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Abstract. The objectives of the present study are to investigate the effects of heat
and mass transfer on the unsteady flow of a perfect conducting polar fluid over
a flat sheet with a linear velocity in the presence of thermal radiation. Succes-
sive approximation method developed in Zakaria [Appl. Math. Comput. 10 (2002),
Appl. Math. Comput. 155 (2005)] is adopted to solve the problem. The effects
of Alfven velocity, mass transfer, various material parameters, Prandtl number,
Schmidt number and relaxation time on the velocity, angular velocity, temperature
and concentration are discussed and illustrated graphically.
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1 Introduction

Due to the increase of importance in the processing industries and elsewhere of ma-
terials whose flow behavior in shear cannot be characterized by classical fluid, a new
stage in the evolution of fluid dynamic theory achieves development. Hoyt and Fab-
ula [1], Vogel and Patterson [2] have shown experimentally that fluids containing
minute polymeric additives indicate considerable reduction of the skin friction near
a rigid body (about 25-30%), a concept which can be well explained by the theory of
polar fluids. The classical fluid mechanics could not explain this phenomenon. There-
fore, Aero et al. [3] and D’ep [4] have proposed the theory of the polar fluids taking in
consideration that the inertial characteristics of the substructure particles which are al-
lowed to undergo rotation. This theory can be used to explain the flow of the colloidal
fluids liquid crystals animal blood etc.
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Polar fluid dynamics is concerned with the fluids motion whose material points
possess orientations. It is distinguished from classical fluid dynamics (which is also
known as Newtonian fluid dynamics or Navier-Stokes (N-S) theory) in the classical
fluid dynamics, which is not assumed to possess oriented material points. Thus,
against the three translational degrees of freedom of the classical theory, polar flu-
ids possess six degrees of freedom: three of them are translational degrees and the
other rotational degrees. The rotational degrees of freedom play a role in the nonsym-
metrical stress tensors and couple tresses, which are missing from the classical theory.

Boundary layer flow on continuous moving surfaces is an important type of flow
occurring in a number of engineering processes. Aerodynamic extrusion of plastic
and rubber sheets, cooling of an infinite metallic plate in a cooling path, which may
be an electrolyte, crystal growing, the boundary layer along a liquid film in condensa-
tion processes and a polymer sheet or filament extruded continuously from a die, or
along thread traveling between a feed roll and a wind-up roll are examples of practical
applications of continuous moving surfaces. Glass blowing, continuous casting, and
spinning of fibers also involve the flow due to the stretching surface. Various aspects
of this problem have been studied by Sakiadis [5–7]. Eldabe and Ouaf [8] studied the
heat and mass transfer in a hydromagnetics flow of a micro polar fluid past a stretch-
ing surface. Kleson and Desseaux analyzed the effect of surface conditions on flow of
a micro polar fluid driven by a porous stretching sheet [9]. Massive amount of works
have been done on heat and mass transfer for a hydromagnetics flow over a stretching
sheet [10–13].

In the above mentioned works, the effect of the induced magnetic field was ne-
glected. Recently Zakaria [14, 15], also Ezzat and Zakaria [16, 17] studied the effects
of induced magnetic field and heat transfer of polar and viscoelastic fluid flow over a
stretching sheet. The modification of the heat-conduction equation from diffusive to a
wave type may be affected either by a microscopic consideration of the phenomenon
of heat transport or in a phenomenological way by modifying the classical Fourier law
of heat conduction.

In this work, we use a more general model of MHD perfect conducting polar fluid
over a stretching sheet due to thermal radiation under the effects of heat and mass
transfer, which also includes the relaxation time of concentration, heat conduction and
the electric displacement current [18, 19]. The inclusion of the relaxation time and the
electric displacement current modifies the governing thermal, concentration and elec-
tromagnetic field equations, changing them from the parabolic to a hyperbolic type,
and thereby eliminating the unrealistic result that thermal, concentration and elec-
tromagnetic disturbances are realized instantaneously everywhere within a perfectly
conducting polar fluid.

2 Mathematical formulation

In our consideration of two-dimensional problem of hydromagnetics heat and mass
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transfer flow, we shall make two important restrictions. First, we assume that the
medium under consideration is perfectly conducting fluid and secondly, the initial
magnetic field of uniform strength H0 acts in the direction of the y-axis. This produces
an induced magnetic field h and induced electric field E which satisfy the linearized
equations of electromagnetic, valid for slowly moving media of a perfect conductor
[16]:

curl h = J + εo
∂E
∂t

, (2.1)

curl E = −µ0
∂h
∂t

, (2.2)

E = −µ0(V× H0), (2.3)
div h = 0, (2.4)

where J is the electric current density, εo and µo are the magnetic and electric perme-
abilities, t is the time, and V is the velocity vector of the fluid.

The basic equations of continuity, momentum, energy and concentration for un-
steady flow of polar fluids in the presence of a transversal magnetic field are

div V = 0, (2.5)

ρV̇ = (µ + µr)∇2V + 2µr(∇×Ω) + µo(J × Ho), (2.6)

ρk2Ω̇ = (Cα + 2Cβ)∇(∇ ·Ω)− (Cβ + Cγ)∇× (∇×Ω), (2.7)

ρ
(

Ṫ + τo
∂Ṫ
∂t

)
=

λ

Cp
∇2T +

(µ + µr)
Cp

|∇ ×V|2 +
µr

Cp
Ω2 +

ρDkT
CsCp

∇2C

+
2µr

Cp
Ω · (∇×V) +

γ∗

Cp
|∇ ×Ω|2 + k1(T − T∞), (2.8)

(
Ċ + τo

∂Ċ
∂t

)
= D∇2C + k2 (C− C∞) +

DkT
Tm

∇2T, (2.9)

where the over dot denotes the material derivative, µ is the viscosity, µr is the rota-
tional viscosity, ρ is the density of the fluid, k, is the radius of gyration of the polar
fluid, Cα, Cβ, and Cγ are the coefficients of couple stress viscosities, Ω is the angular
velocity vector of the fluid, T is the temperature of the fluid, τo is the relaxation time,
λ is the thermal conductivity, Cp is the specific heat at constant pressure, ∇ is the del
operator, D is the mass diffusivity, kT is the thermal diffusion ratio, Cs is the concen-
tration susceptibility, γ∗ is the viscosity coefficient, k1 is the rate of specific internal
heat generation, T∞ is the temperature condition far away from the surface, C is the
concentration of the fluid, k2 is the reaction rate coefficient, C∞ is the concentration
condition far away from the surface and Tm is the mean fluid temperature.

Let us consider the unsteady incompressible flow of two dimensional MHD polar
fluid which issues from a thin slit as found on polymer processing applications past a
horizontal stretching sheet. Fig. 1 shows the flow model and coordinate system. Ini-
tially we assume that the velocity of a point on a sheet is proportional to the distance
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Figure 1: Coordinate system for the physical model of the stretching sheet.

from the slit. The x and y axes are taken along and perpendicular to the surface, re-
spectively, the velocity vector V, the angular velocity vector Ω, initial magnetic field
Ho, induced magnetic field h, the induced electric field E which is normal to the con-
sidered magnetic field, and the electric current density J is parallel to the electric field
as

V = (u, v, 0), Ω = (0, 0, ω), Ho = (0, Ho, 0),

h = (h1, h2, 0), E = (0, 0, E) and J = (0, 0, J).

With the usual boundary layer assumptions [20, 21], Eqs. (2.5)-(2.9) are reduced to the
following:

∂u
∂x

+
∂v
∂y

= 0, (2.10)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= (ν + νr)
(∂2u

∂x2 +
∂2u
∂y2

)
+ 2νr

∂ω

∂y

+
α2

Ho

(∂h1

∂y
− ∂h2

∂x
− µoεo Ho

∂u
∂t

)
, (2.11)

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

γ

I

(∂2ω

∂x2 +
∂2ω

∂y2

)
, (2.12)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
λ

ρCp

(∂2T
∂x2 +

∂2T
∂y2

)
+

(ν + νr)
Cp

( ∂v
∂x
− ∂u

∂y

)2

+ 2νrω
( ∂v

∂x
− ∂u

∂y

)
+

γ∗

ρCp

[(∂ω

∂x

)2
+

(∂ω

∂y

)2
]

+ νrω2 + k1(T − T∞)

− τ0
∂

∂t

(∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
+

DkT
CsCp

(∂2C
∂x2 +

∂2C
∂y2

)
, (2.13)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= D
(∂2C

∂x2 +
∂2C
∂y2

)
− τo

∂

∂t

(∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

)

+ k2(C− C∞) +
DkT
Tm

(∂2T
∂x2 +

∂2T
∂y2

)
, (2.14)
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∂h1

∂t
= Ho

∂u
∂y

, (2.15)

∂h2

∂t
= −Ho

∂u
∂x

, (2.16)

where ν is the kinematics viscosity, νr is the rotational kinematics viscosity, α2 =
µo H2

o /ρ is the Alfven velocity, γ = (Cβ + Cγ) is the spin-gradient density and I is the
scalar constant of dimension, equal to the moment of inertia of unit.

Eliminating h1 and h2 among Eqs. (2.15), (2.16) and (2.11), and taking into account
the boundary layer approximations, Eq. (2.11) yields [21]:

(1 + α2µoεo)
∂2u
∂t2 + u

∂2u
∂t∂x

+
∂u
∂t

∂u
∂x

+ v
∂2u
∂t∂y

+
∂v
∂t

∂u
∂y

=2νr
∂2ω

∂t∂y
+

(
(ν + νr)

∂

∂t
+ α2

) (
∂2u
∂x2 +

∂2u
∂y2

)
. (2.17)

The initial and boundary conditions imposed on Eqs. (2.12)-(2.17), are [3]:

y = 0 : u = `x, ω′ = −u′′, v = Vo, t = 0, (2.18a)
y = 0 : C− C∞ = Cωxm, T − T∞ = Tωxm, t = 0, (2.18b)

y = 0 : u = `xent, ω′ = −u′′ent, v = Voent, t > 0, (2.18c)

y = 0 : C− C∞ = Cωxment, T − T∞ = Tωxment, t > 0, (2.18d)
y → ∞ : u → 0, C → C∞, T → T∞, ω → 0, (2.18e)

where ` is the proportional coefficient, n is constant, Vo is the velocity condition at the
surface, Tω is the mean temperature of the surface, Cω is the mean consternation of
the surface, m is the power law exponent, and primes indicate derivates with respect
to y.

We introduce the following non-dimensional quantities:

x∗ =

√
`

ν
x, y∗ =

√
`

ν
y, t∗ = `t, h∗1 =

h1

Ho
, h∗2 =

h2

Ho
, u∗ =

u√
`ν

, (2.19a)

v∗ =
v√
`ν

, Pr =
ρCpν

λ
, T∗ =

T − T∞

Tω
, C∗ =

C− C∞

Cω
, (2.19b)

α∗ =
α√
`ν

, β =
Iν

γ
, α1 =

νr

ν
, Ec =

`ν(1 + α1)
TωCp

, fω =
Vo√
`ν

, (2.19c)

ω∗ =
ω

`
, E1 =

`να1

TωCp
, E2 =

γ`2

ρTωCp
, D f =

DkTCω

CsCpνTω
, k∗1 =

k1

`
, (2.19d)

k∗2 =
k2

`
, Sc =

ν

D
, Sr =

DkTTω

νCωTm
, τ∗o = `τo, (2.19e)

where Pr is the Prandtl number, β, α1 are the material parameters characterizing the
polarity of the fluid, Ec, E1, and E2 are the Eckert numbers, D f is the Dufour number,
Sc is the Schmidt number, k∗1 is the thermal radiation parameter, k∗2 is the first order of
reaction (chemically reactive), and Sr is the Soret number.
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The mass transfer parameter fω is positive for injection and negative for suction.
Invoking the non-dimensional quantities above, Eqs. (2.10), (2.12)-(2.14) and (2.17), are
reduced to the non-dimensional equations, dropping the asterisks for convenience,

∂u
∂x

+
∂v
∂y

= 0, (2.20)

a1
∂2u
∂t2 + u

∂2u
∂t∂x

+
∂u
∂t

∂u
∂x

+ v
∂2u
∂t∂y

+
∂v
∂t

∂u
∂y

= 2α1
∂2ω

∂t∂y
+

(
(1 + α1)

∂

∂t
+ α2

)( ∂2u
∂y2

)
, (2.21)

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1
β

∂2ω

∂y2 , (2.22)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
1
Pr

∂2T
∂y2 + D f

∂2C
∂y2 + Ec

(∂u
∂y

)2
+ E1ω2 − 2E1ω

∂u
∂y

+ k1T + E2

(∂ω

∂y

)2
− τ0

∂

∂t

(∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
, (2.23)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

=
1
Sc

∂2C
∂y2 + k2C + Sr

∂2T
∂y2 − τo

∂

∂t

(∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

)
, (2.24)

where a1 = α2/c2 and c is the speed of light given by c2 = 1/µεo.
From Eq. (2.23) the reduced boundary conditions are

y = 0 : u = x, ω′ = −u′′, v = fω, t = 0, (2.25a)
y = 0 : C = xm, T = xm, t = 0, (2.25b)

y = 0 : u = xent, ω′ = −u′′, v = fωent, t > 0, (2.25c)

y = 0 : C = xment, T = xment, t > 0, (2.25d)
y → ∞ u → 0, C → 0, ω → 0, T → T∞. (2.25e)

3 The method of successive approximations

A process of successive approximations will integrate the unsteady boundary layer
(2.20)-(2.24). Selecting a system of coordinates at rest with respect to the plate and the
MHD flow of perfectly conducting fluid moves with respect to the plane surface, we
can assume that the velocity u, v, the temperature T, and the concentration C, which
possess a series solution of the form

F(x, y, t) =
∞

∑
i=0

Fi(x, y, t), (3.1)

where Fi = O(εi) i – integer and ε is a small number.
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Substituting the series (3.1) into Eqs.(2.21)-(2.24) and setting equal to zero terms of
the same order, one obtains equations to find components of the series (3.1)

{
(1 + α1)

∂

∂t
+ α2

}
∂2uo

∂y2 − a1
∂2uo

∂t2 = −2α1
∂2ωo

∂t∂y
, (3.2)

{
(1 + α1)

∂

∂t
+ α2

}
∂2u1

∂y2 − a1
∂2u1

∂t2 =
∂

∂t

(
uo

∂uo

∂x
+ vo

∂uo

∂y

)
− 2α1

∂2ωo

∂t∂y
, (3.3)

∂2ωo

∂y2 − β
∂ωo

∂t
= 0, (3.4)

∂2ω1

∂y2 − β
∂ω1

∂t
= β

(
uo

∂ωo

∂x
+ vo

∂ωo

∂y

)
, (3.5)

∂2To

∂y2 − Pr

(
1 + τ0

∂

∂t

)
∂To

∂t
+ Prk1To + PrD f

∂2Co

∂y2 = 0, (3.6)

∂2T1

∂y2 + PrD f
∂2C1

∂y2 − Pr

(
1 + τ0

∂

∂t

)
∂T1

∂t
+ Prk1T1

=− E1ω2
o − Ec

(
∂u0

∂y

)2

+ Pr

(
1 + τo

∂

∂t

){
uo

∂To

∂x
+ vo

∂To

∂y

}

− 2E1ωo
∂u0

∂y
− E2

∂ωo

∂y
, (3.7)

∂2Co

∂y2 + ScSr
∂2T0

∂y2 − Sc

(
1 + τo

∂

∂t

)
∂Co

∂t
+ Sck2Co = 0, (3.8)

∂2C1

∂y2 + ScSr
∂2T1

∂y2 − Sc

(
1 + τo

∂

∂t

)
∂C1

∂t
+ Sck2C1

=Sc

(
1 + τo

∂

∂t

){
uo

∂Co

∂x
+ vo

∂Co

∂y

}
. (3.9)

Comparing Eq. (2.25) to Eq. (3.1) , we will have the corresponding boundary condi-
tions

y = 0 : uo = xent, ui = 0, i = 1, 2, · · · , t > 0, (3.10a)

y = 0 : vo = fωent, vi = 0, i = 1, 2, · · · , t > 0, (3.10b)
y = 0 : ωi = −u′′i , i = 0, 1, 2, · · · , t > 0, (3.10c)

y = 0 : To = xment, Ti = 0, i = 1, 2, · · · , t > 0, (3.10d)

y = 0 : Co = xment, Ci = 0, i = 1, 2, · · · , t > 0, (3.10e)
y → ∞ : ui → 0, ωi → 0, i = 0, 1, 2, · · · ,
y → ∞ : Ti → 0, Ci → 0, i = 0, 1, 2, · · · .

In the following analysis, the first two terms in the solution series (3.1) will be retained.
It is known as a fact that such solution is satisfactory in the phases of the non-periodic
motion after it has been stated from the rest (till the moment when the first separation
of boundary layer occurs) and in the case of periodic motion when the amplitude of
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oscillation is small. Higher-order approximations u3, can be obtained easily in prin-
ciple. However, the complexity of the successive approximations method increases
rapidly as higher approximations are considered. It is also known that the third and
higher terms series solutions give small changes in the results compared with the two
terms series solutions.

4 Solution of the momentum and angular momentum
equations

Let us suppose that the exact solutions of the differential Eqs. (3.3) and (3.4) are of the
form

uo(x, y, t) = xent f ′o(y), (4.1)

ωo(x, y, t) = xent ϕo(y). (4.2)

Using Eq. (2.20), we obtain,

vo(x, y, t) = −ent fo(y), (4.3)

from Eqs. (3.2) and (3.4) and by using Eqs. (4.1)-(4.3), one obtains the differential
equations of the unknown functions fo(y), ϕo(y), and the corresponding boundary
conditions

f ′′′o − r2
1 f ′o = −2α1

na1
r2

1 ϕ′o, (4.4)

ϕ′′o − nβϕo = 0, (4.5)
y = 0 : fo = − fω, f ′o = 1, ϕ′0 = − f ′′′0 ,
y → ∞ : f ′0 → 0, ϕo → 0, (4.6)

where r2
1 = n2a1/(1 + α1)n + α2.

The solutions of the system (4.4)-(4.6) are of the form

fo(y) = A1 + A2e−r1y + AA3e−
√

nβy, (4.7)

ϕo(y) = A3e−
√

nβy, (4.8)

where

A =
2α1r2

1

na1
(
k2

1 − nβ
) , A1 = −(

fω + A2 + AA3
)
,

A2 =
nAβ + 1

k1
[
A

(
r2

1 − nβ
)− 1

] , A3 =
k2

1√
nβ

[
1 + A

(
nβ− r2

1

)] .
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Assuming the solutions of the differential Eqs. (3.3) and (3.5) are of the form

u1(x, y, t) = xe2nt f ′1(y), (4.9)

ω1(x, y, t) = xe2nt ϕ1(y), (4.10)

and using Eqs. (4.1)-(4.3), (4.9) and (4.10), one obtains from the Eqs. (3.3) and (3.5), the
differential equations for f1(y), ϕ1(y), and the corresponding boundary conditions

f ′′′1 − r2
2 f ′1 =

r2
2

2na1

(
f ′2o − fo f ′′o − 2α1 ϕ′o

)
, (4.11)

ϕ′′1 − nβϕ1 = β
(

ϕo f ′o − fo ϕ′o
)
, (4.12)

y = 0 : f1 = 0, f ′1 = 0, ϕ′1 = − f ′′′1 ,
y → ∞ : f ′1 → 0, ϕ1 → 0, (4.13)

where r2
2 = 4n2a1/2n(1 + α1) + α2.

Using Eqs. (4.7) and (4.8), one obtains the solutions of the system (4.11)-(4.13)

f1(y) = Bo + B1e−r1y + B2e−
√

nβy + B3e−r2y + B4e−(r1+
√

nβ)y + BB5e−2
√

nβy, (4.14)

ϕ1(y) = B5e−2
√

nβy + B6e−
√

nβy + B7e−(r1+
√

nβ)y, (4.15)

where

B =
2α1r2

2

na1
(
r2

2 − 2nβ
) , B1 =

r1r2
2

2na1
(
r2

1 − r2
2

) A1 A2,

B2 =
r2

2
(
nβAA1 A3 − 2α1

√
nβB6

)

2na1
√

nβ
(
nβ− r2

2

) .

We can obtain an exact solution of Eqs. (3.6) and (3.8) if we consider the case m = 2.
Suppose that the exact solutions of these differential equations are of the form

To(x, y, t) = x2entψo(y), Co(x, y, t) = x2entζo(y), (4.16)

from Eqs. (3.6) and (3.8), by using Eq. (4.16) one obtains the differential equations of
the unknown functions ψo(y) and ζo(y), and the corresponding boundary conditions:

ψ′′o − Pr [n (1 + nτo)− k1] ψo = −PrD f ζ ′′o , (4.17)

ζ ′′o − Sc [n (1 + nτo)− k2] ζo = −ScSrψ′′o , (4.18)
y = 0 : ψo = 1, ζo = 1,
y → ∞ : ψo → 0, ζo → 0. (4.19)

It is obvious that the two unknown functions ψo(y) and ζo(y) satisfy with the fourth
order differential equations

ψiv
o −

(
r2

3 + r2
4
)

ψ′′o − r2
3r2

4ψo = 0, (4.20)

ζ iv
o −

(
r2

3 + r2
4
)

ζ ′′o − r2
3r2

4ζo = 0, (4.21)
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where

r2
3 + r2

4 =
n(1 + nτo)(Pr + Sc)− Prk1 − Sck2

1− PrD f ScSr
,

r2
3r2

4 =
PrSc

[
n(1 + nτo)− k1

][
n(1 + nτo)− k2

]

1− PrD f ScSr
.

The solutions of the system (4.20) and (4.21) are of the form

ψo(y) = Γ1e−r3y + Γ2e−r4y, (4.22)
ζo(y) = `1Γ1e−r3y + `2Γ2e−r4y, (4.23)

where Γ1, Γ2, `1, and `2 are some unknown parameters. We can determent the param-
eters `1 and `2 from the compatibility between Eqs. (4.17) and (4.18) gives

`1 =
P− r2

3
PrD f

, `2 =
P− r2

4
PrD f

, P = Pr [n (1 + nτo)− k1] .

We shall now use the boundary conditions of the problem to evaluate the unknown
parameters Γ1 and Γ2. Eq. (4.14) together with Eqs. (4.15) and (4.16) which give

Γ1 =
P− r2

4 − PrD f

r2
3 − r2

4
, Γ2 =

P− r2
3 − PrD f

r2
4 − r2

3
.

Now assuming the solutions of the differential Eqs. (3.7) and (3.9) are of the form

T1(x, y, t) = x2e2ntψ1(y), C1(x, y, t) = x2e2ntζ1(y). (4.24)

and using Eqs. (4.21) and (4.27), one obtains from Eqs. (4.2) and (4.4) the differential
equations for ψ1(y), ζ1(y), and the corresponding boundary conditions:

ψ′′1 − P1ψ1 + PrD f ζ ′′1 = −E1
(

ϕ2
o + 2ϕo f ′′o

)− E2
(

f ′′2o + ϕ′2o
)

+ Pr (1 + 2nτo)
(
2 f ′oψo − foψ′o

)
, (4.25)

ζ ′′1 − S1ζ1 + ScSrψ′′1 = Sc (1 + 2nτo)
(
2 f ′oζo − foζ ′o

)
, (4.26)

y = 0 : ψ1 = 1, ζ1 = 0,
y → ∞ : ψ1 → 0, ζ1 → 0, (4.27)

where P1 = Pr
(
2n(1 + 2nτo)− k1

)
, S1 = Sc

(
2n(1 + 2nτo)− k2

)
.

Eliminating ζ1 from Eqs. (4.25) and (4.26), after substituting it from Eqs. (4.7), (4.8),
(4.20) and (4.21), we obtain

ψiv
1 −

(
r2

5 + r2
6
)

ψ′′1 − r2
5r2

6ψ1

=m1e−2
√

nβy + m2e−(r1+
√

nβ)y + m3e−(r3+
√

nβ)y + m4e−(r4+
√

nβ)y

+ m5e−(r1+r3)y + m6e−(r1+r4)y + m7e−2r1y + m8e−r3y + m9e−r4y, (4.28)
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where

r2
5 + r2

6 =
P1 + S1

1− PrD f ScSr
, r2

5r2
6 =

P1S1

1− PrD f ScSr
,

m1 =
A2

3 (S1 − 4nβ)
[
E1 (1 + 2Anβ) + nβE2

(
1 + A2nβ

)]
(
1− PrD f ScSr

) ,

m2 =
2r2

1 A2 A3

(
S1 −

(
r1 +

√
nβ

)2
)

(E1 + AnβE2)(
1− PrD f ScSr

) ,

m3 =
AA3Γ1Pr (1 + 2nτ0)

((
Sc`1D f − 1

) (
r3 +

√
nβ

)2 + S1

) (
r3 − 2

√
nβ

)
(
1− PrD f ScSr

) ,

m4 =
AA3Γ2Pr (1 + 2nτ0)

((
Sc`1D f − 1

) (
r4 +

√
nβ

)2 + S1

) (
r4 − 2

√
nβ

)
(
1− PrD f ScSr

) ,

m5 =
A2Γ1Pr (1 + 2nτ0)

((
1− Sc`1D f

)
(r1 + r3)

2 − S1

)
(r3 − 2r1)(

1− PrD f ScSr
) ,

m6 =
A2Γ2Pr (1 + 2nτ0)

((
Sc`2D f − 1

)
(r1 + r4)

2 + S1

)
(r4 − 2r1)(

1− PrD f ScSr
) ,

m7 =
E2 A2

2r4
1

(
S1 − 4r2

1

)
(
1− PrD f ScSr

) ,

m8 =
A1r3Γ1Pr (1 + 2nτ0)

(
r2

3
(
1− Sc`1D f

)− S1
)

(
1− PrD f ScSr

) ,

m9 =
A1r4Γ2Pr (1 + 2nτ0)

(
r2

4

(
1− Sc`2D f

)− S1
)

(
1− PrD f ScSr

) .

Eliminating ψ1 between Eqs. (4.25) and (4.26) after substituting it from Eqs. (4.7), (4.8),
(4.20) and (4.21), we obtain

ζ iv
1 −

(
r2

5 + r2
6
)

ζ ′′1 − r2
5r2

6ζ1

=m10e−2
√

nβy + m11e−(r1+
√

nβ)y + m12e−(r3+
√

nβ)y

+ m13e−(r4+
√

nβ)y + m14e−(r1+r3)y + m15e−(r1+r4)y

+ m16e−2r1y + m17e−r3y + m18e−r4y, (4.29)

where

m10 =
4nβA2

3ScSr
[
E1 (1 + 2Anβ) + nβE2

(
1 + A2nβ

)]
(

1− PrD f ScSr

) ,

m11 =
2r2

1ScSr A2 A3
(
r1 +

√
nβ

)2 (E1 + AnβE2)(
1− PrD f ScSr

) ,
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m12 =
AA3Γ1Sc (1 + 2nτ0)

(
(`1 − SrPr)

(
r3 +

√
nβ

)2 + `1P1

) (
r3 − 2

√
nβ

)
(

1− PrD f ScSr

) ,

m13 =
AA3Γ2Sc (1 + 2nτ0)

(
(`2 − SrPr)

(
r4 +

√
nβ

)2 + `2P1

) (
r4 − 2

√
nβ

)
(

1− PrD f ScSr

) ,

m14 =
A2Γ1Sc (1 + 2nτ0)

(
(`1 − SrPr) (r1 + r3)

2 + `1P1

)
(r3 − 2r1)(

1− PrD f ScSr

) ,

m15 =
A2Γ2Sc (1 + 2nτ0)

(
(`2 − SrPr) (r1 + r4)

2 + `2P1

)
(r4 − 2r1)(

1− PrD f ScSr

) ,

m16 =
4E2 A2

2r6
1ScSr(

1− PrD f ScSr

) ,

m17 =
A1r3Γ1Sc (1 + 2nτ0)

(
r2

3 (`1 − SrPr)− S1
)

(
1− PrD f ScSr

) ,

m18 =
A1r4Γ2Sc (1 + 2nτ0)

(
r2

4 (`2 − SrPr)− P1
)

(
1− PrD f ScSr

) .

The solutions of the Eqs. (4.31) and (4.32) are of the form

ψ1(y) =Γ3e−r5y + Γ4e−r6y + m̃1e−2
√

nβy + m̃2e−(r1+
√

nβ)y + m̃3e−(r3+
√

nβ)y

+ m̃4e−(r4+
√

nβ)y + m̃5e−(r1+r3)y + m̃6e−(r1+r4)y

+ m̃7e−2r1y + m̃8e−r3y + m̃9e−r4y, (4.30)

ζ1(y) =Γ3`3e−r5y + Γ4`4e−r6y + m̃10e−2
√

nβy + m̃11e−(r1+
√

nβ)y

+ m̃12e−(r3+
√

nβ)y + m̃13e−(r4+
√

nβ)y + m̃14e−(r1+r3)y

+ m̃15e−(r1+r4)y + m̃16e−2r1y + m̃17e−r3y + m̃18e−r4y, (4.31)

where

m̃1 =
m1(

4nβ− r2
5
) (

4nβ− r2
6
) ,

m̃2 =
m2(

r2
1 + 2r1

√
nβ + nβ− r2

5
) (

r2
1 + 2r1

√
nβ + nβ− r2

6
) ,

m̃3 =
m3(

r2
3 + 2r3

√
nβ + nβ− r2

5
) (

r2
3 + 2r3

√
nβ + nβ− r2

6
) ,

m̃4 =
m4(

r2
4 + 2r4

√
nβ + nβ− r2

5
) (

r2
4 + 2r4

√
nβ + nβ− r2

6
) ,

m̃5 =
m5(

r2
1 + 2r1r3 + r2

3 − r2
5
) (

r2
1 + 2r1r3 + r2

3 − r2
6
) ,
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m̃6 =
m6(

r2
1 + 2r1r4 + r2

4 − r2
5
) (

r2
1 + 2r1r4 + r2

4 − r2
6
) ,

m̃7 =
m7(

4r2
1 − r2

5
) (

4r2
1 − r2

6
) , m̃8 =

m8(
r2

3 − r2
5
) (

r2
3 − r2

6
) ,

m̃9 =
m9(

r2
4 − r2

5
) (

r2
4 − r2

6
) , m̃10 =

m10(
4nβ− r2

5
) (

4nβ− r2
6
) ,

m̃11 =
m11(

r2
1 + 2r1

√
nβ + nβ− r2

5
) (

r2
1 + 2r1

√
nβ + nβ− r2

6
) ,

m̃12 =
m12(

r2
3 + 2r3

√
nβ + nβ− r2

5
) (

r2
3 + 2r3

√
nβ + nβ− r2

6
) ,

m̃13 =
m13(

r2
4 + 2r4

√
nβ + nβ− r2

5
) (

r2
4 + 2r4

√
nβ + nβ− r2

6
) ,

m̃14 =
m14(

r2
1 + 2r1r3 + r2

3 − r2
5
) (

r2
1 + 2r1r3 + r2

3 − r2
6
) ,

m̃15 =
m15(

r2
1 + 2r1r4 + r2

4 − r2
5
) (

r2
1 + 2r1r4 + r2

4 − r2
6
) ,

m̃16 =
m16(

4r2
1 − r2

5
) (

4r2
1 − r2

6
) , m̃17 =

m17(
r2

3 − r2
5
) (

r2
3 − r2

6
) ,

m̃18 =
m18(

r2
4 − r2

5
) (

r2
4 − r2

6
) .

We can determent the parameters `3, and `4 from the compatibility between Eqs. (4.25) and
(4.26), which give

`3 =
P1 − r2

5
PrD f

, `4 =
P1 − r2

6
PrD f

.

We shall now use the boundary conditions of the problem to evaluate the unknown parameters
Γ3 and Γ4. Eqs. (4.27) together with Eqs. (4.30) and (4.31) gives

Γ3 =
mjPrD f −mi(P1 − r2

6)
r2

5 − r2
6

, Γ4 =
mjPrD f −mi(P1 − r2

5)
r2

6 − r2
5

,

where i = 1, 2, · · · , 9, j = 10, 11, · · · , 18.
From Eqs. (2.15) and (2.16) by virtue of transform Eq. (2.19), we get

∂h1

∂t
=

∂u
∂y

,
∂h2

∂t
= −∂u

∂x
. (4.32)

By using Eqs. (4.1), (4.7), (4.9), (4.14) and (4.32), the components of the induced magnetic field
are given by

h1(x, y, t) = h01(x, y, t) + εh11(x, y, t), (4.33)
h2(x, y, t) = h02(x, y, t) + εh12(x, y, t), (4.34)
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where

h01(x, y, t) =
xent

n

(
r2

1 A2e−r1y + nβAA3e−
√

nβy
)

,

h11(x, y, t) =
xe2nt

2n

(
r2

1B1e−r1y + nβB2e−
√

nβy + r2
2B3e−r2y

+ (r1 + nβ)2 B4e−(r1+
√

nβ)y + 4nβBB5e−
√

2nβy
)

,

h02(x, y, t) =
ent

n

(
r1 A2e−r1y + nβAA3e−

√
nβy

)
,

h12(x, y, t) =
e2nt

2n

(
r1B1e−r1y +

√
nβB2e−

√
nβy + r2B3e−r2y

+ (r1 + nβ) B4e−(r1+
√

nβ)y + 2
√

nβBB5e−2
√

nβy
)

.

From Eqs. (2.1), (2.3), (2.25), (4.1), (4.7), (4.9) and (4.14), by virtue of transform Eq. (2.19), the
electric field and electric current density are given by

E(x, y, t) = E0(x, y, t) + εE1(x, y, t), (4.35)
J(x, y, t) = J0(x, y, t) + εJ1(x, y, t), (4.36)

where

E0(x, y, t) = xent
(

r1 A2e−r1y +
√

nβAA3e−
√

nβy
)

,

E1(x, y, t) = xe2nt
(

r1B1e−r1y +
√

nβB2e−
√

nβy + r2B3e−r2y

+
(

r1 +
√

nβ
)

B4e−(r1+
√

nβ)y + 2
√

nβBB5e−2
√

nβy
)

,

J0(x, y, t) =
ent

n

(
r1

(
xr2

1 − 1
)

A2e−r1y +
√

nβ (xnβ− 1) AA3e−
√

nβy
)

,

J1(x, y, t) =
e2nt

2n

(
r1

(
xr2

1 − 1
)

B1e−r1y +
√

nβ (xnβ− 1) B2e−
√

nβy

+ r2

(
xr2

2 − 1
)

B3e−r2y +
(

r1 +
√

nβ
) (

x
(
r1 +

√
nβ

)2

−1) · B4e−(r1+
√

nβ)y +2
√

nβ (4xnβ− 1) BB5e−2
√

nβy
)

.

The local skin-friction coefficient, the local heat flux, the local heat transfer, the Nusselt num-
ber, the mass flux, the mass transfer coefficient and the Sherwood number are important phys-
ical parameters for this type of boundary-layer flow. These parameters can be defined and
determined as follows:

The local wall shear stress in the x-direction is given by

τω(x, t) = (µ + µr)
(

∂u
∂y

)

y=0
= x` (µ + µr)

(
entτ0ω + e2ntτ1ω

)
,

where

τ0ω = r2
1 A2 + nβAA3,

τ1ω = r2
1B1 + nβB2 + r2

2B3 + B4

(
r1 +

√
nβ

)2
+ 4nβBB5.
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The local skin-friction coefficients are defined as

C f =
2τω

ρ (`x)2 = 2R−
1
2

e

(
entτ0ω + e2ntτ1ω

)
,

C f R
1
2
e = 2

(
entτ0ω + e2ntτ1ω

)
.

The local heat flux is given by

q(x, t) = −λ

(
∂T
∂y

)

y=0
= λTω

(
l
v

) 1
2

x2
(

entq0 + e2ntq1

)
,

where

qo = r3Γ1 + r4Γ2,

q1 = r5Γ3 + r6Γ4 + 2
√

nβm̃1 + m̃2(r1 +
√

nβ) + m̃3(r3 +
√

nβ)

+ m̃4(r4 +
√

nβ) + m̃5(r1 + r3) + m̃6(r1 + r4) + 2r1m̃7 + r3m̃8 + r4m̃9.

The heat transfer coefficient may be written as follows:

hω(x, t) =
q(x, t)

Tω
= λ

(
l
v

) 1
2

x2
(

entq0 + e2ntq1

)
.

The local Nusselt number is given by

N(x, t) =
hω(x, t)

λ
=

(
l
v

) 1
2

x2
(

entq0 + e2ntq1

)
.

The mass flux is given by

mω(x, t) = −D
(

∂C
∂y

)

y=0
= Cω

(
l
v

) 1
2

x2
(

entm0ω + e2ntm1ω

)
,

where

m0ω = r3`1Γ1 + r4`2Γ2,

m1ω = r5Γ3`3 + r6Γ4`4 + 2
√

nβym̃10 + (r1 +
√

nβ)m̃11

+ (r3 +
√

nβ)m̃12 + (r4 +
√

nβ)m̃13 + (r1 + r3)m̃14

+ (r1 + r4)m̃15 + 2r1m̃16 + r3m̃17 + r4m̃18.

The mass transfer coefficient may be written as follows:

hm(x, t) =
mω(x, t)

Cω
= D

(
l
v

) 1
2

x2
(

entm0ω + e2ntm1ω

)
.

The local Sherwood number is given by

Shx =
hm

D
=

(
l
v

) 1
2

x2
(

entm0ω + e2ntm1ω

)
.
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5 Results and discussion

The velocity profiles for α1 = 0.2, β = 4.0, α = 0.1, and for different values of fω are shown
in Fig. 2. As might be expected, suction ( fω < 0) broadens the velocity distribution increase
the thickens of the boundary-layer, while injection ( fω > 0) make it thins. Also the wall
shear stress would be increased with the application of suction whereas injection tends to
decrease the wall shear stress. This can be readily understood from the fact that the wall
velocity gradient is increased according to the increase of the value of fω. The effects of Alfven
velocity α on the velocity profiles are presented in Fig. 3 for fω = 2, α1 = .2 and β = 4. It is
obvious from this figure that the velocity within the boundary layer decreases as the Alfven
velocity increases. In Fig. 4 the transient velocity is plotted for α = 0.1, fω = −2 and for
various values of the parameters α1 and β. It is seen that, as the value α1 increase, the velocity
of a polar fluid surrounding the surface, increases considerably and it decreases slowly as it
goes away from the surface. Also it is observed that any increase in the value of β leads to a
decrease in the velocity.

In Fig. 5 the angular velocity profile is plotted to show the effect of material parameters α1
and β for α = 0.1 and fω = −2. It is observed that, as well as the value α1 is increased, the
angular velocity of a polar fluid surrounding the surface increases (in magnitude) considerably
and it decreases slowly as it goes away from the surface. Also it is observed that any increase
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Figure 2: Effect of surface mass transfer on velocity distribution.
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Figure 3: Effect of Alfven velocity α on velocity distribution.
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Figure 4: Effect of material parameters α1 and β on velocity distribution.
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Figure 5: Effect of material parameters α1 and β on angular velocity distribution.
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Figure 6: Effect of Alfven velocity α on angular velocity distribution.

in the value of β leads to decrease in the angular velocity (in magnitude). The angular velocity
profiles for α1 = 0.2, β = 4.0, fω = −2, and for different values of α are shown in Fig. 6. It is
obvious from this figure that the angular velocity within the boundary layer decrease as the
Alfven velocity increases. The effects of surface mass transfer on the angular velocity which
are displayed in Fig. 7. The effect of mass transfer is to make the angular velocity distribution
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Figure 7: Effect of surface mass transfer on angular velocity distribution.
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Figure 8: Temperature profiles for various values of rate of Prandtl number Pr.
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Figure 9: Temperature profiles for various values of rate of specific internal heat generation k1.

uniform within the boundary layer. In creasing values of the suction leads to an increase in
the angular velocity, while an increase in the value of injection leads to an increases in angular
velocity (in magnitude).

Results in typical temperature profile are illustrated in Figs. 8 and 9 for various values of
Prandtl number, rate of specific internal heat generation (thermal radiation parameter) and
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Figure 10: Concentration profiles for various values of reaction rate coefficient k2.
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Figure 11: Concentration profiles for various values of Soret number Sc.

relaxation time. The thermal boundary layer thickness is more reduced together with a larger
wall temperature gradient when the relaxation time τ0 = 0.02. Also, it is observed that in-
creases in the value of Pr leads to a decrease in the temperature and any increase in the value
of k1 leads to a decrease in the temperature field.

Figs. 10 and 11 present typical profile for the concentration of different values of the first
order of reaction (chemically reactive) k2 and Schmidt number Sc. The curves illustrate that the
concentration slightly increases as k2 increases and decreases as Schmidt number increases.

6 Conclusions

In all previous studies the combined effects of mass, radiation heat absorption, Dufour, Schmidt,
Soret numbers in addition to magnetic field have not been considered simultaneously. In this
paper, the effect of radiation heat absorption and mass transfer, Dufour, Schmidt, Soret num-
bers and Alfven velocity on the flow of a polar fluid in the presence of a induced magnetic
and electric fields are taken in consideration since in astrophysical environment the effect of
radiation cannot be neglected.

Many metallic materials are manufactured after they have been refined sufficiently in the
molten state. Therefore, it is a central problem in metallurgical chemistry to the study of
the heat transfer on liquid metal which is a perfect electric conductor. For instance, liquid
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sodium N a (100◦ C) and liquid potassium K (100◦ C) exhibit a very small electrical receptivity
(ρL(exp) = 9.6× 10−6Ω.cm.) and (ρL(exp) = 12.97× 10−6Ω.cm.) [22].
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