−1(z,ζ,λ),

is the continuous solution of ∂̄-equation ∂̄g= f in G .

Remark 4.2. When we only choose the first term in the expansion of Berndtsson’s kernel
(i.e. formula (2.2)), it is exactly the kernel of type (p,q) on the Stein manifold. From
Example 3.2 and Theorem 4.1 , it implies the corresponding result in paper [13] .
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