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Abstract

We consider the quantum Navier-Stokes equations for the viscous, com-
pressible, heat conducting fluids on the three-dimensional torus T 3. The model
is based on a system which is derived by Jungel, Matthes and Milisic [15]. We
made some adjustment about the relation of the viscosities of quantum terms.
The viscosities and the heat conductivity coefficient are allowed to depend on
the density, and may vanish on the vacuum. By several levels of approxima-
tion we prove the global-in-time existence of weak solutions for the large initial
data.
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1 Introduction
In this paper, we are interested in the quantum fluid models. Such models can

be used to describe superfluids [18], quantum semiconductors [7], weakly interacting

Bose gases [11] and quantum trajectories of Bohmian mechanics [25]. Since the nu-

merical solution of the Schrodinger equation or the Wigner equation is very time con-

suming, fluid-type quantum models seem to provide a compromise between accurate

and efficient numerical simulations. Moreover, quantum fluid models are formulated

in macroscopic quantities like the current density, which can be measured. A hydro-

dynamic form of the single-state Schrodinger was already derived by Madelung [21].

Later, the so-called quantum hydrodynamic equations were derived by Ferry and

Zhou [7] from the Bloch equation for the density matrix. In [12] Gardner used the
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moment method to the Wigner equation leading to the full three-dimensional quan-

tum hydrodynamic model (QHD). Jungel, Matthes and Milisic [15] obtained a new

quantum hydrodynamic model using Levermore’s entropy minimization principle,

which can be used to derive the full three-dimensional quantum hydrodynamic mod-

el including the vorticity matrix. Recently some dissipative quantum fluid models

have been derived. In [13] the authors derived viscous quantum Euler models using

a moment method in Wigner-Fokker-Planck equation. In [5], under some conditions,

using a Chapman-Enskog expansion in Wigner equation, the quantum Navier-Stokes

equations were obtained.

In the following, we consider a full quantum viscous quantum equations as fol-

lows:

∂tρ+ div(ρu) = 0, (1.1)

∂t(ρu) + div(ρu⊗ u) +∇P − 2δ2div(ρ(∇⊗∇) log ρ) = νdiv(ρD(u)), (1.2)

∂t(ρE) + div(ρEu) + div(Pu)− 2δ2div(ρu(∇⊗∇) log ρ)− δ2div(ρ∆u)

= div(q) + νdiv(ρD(u)u), (1.3)

with the total energy, the thermal diffusion flux and symmetric part of the velocity

gradient respectively,

ρE = ρe+
1

2
ρ|u|2 − δ2ρ∆log ρ, q = κ(ρ, θ)∇θ, D(u) =

∇u+∇Tu

2
,

where ρ is the density of the fluid, u denotes the velocity field of the fluid, θ is

the temperature of the fluid, P is the pressure field, q is the diffusion flux, κ is the

thermal conductivity coefficient. The physical parameters are the Plank constant

δ2 > 0 and the viscosity constant ν > 0. This system of equations corresponds to

Garder’s QHD model [12] except for the dispersive terms δ2div(ρ∆u) and viscous

terms νdiv(ρD(u)u).

Interestingly, quantum terms can be cancelled in the total energy equation. In

fact, by substituting the above expression for the total energy density into equation

(1.3) yields

∂t(ρe) + div(ρeu) + Pu = div(κ(ρ, θ)∇θ) + νρ|D(u)|2, (1.4)

System (1.1)-(1.3) is considered under initial conditions:

ρ|t=0 = ρ0, ρu|t=0 = m0, ρE|t=0 = (ρE)0.

Here the functions ρ0 and m0 satisfy:

m0 = 0 a.e. on {x ∈ Rn : ρ0 = 0}. (1.5)

There have been a large amount of work on the global existence of weak solutions

to the compressible Navier-Stokes equation without quantum effect, in the constant
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viscosity coefficients case. One of the main results of the nineties is due to Lions [19],

who proved the global existence of weak solutions to the compressible Navier-Stokes

system in the case of barotropic equations of state. Later, this result was extended

to the somehow optimal case γ > n/2 in [8] using oscillation defect measures on

density sequences associated with suitable approximation solutions. For the full

compressible Navier-Stokes equation, including the temperature equation, Feireisl [9]

firstly proved the global existence of the so-called variational solutions to the full

compressible Navier-Stokes and heat-conducting system.

Recently Bresch and Desjardins [2] made important progress in the case of vis-

cosity coefficients depending on the density ρ, under some structure constraint on

the viscosity coefficients, discovered a new entropy inequality (called BD entropy)

which can yield global-in-time integrability properties on density gradients. This

new structure was first discovered in [3] in the framework of capillary fluid. Later

on, they founded that this BD entropy inequality also can be applied to the compress-

ible Navier-Stokes equation without capillarity. By this new BD entropy inequality,

they succeeded in obtaining global existence of weak solutions in the barotropic flu-

ids with some additional drag terms. However, there are some difficulties without

any additional drag term, as lack of estimates for the velocity. By introducing a new

apriori estimate on smooth approximation solutions, Mellet and Vasseur [22] stud-

ied the stability of barotropic compressible Navier-Stokes equations. Unfortunately,

they cannot construct smooth approximation solutions. Li and Xin [20] recently

constructed some suitable approximate system which has smooth solutions satisfy-

ing the energy inequality, the BD entropy inequality, and the Mellet-Vasseur type

estimate, therefore they completely solved an open problem. Independently, Vasseur

and Yu [26] have proved the same result by constructing a different method. Bresch

and Desjardins [4] also used this new entropy to obtain the global-in-time existence

of weak solutions to the Navier-Stokes equations for viscous compressible and heat

conducting fluids where the viscosity coefficients depend on the density.

On the other hand, there are few results about compressible Navier-Stokes

equation with quantum effect. In [16], Jungel proved the global existence of weak so-

lutions to the compressible quantum Navier-Stokes system in the case of barotropic

equations of state when the scaled Plank constant is larger than the viscosity con-

stant. In [6], Dong extended this result where the scaled Plank constant is equal

to the viscosity constant, and in [17], Jiang showed that the result still holds when

the viscosity constant is larger than the scaled Plank constant. In [14], Gisclon and

Lacroix relaxed the assumption γ > 3 to γ > 1 by introducing a cold pressure. Very

recently, Antonelli and Spirito [1] removed this additional cold pressure assumption

in the sprit of the idea in [20].
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In this paper we will study the global existence weak solutions to full quantum

compressible Navier-Stokes equations (1.1)-(1.3) for the large initial data. In the

treatment of systems (1.1)-(1.3), we need to overcome several mathematical difficul-

ties. The first problem is lack of information of suitable estimates for the solutions.

We use some relation about quantum terms in which these terms can be cancelled,

thus we can obtain the basic energy estimate and the B-D entropy estimate which

are key estimates to deduce the global-in-time existence of weak solutions to full

compressible quantum Navier-Stokes equations. The second problem is the proof

the compactness of the velocity sequences. In dealing with this obstacle, we in-

troduce the stabilizing term in the form of cold pressure. This singular pressure

prevents the appearance of vacuum.

1.1 Assumptions
This subsection deals with assumptions regarding physical coefficients, such as

thermal conductivity and equation of state.

First of all, the thermal conductivity coefficient κ is assumed to satisfy:

κ(ρ, θ) = κ0 + ρ+ ρθ2 + βθB, (1.6)

where κ0 = const. > 0, B ≥ 8.

Next, we assume that the above equations are of ideal polytropic gas type:

e = ec + Cµθ + β
θ4

ρ
+

ργ−1

γ − 1
, P = ργ + Pc +Rρθ +

β

3
θ4, (1.7)

where R and Cµ are two constant positive coefficients. Moreover, the additional

pressure Pc and the internal energy ec are associated with the “zero Kelvin isother-

mal”. We require that ec is a C2 nonnegative function on R+ and the following

constraint is satisfied
Pc(ρ) = ρ2

dec
dρ

(ρ). (1.8)

We also require that Pc is a continuous function satisfying the following growth

condition

P
′
c(ρ) =

{
c2ρ

−γ−−1 for ρ ≤ 1,

c3ρ
γ+−1 for ρ > 1,

(1.9)

for positive constants c2, c3 and γ−, γ+ > 1. This cold pressure was firstly proposed

in [4] to encompass plasticity and elasticity effect of solid materials, for which low

densities may lead to negative pressures. By this modification, the compactness of

velocity can be obtained. In later section we will use the notation: Pβ = Rρθ+ β
3 θ

4.

1.2 Main result
Before we state the main result, we need to specify the definition of weak solutions

given below. It is necessary to require that the weak solutions should satisfy the na-
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tural energy estimates and from the viewpoint of physics, the conservation laws

on mass, momentum and energy also should be satisfied at least in the sense of

distributions. Based on those considerations, the definition of reasonable global

weak-in-time weak solutions is given as follows.

Definition 1.1 A couple (ϱ,u, θ) is called a weak solution to system (1.1)-(1.3)

if and only if for any positive number T , the following conditions are satisfied:

• ϱ, u, θ respectively belong to the classes

ρ ∈ L∞([0, T ];Lγ+(Ω)), ρ−1 ∈ L∞([0, T ];Lγ−(Ω)),
√
ρu ∈ L∞([0, T ];L2(Ω)),

√
ρ∇u ∈ L2([0, T ];L2(Ω)), (1.10)

θ ∈ L∞([0, T ];L4(Ω)), θ ∈ L2([0, T ];W 1,2(Ω)),

• the following identities are fulfilled:

– The continuity equation

∂tρ+ div(ρu) = 0

is satisfied pointwisely on [0, T ]× Ω;

– the momentum equation∫ T

0

∫
Ω
ρu · ∂tϕdxdt+

∫ T

0

∫
Ω
(ρu⊗ u)∇ϕdxdt−

∫ T

0

∫
Ω
νρDu : Dϕdxdt

+

∫ T

0

∫
Ω
Pdivϕdxdt− 2δ2

∫ T

0

∫
Ω
ρ∇2 log ρ · ∇ϕdxdt = −

∫
Ω
m0 · ϕ(0)dx (1.11)

holds for any test smooth vector function ϕ such that ϕ(·, T ) = 0, where

−2δ2
∫ T

0

∫
Ω
ρ∇2 log ρ · ∇ϕdxdt = −4δ2

∫ T

0

∫
Ω

√
ρ∇√

ρ · ∇divϕdxdt

−8δ2
∫ T

0

∫
Ω
∇√

ρ⊗∇√
ρ : ∇∇ϕdxdt;

– the total energy equation∫ T

0

∫
Ω

(
ρ
|u|2

2
+ ρe− δ2ρ∆log ρ

)
∂tϕdxdt

+

∫ T

0

∫
Ω

(
ρe+ ρ

|u|2

2
u− δ2ρ∆log ρu

)
· ∇ϕdxdt

+δ2
∫ T

0

∫
Ω
u(∆ρ∇ϕ+ 2∇ρ∆ϕ+ ρ∇∆ϕ)dxdt+ δ2

∫ T

0

∫
Ω
u∇2ρ∇ϕdxdt

+δ2
∫ T

0

∫
Ω
∇√

ρ⊗∇√
ρu∇ϕdxdt−

∫ T

0

∫
Ω
κ∇θ · ∇ϕdxdt
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+

∫ T

0

∫
Ω
Pu · ∇ϕdxdt−

∫ T

0

∫
Ω
νρD(u)u · ∇ϕdxdt

+

∫ T

0

∫
Ω

(
ρ
|u|2

2
+ ρe+

λ

2
|∇∆sρ|2 − δ2ρ∆log ρ

)
(0)ϕ(0)dxdt = 0 (1.12)

holds for any test smooth vector function ϕ such that ϕ(·, T ) = 0, where

−2δ2
∫ T

0

∫
Ω
ρu∇2 log ρ∇ϕdxdt = −2δ2

∫ T

0

∫
Ω
u∇2ρ∇ϕdxdt

−8δ2
∫ T

0

∫
Ω
∇√

ρ⊗∇√
ρu∇ϕdxdt,

−δ2
∫ T

0

∫
Ω
ρ∆u∇ϕdxdt = −δ2

∫ T

0

∫
Ω
u(∆ρ∇ϕ+ 2∇ρ∆ϕ+ ρ∇∆ϕ)dxdt,

Now our main result of this paper can be presented as follows:

Theorem 1.1 Let Ω be the three-dimensional torus T 3. Assume that κ, ec, Pc

satisfy the hypotheses (1.6)-(1.9). Let the initial data ρ0 ∈ L5γ/3(Ω), 1
ρ0

∈ L5γ−1/3(Ω),

m0 ∈ L1(Ω), θ0 ∈ L4(Ω) such that (m0)2

ρ0
∈ L1(Ω). Assume the parameters γ > 1,

γ− > 3, B ≥ 8. Let T > 0 be arbitrary. Then there exists a weak solution to

(1.1)-(1.3) in Definition 1.1. Moreover, the density ρ > 0 and the temperature θ > 0

a.e. in (0, T )× Ω.

2 Approximation

The aim of this section is to present two levels of approximation. First, we take

ε, λ > 0 and fix s to be a sufficiently large positive integer. Our aim is to consider the

regularized problem given below, in which ε is the rate of dissipation in the continuity

equation. We insert λ to the momentum equation to obtain the artificial smoothing

operator λ∇∆2s+1ρ with s sufficiently large. Inspired by the works of Bresh and

Desjardins, we introduce another regularization of the momentum λ∇∆2s+1(ρu).

Note that by setting ε, λ → 0+, we recover our original problem.

We look for space periodic functions (ρ, ρu, θ) such that

ρ ∈ L2(0, T ;W 2s+2(Ω)), ∂tρ ∈ L2(0, T ;L2(Ω)),

u ∈ L2(0, T ;W 2s+1(Ω)), (2.1)

θ ∈ L2(0, T ;W 1,2(Ω)) ∩ LB(0, T ;L3B(Ω)),

to solve the following problem:

• The approximate continuity equation

∂tρ+ div(ρu)− ε∆ρ = 0, ρ(0, x) = ρ0λ(x) (2.2)
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is satisfied pointwisely on [0, T ] × Ω and the initial condition holds in the

strong L2 sense; here ρ0λ ∈ C∞(Ω) is a regularized initial condition such that

ρ0λ → ρ0 in Lγ+
(Ω) for λ → 0+, and λ∥∇2s+1ρ0λ∥ → 0 for λ → 0+, with

inf
x∈Ω

ρ0λ > 0; (2.3)

• the weak formulation of the approximate momentum equation∫ T

0

∫
Ω
ρu · ∂tϕdxdt−

∫ T

0

∫
Ω
λ∆s∇(ρu) : ∆s∇(ρϕ)dxdt+

∫ T

0

∫
Ω
(ρu⊗ u)∇ϕdxdt

−
∫ T

0

∫
Ω
νρDu : Dϕdxdt+

∫ T

0

∫
Ω
Pdivϕdxdt−

∫ T

0

∫
Ω
λ∆sdiv(ρϕ) : ∆s+1(ρ)dxdt

−2δ2
∫ T

0

∫
Ω
ρ∇2 log ρ · ∇ϕdxdt− ε

∫ T

0

∫
Ω
(∇ρ · ∇)u · ϕdxdt = −

∫
Ω
m0 · ϕ(0)dx

(2.4)

holds for any test vector function ϕ ∈ L2(0, T ;W 2s+1(Ω))∩W 1,2(0, T ;W 1,2(Ω))

such that ϕ(·, T ) = 0;

• the weak formulation of the energy equality∫ T

0

∫
Ω

(
ρ
|u|2

2
+ ρe+

λ

2
|∇∆sρ|2 − δ2ρ∆ log ρ

)
∂tϕdxdt

−
∫ T

0

∫
Ω
κ∇θ · ∇ϕdxdt+

∫ T

0

∫
Ω

(
ρe+ ρ

|u|2

2
u− δ2ρ∆ log ρu

)
· ∇ϕdxdt

+

∫ T

0

∫
Ω
Pu · ∇ϕdxdt−

∫ T

0

∫
Ω
νρD(u)u · ∇ϕdxdt

= −
∫ T

0

∫
Ω

( ε

θ2
− εθ5

)
ϕdxdt+

∫ T

0

∫
Ω
Rε,λdxdt

−
∫ T

0

∫
Ω

(
ρ
|u|2

2
+ ρe+

λ

2
|∇∆sρ|2 − δ2ρ∆log ρ

)
(0)ϕ(0)dxdt (2.5)

and

Rε,λ(ρ, θ,u, ϕ)

= λ[∆s(div(ρuϕ))∆s+1ρ−∆sdiv(ρu)∆s+1ρϕ]− λ∆sdiv(ρu)∇∆s+1ρ · ∇ϕ

−λ[|∆s∇(ρu)|2ϕ−∆s∇(ρu) : ∆s∇(ρuϕ)] + λε∆s+1ρ∇∆sρ · ∇ϕ

+
ε

2
|u|2∇ρ · ∇ϕ+ ε∇ρ · ∇ϕ

(
ec(ρ) +

Pc(ρ)

ρ

)
(2.6)

are satisfied for any vector function ϕ ∈ C∞([0, T ]×Ω) with ϕ(T, ·) = 0; here

u0
λ = m0

ρ0λ
and θ0λ ∈ C∞(Ω), θ0λ → θ0 for λ → 0+ in L4(Ω), and

0 < inf
x∈Ω

θ0λ(x) = θ0 ≤ θ0(x) ≤ sup
x∈Ω

θ0λ(x) = θ0 < ∞. (2.7)
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We prove the following result.

Theorem 2.1 Under the assumptions of Theorem 1.1 and the assumptions

specified in this section, for any T > 0, ε, λ > 0, there exists a solution to problem

(2.1)-(2.7) in the sence defined above.

Indeed, the proof of this result is far from being obvious. To prove Theorem

2.1 we have to introduce another level of approximation, based on regularization of

certain quantities and finite dimensional projection (Faedo-Galerkin approximation)

of the momentum equation. More precisely, we look for functions (ρ,u, θ) such that

ρ ∈ L2(0, T ;W 2s+2(Ω)), ∂tρ ∈ L2(0, T ;L2(Ω)),

u ∈ C(0, T ;XN ), (2.8)

θ ∈ L2(0, T ;W 1,2(Ω)) ∩ L∞((0, T )× Ω),

to solve the following problem:

• The approximate continuity equation

∂tρ+ div(ρu)− ε∆ρ = 0, ρ(0, x) = ρ0λ(x) (2.9)

is satisfied pointwisely on [0, T ] × Ω and the initial condition holds in the

strong L2 sense; here ρ0λ is as above;

• the Faedo-Galerkin approximation for the weak formulation of the approxi-

mate momentum balance: Look for u ∈ C([0, T ];XN ) such that∫ T

0

∫
Ω
ρu · ∂tϕdxdt−

∫ T

0

∫
Ω
λ∆s∇(ρu) : ∆s∇(ρϕ)dxdt+

∫ T

0

∫
Ω
(ρu⊗ u)∇ϕdxdt

−
∫ T

0

∫
Ω
νρDu : Dϕdxdt+

∫ T

0

∫
Ω
Pdivϕdxdt−

∫ T

0

∫
Ω
λ∆sdiv(ρϕ) : ∆s+1(ρ)dxdt

−2δ2
∫ T

0

∫
Ω
ρ∇2 log ρ · ∇ϕdxdt− ε

∫ T

0

∫
Ω
(∇ρ · ∇)u · ϕdxdt = −

∫
Ω
m0 · ϕ(0)dx

(2.10)
holds for any test vector function ϕ ∈ XN , and XN = span{ϕi}Ni=1, where

{ϕi}Ni=1 is an orthonormal basis in L2(Ω), such that ϕi ∈ C∞(Ω) for all i ∈ N ;

• the approximate thermal energy equation:

∂t(ρθ + βθ4) + div(uρθ + βuθ4)− div(κ∇θ) +
(
Pm +

β

3

)
divu

=
ε

θ2
− εθ5 +

4ε

γ
|∇ρ

γ
2 |2 + νρ|D(u)|2 + λ|∆s∇(ρu)|2 + λε|∆s+1ρ|2

+ε
1

ρ

∂Pc(ρ)

∂ρ
|∇ρ|2 + 2δ2ρ|∇2 log ρ|2 (2.11)

is satisfied pointwisely on [0, T ]× Ω and the initial condition θ0λ ia as above.
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Theorem 2.2 Let N ∈ N , ε, δ, λ > 0, and m0, ρ0λ, θ
0
λ be as above. Under the

assumptions of Theorem 1.1 and the assumptions specified in this section, for any

T > 0, ε, λ > 0, there exists a solution to problem (2.9)-(2.11) in the sence defined

above.

3 Basic Level of Appromation

This section is dedicated to the proof of Theorem 2.2. The strategy of the proof

can be summarized as follows:

• Fix u(t, x) in the space C(0, T ;XN ) and use it to find a unique smooth solution

ρ = ρ(u) to (2.9) and a unique strong solution θ = θ(ρ,u) to (2.11).

• Find the local-in-time solution to the momentum equation by a fixed point

argument.

• Extend the local-in-time solution to the whole time interval using uniform

estimates.

3.1 Continuity equation
We first prove the existence of a smooth, unique solution to the approximate

continuity equation in the situation when the vector field u(x, t) is given and belongs

to C([0, T ];XN ).

The following result can be proven by the Galerkin approximation and the well

known statements about the regularity of the linear parabolic systems.

Lemma 3.1 Let u ∈ C([0, T ];XN ) for N fixed and ρ0λ be as above. Then there

exists a unique classical solution to (2.9), that is ρ ∈ V ρ
[0,T ], where

V ρ
[0,T ] =

{
ρ ∈ C([0, T ];C2+ν(Ω)), ∂tρ ∈ C([0, T ];C0,ν(Ω))

}
. (3.1)

Moreover, the mapping u 7→ ρ(u) maps bounded sets in C([0, T ];XN ) into bounded

sets in V ρ
[0,T ] and is continuous with values in C([0, T ];C2+ν′(Ω)), 0 < ν ′ < ν < 1,

ρ0 exp
(
−

∫ τ

0
∥divu∥∞dt

)
≤ ρ(τ, x) ≤ ρ0 exp

(
−

∫ τ

0
∥divu∥∞dt

)
. (3.2)

Finally, for fixed N ∈ N , the function ρ is smooth in the space variable.

3.2 Temperature equation
The existence of unique solution to (2.11) can be proven as in [10], which is to

transform and regularize equation (2.11) in such a way that the classical theory for

quasilinear parabolic equations could be applied. We have the following lemma.
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Lemma 3.2 Let u ∈ C([0, T ];XN ) be a given vector field and ρ = ρu be the

unique solution of the approximate problem constructed in Lemma 3.1. Then there

exists a unique strong solution to (2.11) which belongs to

V θ
[0,T ] =

{
∂tθ ∈ L2((0, T )× Ω), ∆θ ∈ L2((0, T )× Ω), θ ∈ L∞(0, T ;W 1,2(Ω)),

θ, θ−1 ∈ L∞((0, T )× Ω)
}
. (3.3)

Moreover, the mapping u 7→ θ(u) maps bounded sets in C([0, T ];XN ) into bounded

sets in V θ
[0,T ] and is continuous with values in L2([0, T ];W 1,2(Ω)).

3.3 Fixed point argument
At this stage, we are ready to show the existence of approximate solutions on a

possibly short time interval (0, τ). We use the Schauder fixed point theorem to find

a solution to the momentum equations.

More precisely, we prove that there exists a τ = τ(N) such that u solves the

approximate momentum equation (2.10). To this purpose we consider the following

mapping

T : C([0, τ ];XN ) → C([0, τ ];XN ), T (v) = u, (3.4)

which attain a solution to the following problem

u = Mρ(v)

[
m0 +

∫ t

0
PXN

N (v)(s)ds
]
, (3.5)

where

⟨N (v), ϕ⟩ =
∫
Ω
(ρv ⊗ v) : ∇ϕdxdt−

∫
Ω
νρDv : Dϕdxdt+

∫
Ω
Pdivϕdxdt

+λ

∫
Ω
ρ∇∆2s+1ρ · ϕdxdt+ λ

∫
Ω
ρ∆sdiv(∆s∇(vρ)) · ϕdxdt

−2δ2
∫
Ω
ρ∇2 log ρ · ∇ϕdxdt− ε

∫
Ω
(∇ρ · ∇)v · ϕdxdt (3.6)

and

Mρ : XN → XN ,

∫
Ω
ρMρ[w]ϕdx = ⟨w, ϕ⟩, w, ϕ ∈ XN . (3.7)

Next, we consider a ball B in the space C([0, T ];XN ):

BR = {v ∈ C([0, τ ];XN ) : ∥v∥C([0,τ ];XN ) ≤ R}.

We need to show that the operator T is continuous and maps BR into itself,

provided τ is sufficiently small. First observe that

∥N (u)∥XN
≤ C[∥ρ∥L∞(Ω)(∥u∥XN

+ ∥u∥2XN
) + ∥ρ∥γL∞(Ω) + ∥θ∥4L∞(Ω)

+∥ρ∥L∞(Ω)∥θ∥L∞(Ω) + ∥ρ∥L∞(Ω)(∥ρ∥W 4s+3,∞(Ω)

+∥ρ∥W 4s+2,∞(Ω)∥u∥XN
)]. (3.8)
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From estimates (3.8) and the estimates established in Lemmas 3.1 and 3.2, it

follows that for sufficiently small τ , the operator T maps the ball BR into itself.

Moreover, T is a continuous mapping and its image of Lipschitz functions, thus it is

compact in BR. It allows us to apply the theory of topological degree to infer that

there exists at least one fixed point u solving (2.10) on [0, τ ].

3.4 Uniform estimates and global in time solvability
In order to extend this solution to the whole time interval [0, T ], we need a unifor-

m bound of the solution. It follows from (3.5) that u is a continuously differentiable

function, therefore, system (2.10) may be transformed to the following one∫
Ω
∂t(ρu) · ϕdxdt−

∫ T

0

∫
Ω
λ∆s∇(ρu) : ∆s∇(ρϕ)dxdt−

∫
Ω
(ρu⊗ u) : ∇ϕdxdt

+

∫
Ω
νρDu : Dϕdxdt−

∫
Ω
Pdivϕdxdt−

∫ T

0

∫
Ω
λρ∇∆2s+1(ρu) · ϕdxdt

+2δ2
∫
Ω
ρ∇2 log ρ · ∇ϕdxdt+ ε

∫
Ω
(∇ρ · ∇)u · ϕdxdt = 0, (3.9)

for any ϕ ∈ XN . Therefore we can test (3.9) by u. For the approximate momentum

equation, using continuity equation, we obtain the kinetic energy balance

d

dt

∫
Ω

(1
2
ρ|u|2 + λ

2
|∇2s+1ρ|2 + ρec(ρ) +

ργ

γ − 1
+ 4δ2|∇√

ρ|2
)
dx

+ε

∫
Ω

1

ρ

∂Pc

∂ρ
|∇ρ|2dx+

4ε

γ

∫
Ω
|∇ρ

γ
2 |2dx

+

∫
Ω

(
νρ|Du|2 + λ|∆s∇(ρu)|2 + λε|∆s+1(ρ)|2 + 2δ2ρ|∇2 log ρ|2

)
dx =

∫
Ω
Pβdivudx.

(3.10)

Adding this to equality (2.11), integrating it with respect to the space, then inte-

grating the obtained result with respect to the time we obtain∫
Ω

(1
2
ρ|u|2(t)+λ

2
|∇2s+1ρ|2(t)+ρec(ρ)(t)+

ργ

γ−1
(t)+4δ2|∇√

ρ|2(t)
)
dx+ε

∫ t

0

∫
Ω
θ5dxdt

=ε

∫ t

0

∫
Ω

1

θ2
dxdt+

∫
Ω

(1
2
ρ|u|2(0)+λ

2
|∇2s+1ρ|2(0)+ρe(ρ)(0)+

ργ

γ−1
(0)+4δ2|∇√

ρ|2(0)
)
dx.

(3.11)
3.5 Entropy estimate

Our aim now is to derive a fundamental estimate for our system. It can be

viewed as a total global entropy balance.

From Lemma 3.2 it follows in particular that θ is bounded from below by a

constant. Therefore, dividing internal energy equation by θ is possible and the

equation is
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4β

3
∂t(θ

3) + ∂t(ρ log θ) + div(u(ρ log θ)) + div
(4β

3
uθ3

)
+ε∆ρ(1− log θ)− div(κ∇ log θ)− κ|∇θ|2

θ2

=
ε

θ3
− εθ4 + ε

1

ρθ

∂Pc

∂ρ
|∇ρ|2 + 4ε

γθ
|∇ρ

γ
2 |2

+
νρ|D(u)|2 + λ|∆s∇(ρu)|2 + λε|∆s+1ρ|2 + 2δ2ρ|∇2 log ρ|2

θ
. (3.12)

Integrating over Ω we get

d

dt

∫
Ω

(4β
3
θ3 + ρ log θ

)
dx+

∫
Ω
div(u(ρ log ρ))dx+

∫
Ω
div

(4β
3
uθ3

)
dx

+ε

∫
Ω
∇ρ · ∇ log ρdx−

∫
Ω
div(κ∇ log θ)dx−

∫
Ω

κ|∇θ|2

θ2
dx

=

∫
Ω

ε

θ3
dx−

∫
Ω
εθ4dx+

∫
Ω
ε
1

ρθ

∂Pc

∂ρ
|∇ρ|2dx+

4ε

γ

∫
Ω

|∇ρ
γ
2 |2

θ
dx

+

∫
Ω

νρ|D(u)|2 + λ|∆s∇(ρu)|2 + λε|∆s+1ρ|2 + 2δ2ρ|∇2 log ρ|2

θ
dx. (3.13)

Integrating the above inequality with respect to the time and adding it to equality

(3.11), we get∫ t

0

∫
Ω

νρ|D(u)|2 + λ|∆s∇(ρu)|2 + λε|∆s+1ρ|2 + 2δ2ρ|∇2 log ρ|2

θ
dxdt

+

∫ t

0

∫
Ω

κ|∇θ|2

θ2
dxdt+

4ε

γ

∫ t

0

∫
Ω

|∇ρ
γ
2 |2

θ
dxdt+

∫ t

0

∫
Ω
ε
1

ρθ

∂Pc

∂ρ
|∇ρ|2dxdt

+

∫ t

0

∫
Ω

ε

θ3
dxdt+

∫
Ω

(4β
3
θ3(0) + ρ log θ(0)

)
dx+

∫
Ω

(1
2
ρ|u|2(t) + λ

2
|∇2s+1ρ|2(t)

+ρe(ρ)(t) +
ργ

γ − 1
(t) + 4δ2|∇√

ρ|2(t)
)
dx+ ε

∫ t

0

∫
Ω
θ5dxdt

≤ε

∫ t

0

∫
Ω

1

θ2
dxdt+

∫
Ω

(1
2
ρ|u|2(0)+λ

2
|∇2s+1ρ|2(0)+ρe(ρ)(0)+

ργ

γ−1
(0)+4δ2|∇√

ρ|2(0)
)
dx

+

∫
Ω

(4β
3
θ3(t) + ρ log θ(t)

)
dx+

∫ t

0

∫
Ω
εθ4dxdt+ ε

∫ t

0

∫
Ω
∇ρ · ∇ log ρdxdt. (3.14)

To control the r.h.s, we take advantage of the fact of the heat conductivity coefficient.

We write

ε

∫
Ω
∇ρ · ∇ log ρdx ≤ ε∥

√
(ρθ)−1∇ρ∥L2(Ω)∥

√
ρθ∇ log θ∥L2(Ω). (3.15)
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To control the positive part of the entropy at time τ and its negative part at the

initial time t = 0 we note that∫
Ω

(4β
3
θ3(t) + ρ log θ(t)

)
dx ≤ C(Ω, t) + C

∫
Ω
(βθ4(t) + ρθ(t))dx

≤ C(Ω, t) +

∫ τ

0

ε

θ2
dt. (3.16)

On the other hand, we easily verify that

ε

∫ t

0

∫
Ω

1

θ2
dxdt+

∫ t

0

∫
Ω
εθ4dxdt ≤ C + ε

∫ t

0

∫
Ω

1

θ3
dxdt+

∫ t

0

∫
Ω
εθ5dxdt, (3.17)

which appears on the l.h.s. of (3.15).

Summarizing, we can show the following estimate

sup
τ∈[0,t]

∫
Ω

(1
2
ρ|u|2(t) + λ

2
|∇2s+1ρ|2(t) + ρe(ρ)(t) +

ργ

γ − 1
(t) + 4δ2|∇√

ρ|2(t)
)
dx

+

∫ t

0

∫
Ω

νρ|D(u)|2 + λ|∆s∇(ρu)|2 + λε|∆s+1ρ|2 + 2δ2ρ|∇2 log ρ|2

θ
dxdt

+
4ε

γ

∫ t

0

∫
Ω

|∇ρ
γ
2 |2

θ
dxdt+

∫ t

0

∫
Ω

κ|∇θ|2

θ2
dxdt+ ε

∫ t

0

∫
Ω
θ5dxdt

+

∫ t

0

∫
Ω

ε

θ3
dxdt+

∫ t

0

∫
Ω
ε
1

ρθ

∂Pc

∂ρ
|∇ρ|2dxdt ≤ C. (3.18)

Taking s in the density-regularizing term to be sufficiently large, one can show

that the density is separated from 0 uniformly with respect to all approximation

parameter except for λ. This property was observed by Bresh and Desjardins in [11]

where the case of single-component heat-conducting fluid was discussed. Recalling

their analysis we may use the Sobolev embedding ∥ρ−1∥L∞(Ω) ≤ C∥ρ−1∥W 3,2(Ω) and

∥∇3ρ−1∥L2(Ω) ≤ C(1 + ∥∇3ρ∥L2(Ω))
3(1 + ∥ρ−1∥L4(Ω))

4, (3.19)

where the last term is bounded because of (3.18) and the assumption that γ− ≥ 4.

So, provided that 2s+ 1 ≥ 3 we have

∥ρ−1∥L∞((0,τ)×Ω) ≤ C(λ) a.e. in (0, τ)× Ω. (3.20)

3.6 Global-in-time existence of solutions
The uniform estimates for u can be summarized as follows

∥√ρu∥L∞(0,τ ;L2(Ω)) +
√
λ∥∆s∇(ρu)∥L2(0,τ ;L2(Ω)) ≤ C. (3.21)

Moreover, the density ρ is bounded from below by a positive constant according

to (3.20). By the equivalence of norms on the finite dimensional spaces XN we can

thus deduce the uniform bounds for u in C([0, τ);XN ). Therefore we get a solution

defined on [0, T ] for arbitrary but finite T > 0.
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4 Limit Passage in the Galerkin Approximation

The purpose of this section is to obtain the limit for N → ∞ in the equations of

approximate system in Section 3. We start to summarize all the estimates that are

uniform with respect to N derived mostly from (3.18) and its consequences. This

will be done in Subsection 4.1, then in Subsection 4.2 we use these estimates to

extract the weekly convergent subsequences and to prove that the limit N → ∞ can

be performed.

4.1 Estimates independent of N
Note that the above estimates are not only uniform with respect to the time but

also with respect to N . From (3.16) and (3.18) we have

∥ρN log θN∥L∞(0,τ ;L1(Ω)) + ∥βθ3N∥L∞(0,τ ;L1(Ω)) ≤ C, (4.1)

also from (3.11), we get that

∥ρN |uN |2∥L∞(0,T ;L1(Ω)) +
√
λ∥∇2s+1ρN∥L∞(0,T ;L2(Ω)) + ∥ρNec(ρN )∥L∞(0,T ;L1(Ω))

+∥βρ4N∥L∞(0,T ;L1(Ω)) + ∥ρNθN∥L∞(0,T ;L1(Ω)) ≤ C. (4.2)

In addition, we have the estimates following from the boundedness of the entropy

production rate:

– the velocity estimates∥∥∥√νρN
θN

D(uN )
∥∥∥
L2(0,T ;L2(Ω))

+
∥∥∥√ λ

θN
∆s∇(ρNuN )

∥∥∥
L2(0,T ;L2(Ω))

≤ C; (4.3)

– the density estimates

4δ2∥∇√
ρN∥L∞(0,T ;L2(Ω)) +

√
λε

∥∥∥∆s+1ρN√
θN

∥∥∥
L2(0,T ;L2(Ω))

+
√
2δ2

∥∥∥ |∇2 log ρ|√
θN

∥∥∥
L2(0,T ;L2(Ω))

+
√
ε
∥∥∥ 1√

ρNθN

√
∂Pc

∂ρN
∇ρN

∥∥∥
L2(0,T ;L2(Ω))

+∥ρN∥L∞(0,T ;Lγ(Ω)) +
4ε

γ

∥∥∥∇ρ
γ
2
N√
θN

∥∥∥
L2(0,T ;L2(Ω))

≤ C; (4.4)

– the temperature estimates∥∥∥√κ∇θN
θN

∥∥∥
L2(0,T ;L2(Ω))

+
∥∥∥ ε

θ3N

∥∥∥
L1(0,T ;L1(Ω))

+ ∥εθ5N∥L1(0,T ;L1(Ω)) ≤ C. (4.5)

Temperature estimates. One of the main consequences of (3.18) is (4.5)

which, for κ satisfying (1.6), provides a priori estimates for the temperature
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∥(1 +√
ρN )∇ log θN∥L2(0,T ;L2(Ω)) + ∥√ρN∇θN∥L2(0,T ;L2(Ω))

+∥
√

β∇θaN∥L2(0,T ;L2(Ω)) ≤ C, (4.6)

where a ∈ [0, B2 ] and B ≥ 8. To control the full norm of θaN in L2(0, T ;W 1,2(Ω)) we

combine the above estimates with (4.2). Therefore, the Sobolev imbedding gives

∥
√
β∇θN∥LB(0,T ;L3B(Ω)) ≤ C. (4.7)

Kinetic energy estimates. We now integrate (3.10) with respect to the time

and get∫
Ω

(1
2
ρ|u|2 + λ

2
|∇2s+1ρ|2 + ρec(ρ) +

ργ

γ − 1
(t) + 4δ2|∇√

ρ|2
)
(T )dx

+ε

∫ T

0

∫
Ω

1

ρ

∂Pc

∂ρ
|∇ρ|2dxdt+ 4ε

γ

∫ t

0

∫
Ω
|∇ρ

γ
2 |2dxdt

+

∫ T

0

∫
Ω
[νρ|Du|2 + λ|∆s∇(ρu)|2 + λε|∆s+1(ρ)|2 + 2δ2ρ|∇2 log ρ|2]dxdt

=

∫ T

0

∫
Ω
Pβdivudxdt+

∫
Ω

(1
2
ρ|u|2+λ

2
|∇2s+1ρ|2+ρec(ρ)+

ργ

γ−1
(0)+4δ2|∇√

ρ|2
)
(0)dx.

(4.8)

In the following we show the r.h.s of equality (4.8) are bounded.∫ T

0

∫
Ω
RρNθNdivuNdxdt ≤ C∥√ρND(uN )∥L2(0,T ;L2(Ω))∥

√
ρN∥L∞(0,T ;L6(Ω))

·∥θN∥L2(0,T ;L3(Ω)) ≤ C, (4.9)∫ T

0

∫
Ω

β

3
θ4NdivuNdxdt ≤ C∥θ4N∥4L∞(0,T ;L4(Ω))∥∇uN∥L2(0,T ;L∞(Ω)), (4.10)

∥∇uN∥L2(0,T ;L∞(Ω)) ≤ ∥∇uN∥L2(0,T ;W 3,2(Ω)) (4.11)

and the r.h.s. is bounded provided 2s+ 1 ≥ 3. To see it, we write

∇3uN = ∇3(ρ−1
N ρNuN ) =

(∇3ρN
ρ2N

+
(∇ρN )3

ρ4N

)
ρNuN + ρ−1

N ∇3(ρNuN ), (4.12)

and the boundness of the r.h.s follows from (3.20), (3.18) and the Cauchy inequality.

4.2 Passage to the limit with N
This subsection is devoted to the limit passage N → ∞. Using estimates from

the previous subsection we can extract weakly subsequences, whose limits satisfy

the approximate system. It should be, however, emphasized that at this level we

replace weak formulation of the thermal energy by the weak formulation of the total

energy.
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4.2.1 Strong convergence of the density and passage to the limit in
the continuity equation

From (4.8)-(4.12) we deduce that

uN → u weakly in L2(0, T ;W 2s+1,2(Ω)) (4.13)

and

ρN → ρ weakly in L2(0, T ;W 2s+2,2(Ω)) (4.14)

at least for a suitable subsequence. In addition the r.h.s. of the linear parabolic

problem

∂tρ+ div(ρu)− ε∆ρ = 0, ρ(0, x) = ρ0λ(x) (4.15)

is uniformly bounded in L2(0, T ;W 2s,2(Ω)) and the initial condition is sufficient-

ly smooth, thus, applying the Lp − Lq theory to this problem we conclude that

{∂tρN}∞n=1 is uniformly bounded in L2(0, T ;W 2s,2(Ω)). Hence, the standard com-

pact embedding implies ρN → ρ a.e. in (0, T )×Ω and therefore passage to the limit

in the approximate continuity equation is straightforward.

4.2.2 Strong convergence of the temperature
For the temperature we have

θN → θ weakly in L2(0, T ;W 1,2(Ω)); (4.16)

note that at this level, the time-compactness can be proved directly from the internal

energy equation (2.11). Indeed, due to the continuity equation, we have

∂t(ρNθN + βθ4N ) = −div(uNρNθN + βuNθ4N ) + div(κ∇θN ) +
ε

θ2
− εθ5

−
(
Pm+

β

3

)
divuN+

1

ρN

∂Pc

∂ρN
|∇ρN |2+4ε

γ
|∇ρ

γ
2 |2+νρN |D(uN )|2

+λ|∆s∇(ρNuN )|2 + λε|∆s+1ρN |2 + 2δ2ρN |∇2 log ρN |2. (4.17)

On the account of (4.5) and (4.8) the last 9 terms are bounded in L1((0, T ) × Ω).

Then it follows from (4.2),(4.7) and (4.9) that I1 can be estimated as

∥uNρNθN∥L2((0,T )×Ω)≤C∥√ρNuN∥L∞(0,T ;L2Ω)∥
√
ρN∥L∞(0,T ;L6(Ω))∥θN∥L∞(0,T ;L4(Ω))

≤C (4.18)

and

∥uNθ4N∥L2((0,T )×Ω) ≤ C∥uN∥L2(0,T ;L∞(Ω))∥θ4N∥
L

8
3 ((0,T )×(Ω))

, (4.19)

where we used the interpolation

∥θN∥
L

32
3 ((0,T )×(Ω))

≤ ∥θN∥
1
4

L∞(0,T ;L4(Ω))
∥θN∥

3
4

L8(0,T ;L24(Ω))
, (4.20)

hence the last term is bounded provided B ≥ 8.
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For I2 notice that κε∇θN = (κ0 + ρN + ρNθ2N + βθBN )∇θN , therefore using

estimates (4.5) and (4.2) we verify that the most restrictive terms are bounded.

Indeed,

∥ρN∇θN∥Lp((0,T )×(Ω)) ≤ ∥√ρN∇ log θN∥L2(0,T ;L2(Ω))∥
√
ρN∥L∞((0,T )×(Ω))

·∥θN∥
L

32
3 ((0,T )×(Ω))

(4.21)

with p > 1, further

∥ρNθ2N∇θN∥
L

2B
B+4 (0,T ;L

3B
B+2 (Ω))

≤ ∥√ρN∥L∞((0,T )×(Ω))∥
√
ρN∇θN∥

L2(0,T ;L
3
2 (Ω))

·∥θN∥2LB(0,T ;L3B(Ω)). (4.22)

Finally, since B ≥ 8, θB+1 can be bounded using (4.20).

As a conclusion we have that

∂t(ρNθN + βθ4N ) ∈ L1(0, T ;W−1,p(Ω)) ∪ Lp(0, T ;W−2,q(Ω)), (4.23)

for some p, q > 1. On the other hand, since ∂tρ is uniformly bounded in L2(0, T ;

W 2s,2(Ω)), ρ > C(λ) and θ > 0, we have

∥∂tθN∥L1(0,T ;W−1,p(Ω))∪Lp(0,T ;W−2,q(Ω)) ≤ C∂t(ρNθN + βθ4N )

∈ L1(0, T ;W−1,p(Ω)) ∪ Lp(0, T ;W−2,q(Ω)),

(4.24)

thus an application of the Aubin-Lions lemma gives precompactness of the sequence

approximating the temperature

θN → θ strongly in Lp′((0, T )× Ω), (4.25)

for any 1 ≤ p′ < 32
3 .

4.2.3 Passage to the limit in the momentum equation
Having the strong convergence of the density, we start to identify the limit for

N → ∞ in the nonlinear terms of the momentum equation.

The convective term. First, one observes that

ρNuN → ρu weakly∗ in L∞(0, T ;L2(Ω))

due to the uniform estimate (4.2) and the strong convergence of the density. Next,

one can show that for any ϕ ∈
∞∩
n=1

XN the family of functions
∫
Ω ρNuNϕdx is

bounded and equi-continuous in C(0, T ), thus via the Arzela-Ascoli theorem and

density of smooth functions in L2(Ω) we get that

ρNuN → ρu in C([0, T ];L2
weak(Ω)). (4.26)
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Finally, by the compact embedding L2(Ω) ⊂ W−1,2(Ω) and the weak convergence

of uN we verify that

ρNuN ⊗ uN → ρu⊗ u weakly in L2((0, T )× Ω). (4.27)

The capillarity term. We write it in the form∫ T

0

∫
Ω
ρN∇∆2s+1ρN · ϕdxdt =

∫ T

0

∫
Ω
∆sdiv(ρNϕ)∆s+1ρNdxdt.

Due to (4.14) and the boundedness of the time derivative of ρN , we infer that

ρN → ρ strongly in L2(0, T ;W 2s+1,2(Ω)), (4.28)

thus ∫ T

0

∫
Ω
∆sdiv(ρNϕ)∆s+1ρNdxdt →

∫ T

0

∫
Ω
∆sdiv(ρϕ)∆s+1ρdxdt,

for any ϕ ∈ C∞((0, T )× Ω).

The momentum term. We write it in the form

−λ

∫ T

0

∫
Ω
ρN∆2s+1(ρNuN ) · ϕdxdt = −λ

∫ T

0

∫
Ω
∆s∇(ρNuN ) : ∆s∇(ρNϕ)dxdt,

so the convergence established in (4.13) and (4.28) are sufficient to pass to the limit

here.

Strong convergence of the density and temperature enables us to perform in

the momentum equation (2.10) for any function ϕ ∈ C1([0, T ]; (XN )) such that

ϕ(T ) = 0 and by the density argument we can take all such test functions from

C1([0, T ];W 2s+1(Ω)).

4.2.4 Passage to the limit in the internal energy balance equation
Passage to the limit in the terms νρ|D(u)|2, λ|∆s∇(ρu)|2, λε|∆s+1ρ|2 and

2δ2ρ|∇2 log ρ|2 requires a sort of strong convergence of these quantities. This will

be deduced from the kinetic energy balance. For this purpose we need to show that

u can be a test function in the limit momentum equation. Indeed, in (2.4) all terms

are bounded due to estimate (4.8). Moreover, thanks to the lower bound of ρ we

can verify that u is actually a continuous function with respect to the time and that

it is continuously differentiable. To see this it is enough to differentiate (2.4) with

respect to time and use the kinetic energy balance.

Now, using u as a test function and taking advantage of the fact that the limit

continuity equation is satisfied pointwisely, we obtain
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∫ T

0

∫
Ω
[νρ|Du|2 + λ|∆s∇(ρu)|2 + λε|∆s+1(ρ)|2 + 2δ2ρ|∇2 log ρ|2]dxdt

+

∫
Ω

(1
2
ρ|u|2 + λ

2
|∇2s+1ρ|2 + 4δ2|∇√

ρ|2
)
(t)dx

=

∫
Ω
Pdivudx+

∫
Ω

(1
2
ρ|u|2 + λ

2
|∇2s+1ρ|2 + 4δ2|∇√

ρ|2
)
(0)dx, (4.29)

for any t ∈ [0, T ]. On the other hand, duo to (3.10), we have

lim
N→∞

∫ T

0

∫
Ω
[νρN |DuN|2+λ|∆s∇(ρNuN )|2+λε|∆s+1(ρN )|2+2δ2ρ|∇2 log ρN |]dxdt

+

∫
Ω

(1
2
ρ|uN |2 + λ

2
|∇2s+1ρN |2 + 4δ2|∇√

ρN |2
)
(t)dx

=

∫ T

0

∫
Ω
Pdivudxdt+

∫
Ω

(1
2
ρ|u|2 + λ

2
|∇2s+1ρ|2 + 4δ2|∇√

ρ|2
)
(0)dx. (4.30)

The comparison of these two expressions yields

ν∥√ρND(uN )∥2L2((0,T )×Ω) → ν∥√ρD(u)∥2L2((0,T )×Ω),

λ∥∆s∇(ρNuN )∥2L2((0,T )×Ω) → λ∥∆s∇(ρu)∥2L2((0,T )×Ω),

λε∥∆s+1ρN∥2L2((0,T )×Ω) → λε∥∆s+1ρ∥2L2((0,T )×Ω),

2δ2∥√ρN |∇2 log ρN∥2L2((0,T )×Ω) → 2δ2∥√ρ|∇2 log ρ∥2L2((0,T )×Ω), (4.31)

and for all t ∈ [0, T ] we have that

∥ρN |uN |2(t)∥L1(Ω) → ∥√ρ|u|2(t)∥L1(Ω),

λ∥∇2s+1ρN (t)∥2L2(Ω) → λ∥∇2s+1ρ(t)∥2L2(Ω),

4δ2∥∇√
ρN∥2L2(Ω) → 4δ2∥∇√

ρ∥2L2(Ω), (4.32)

Having convergence of these norms and relevant weakly convergent sequences we

deduce the strong convergence. Thus we are able to perform the limit passage in

the internal energy equation (2.11)∫ T

0

∫
Ω
(ρθ + βθ4)∂tϕdxdt+

∫ T

0

∫
Ω
u(ρθ + βθ4) · ∇ϕdxdt−

∫ T

0

∫
Ω
κ∇θ · ∇ϕdxdt

=−
∫ T

0

∫
Ω

( ε

θ2
−εθ5

)
ϕdxdt+

∫ T

0

∫
Ω

(
Pm+

β

3
θ4
)
divuϕdxdt−

∫
Ω
(ρθ+βθ4)(0)ϕ(0)dx

−
∫ T

0

∫
Ω

[
νρ|Du|2+λ|∆s∇(ρu)|2+λε|∆s+1(ρ)|2+2δ2ρ|∇2 log ρ|2+ε

1

ρ

∂Pc

∂ρ
|∇ρ|2

]
dxdt,

(4.33)

for any smooth ϕ vanishing at t = T .
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4.2.5 Passage to the limit in the total energy balance equation
Now we use uϕ as a test function in the limit momentum equation (2.4), using

again the limit continuity equation and after integrating by parts we get∫ T

0

∫
Ω

(
ρ
|u|2

2
− δ2ρ∆log ρ

)
∂tϕdxdt+

∫ T

0

∫
Ω

(
ρ
|u|2

2
u− δ2ρ∆log ρu

)
· ∇ϕdxdt

−
∫ T

0

∫
Ω
(νρD(u)u− Pu) · ∇ϕdxdt+ 2δ2

∫ T

0

∫
Ω
ρ∇2ρ : ∇uϕdxdt

=

∫ T

0

∫
Ω
νρ|Du|2ϕdxdt+

∫ T

0

∫
Ω
λ∆s∇(ρu) : ∆s∇(ρuϕ)dxdt

−δ2
∫ T

0

∫
Ω
div(ρ∆u)ϕdxdt+

ε

2

∫ T

0

∫
Ω
|u|2∇ρ : ∇ϕdxdt

−
∫ T

0

∫
Ω
Pdivuϕdxdt+

∫ T

0

∫
Ω
λ∆sdiv(ρuϕ) : ∆s+1ρdxdt

−δ2ε

∫ T

0

∫
Ω
ρ∆

(∆ρ

ρ

)
dxdt−

∫
Ω
ρ
|u|2

2
(0)ϕ(0)dx−

∫
Ω
δ2ρ∆log ρ(0)ϕ(0)dx. (4.34)

We apply the approximate continuity equation to the operator ∆s and then test it

by λdiv(∇∆sρϕ) in order to obtain∫ T

0

∫
Ω

λ

2
|∇∆sρ|2∂tϕdxdt+ λ

∫ T

0

∫
Ω
∆sdiv(ρu)∆s+1ρϕdxdt

+λ

∫ T

0

∫
Ω
∆sdiv(ρu)∇∆sρ · ∇ϕdxdt− λε

∫ T

0

∫
Ω
|∆s+1ρ|2ϕdxdt

−λε

∫ T

0

∫
Ω
∆s+1ρ∇∆sρ · ∇ϕdxdt+

λ

2

∫
Ω
|∇∆sρ|2(0)ϕ(0)dx. (4.35)

Now summing (4.33) with (4.34) and (4.35), and using the limit continuity equation

to rewrite the term
∫ T
0

∫
Ω Pcdivudxdt, we get the weak formulation of the total energy

together with some terms which will appear in the subsequent limit passages∫ T

0

∫
Ω

(
ρ
|u|2

2
+ ρe+

λ

2
|∇∆sρ|2 − δ2ρ∆log ρ

)
∂tϕdxdt

+

∫ T

0

∫
Ω

(
ρe+ ρ

|u|2

2
u− δ2ρ∆log ρu

)
· ∇ϕdxdt+ 2δ2

∫ T

0

∫
Ω
ρ∇2ρ : ∇uϕdxdt

−
∫ T

0

∫
Ω
κ∇θ · ∇ϕdxdt+

∫ T

0

∫
Ω
Pu · ∇ϕdxdt−

∫ T

0

∫
Ω
νρD(u)u · ∇ϕdxdt

= −
∫ T

0

∫
Ω

( ε

θ2
− εθ5

)
ϕdxdt− δ2

∫ T

0

∫
Ω
div(ρ∆u)ϕdxdt− δ2ε

∫ T

0

∫
Ω
ρ∆

(∆ρ

ρ

)
dxdt

+

∫ T

0

∫
Ω
Rε,λdxdt−

∫ T

0

∫
Ω

(
ρ
|u|2

2
+ ρe+

λ

2
|∇∆sρ|2

)
(0)ϕ(0)dxdt (4.36)
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and

Rε,λ(ρ, θ,u, ϕ)=λ[∆(div(ρuϕ))∆s+1ρ−∆div(ρu)∆s+1ρϕ]−λ∆sdiv(ρu)∇∆s+1ρ · ∇ϕ

−λ[|∆s∇(ρu)|2ϕ−∆s∇(ρu) : ∆s∇(ρuϕ)]+λε∆s+1ρ∇∆s+1ρ · ∇ϕ

+
ε

2
|u|2∇ρ · ∇ϕ+ ε∇ρ · ∇ϕ

(
ec(ρ) +

Pc(ρ)

ρ

)
. (4.37)

5 Derivation of the B-D Estimate

At this level we are left with only two parameters of approximation: ε and

λ. From the so-far obtained a-priori estimates only the ones following from (3.11)

and (3.18) were independent of these parameters. However having the ε-dependent

estimate for ∆s+1ρ allows us to derive a type of B-D estimate, from which it follow

that this estimate depends only on λ. As a product, we will derive the energy

estimate independent of λ. Note that so far in (4.8) we are only able to estimate

the r.h.s. using the λ-dependent bounds for u. We will prove the following lemma.

Lemma 5.1 For any positive constant r > 1, we have

d

dt

∫
Ω

(1
2
ρ|u+∇ϕ(ρ)|2 + r − 1

2
ρ|u|2 + rλ

2
|∇∆sρ|2 + rρec(ρ)

)
dx

+r
ργ

γ − 1
+

∫
Ω
∇ϕ(ρ) · ∇Pdx+

1

2

∫
Ω
ρ|∇u−∇Tu|2dx+ 2λ

∫
Ω
|∆s+1ρ|2dx

+2(r − 1)

∫
Ω
ρ|D(u)|2dx+ r

∫
Ω
(λε|∆s+1ρ|2 + λ|∆s∇(ρu)|2)dx

+

∫
Ω
4δ2ρ|∇2 log ρ|2dx+

4ε

γ

∫ t

0

∫
Ω
|∇ρ

γ
2 |2dxdt

≤ −ε

∫
Ω
(∇ρ · ∇)udx+ ε

∫
Ω
∆ρ

|∇ϕ|2

2
dx+ ε

∫
Ω
ρ∇ϕ(ρ) · ∇(ϕ′(ρ)∆ρ)dx

−ε

∫
Ω
div(ρu)ϕ′(ρ)∆ρdx+ r

∫
Ω

(
Pm +

β

3
θ4
)
divudx− 2λ

∫
Ω
∆s∇(ρu) : ∆s∇2ρdx,

(5.1)

in D′(0, T ), where ∇ϕ(ρ) = 2∇ log ρ, ec(ρ) =
∫ ρ
0 y−2Pc(ρ)dy ≥ 0.

Proof The proof is similar to that of [23].

In order to deduce the uniform estimates from (5.1) we need to control all the

non-positive contribution to the l.h.s as well as the terms from the r.h.s. The ε−
dependent terms can be bounded similarly to that in [23], so we fucus on the new

aspect.

Estimate of ∇P ·∇ϕ. Using the assumption of P and ∇ϕ = 2∇ log ρ, we obtain

∇P∇ log ρ = P ′
c(ρ)

|∇ρ|2

ρ
+

∇(Rρθ)∇ρ

ρ
+

β

3

∇θ4 · ∇ρ

ρ
. (5.2)
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So the integral can be written∫
Ω
∇P∇ log ρdx =

∫
Ω
P ′
c(ρ)

|∇ρ|2

ρ
dx+R

∫
Ω

θ|∇ρ|2

ρ
dx

+R

∫
Ω
∇ρ∇θdx+

∫
Ω

β

3

∇θ4 · ∇ρ

ρ
dx. (5.3)

The first and second term is non-negative in view of the definition of πc, so it can

be considered on the l.h.s. of (5.1) and we only need to estimate the third and the

fourth terms as follows:

R

∫
Ω
∇ρ∇θdx ≤ 1

2
R2

∫
Ω
κ(ρ, θ)

|∇θ|2

θ2
dx+

1

2

∫
Ω

θ2

κ(ρ, θ)
|∇ρ|2dx

≤ C

∫
Ω
κ(ρ, θ)

|∇θ|2

θ2
dx+ C ≤ C, (5.4)

β

3

∇θ4 · ∇ρ

ρ
≤ C(ε)β∥∇θ4∥2L2((0,T )×Ω) + ε∥∇ log ρ∥2L2((0,T )×Ω), (5.5)

and the first term in (5.5)is bounded for B ≥ 8 while the second (5.5) one can be

estimated differently in two cases:

(i) ρ ≥ 1, then ρ−1 ≤ 1 and ρ−2|∇ρ|2 ≤ ρ−1|∇ρ|2 which is then bounded by

applying to the Gronwall inequality to (5.1);

(ii) ρ < 1, then ρ−γ ≥ 1 and ερ−2|∇ρ|2 ≤ ρ−2−γ |∇ρ|2 ≤ εP
′
c(ρ)ρ

−1|∇ρ|2 which

is absorbed by the analogous term from the l.h.s. of (5.1).

Estimate of (Pm + β
3 θ

4)divu. By the assumption of Pm, we have∫
Ω

(
Pm +

β

3
θ4
)
divudx =

∫
Ω
Rρθdivudx+

∫
Ω

β

3
θ4divudx.

Furthermore, by the Young’ inequality∣∣∣ ∫
Ω
Rρθdivudx

∣∣∣ ≤ ε∥√ρdivu∥2L2(Ω) + C(ε)∥√ρθ∥2L2(Ω), (5.6)

the last term in the right hand side of the above inequality can be written

∥√ρθ∥L2(Ω) ≤ ∥ρθ2∥
1
2

L1(Ω)
≤ C∥ρ∥

1
2

L
3
2 (Ω)

∥θ∥L6(Ω) ≤ C.

On the account of (4.6), θ ∈ L2(0, T ;L6(Ω)). Moreover, the Sobolev imbedding

theorem implies that ∥ρ∥
L

p
2 (Ω)

≤ c∥∇√
ρ∥L2(Ω) for 1 ≤ p ≤ 6, hence the last term in

the right hand side of (5.6) is bounded whereas the first term can be absorbed by

the left hand side.

The radiative term is slightly more difficult, however, we still can write
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∫ T

0

∫
Ω
θ4|divu|dxdt =

∫ T

0

∫
Ω
θ4ρ−1/2|√ρdivu|dxdt

≤ ∥θ∥4Lp(0,T ;Lq(Ω))∥ρ
−1/2∥

L2γ− (0,T ;L6γ+(Ω))
∥√ρdivu∥L2((0,T )×Ω),

(5.7)

where p = 8γ−

γ−−1
, q = 24γ−

3γ−−1
. By the interpolation

∥θ∥Lp(0,T ;Lq(Ω)) ≤ ∥θ∥1−a
L∞(0,T ;L4(Ω))

∥θ∥aLG(0,T ;L3G(Ω))

for a = 2
3 and G = 16γ−

3(γ−−1)
, where G ≤ B provided γ− ≥ 3, we can estimate∫ T

0

∫
Ω
θ4|divu|dxdt ≤ C(ε)

(
∥θ∥

1
3

L∞(0,T ;L4(Ω))
∥θ∥

2
3

LB(0,T ;L3B(Ω))

) 2(γ−−1)

γ−

+ε∥ρ−γ−/2∥L2((0,T )×Ω) + ε∥√ρdivu∥2L2((0,T )×Ω), (5.8)

and the last two terms are estimated by the r.h.s. of (5.1) and (5.3), while the

boundedness of the first one follows from (4.1) and (4.8).

Estimate of λ∆s∇(ρu) : ∆s∇2ρ. We have

2λ

∫
Ω
|∆s∇(ρu) : ∆s∇2ρ|dx ≤ Cλ∥∆s∇(ρu)∥2L2((0,T )×Ω) + λ∥∆s+1ρ∥2L2((0,T )×Ω),

(5.9)

therefore for r sufficiently large with rλ−1 > c, both terms in the right hand side of

(5.9) are bounded by the r.h.s. of (5.1).

6 Estimates Independent of ε, λ, Passage to the Limit
ε, λ → 0

In this section we first present the new uniform bounds arising from the estimate

of B-D entropy, performed in Section 5, and then let the last two approximation

parameters be 0. Note that the limit passage λ → 0, ε → 0 could be done in a single

step, however, for transparency of this proof we do it separately.

We complete the set uniform bounds by
√
λ∥∆s+1ρ∥L2((0,T )×Ω) + ∥

√
θρ−1∇ρ∥L2((0,T )×Ω) + ∥

√
Pc(ρ)ρ−1∇ρ∥L2((0,T )×Ω) ≤ C,

(6.1)

moreover
√
λ∥∇2s+1ρ∥L∞(0,T ;L2(Ω)) + ∥∇√

ρ∥L∞(0,T ;L2(Ω)) + 4δ2∥√ρ∇2 log ρ∥L2((0,T )×Ω) ≤ C.

(6.2)

The uniform estimates for the velocity vector field are
√
λ∥∆s∇(ρu)∥L2((0,T )×Ω)+∥√ρ∇u∥L2((0,T )×Ω)+∥

√
θ−1ρ∇u∥L2((0,T )×Ω) ≤ C, (6.3)
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and the constants from the r.h.s are independent of ε and λ.

We now present several additional estimates of ρ and u based on imbedding of

Sobolev spaces and simple interpolation inequalities. Notice that the B-D estimates

can be proven exactly as in the paper of Bresch and Desjardins devoted to the

Navier-Stokes-Fourier system. However, for completeness, we recall them below.

Further estimates of ρ. From (5.1) we deduce that there exist functions

ξ1(ρ) = ρ for ρ < (1− δ), ξ1(ρ) = 0 for ρ < 1 and ξ2(ρ) = 0 for ρ < 1, ξ2(ρ) = ρ for

ρ > (1 + δ),δ > 0, such that

∥∇ξ
− γ−

2
1 ∥L2((0,T )×Ω), ∥∇ξ

γ
2
2 ∥L2((0,T )×Ω) ≤ c, (6.4)

additionally in accordance with (5.3), where we are allowed to use the Sobolev

imbeddings, thus

∥ξ−
γ−
2

1 ∥L2(0,T ;L6(Ω)), ∥ξ
γ
2
2 ∥L2(0,T ;L6(Ω)) ≤ c. (6.5)

From (5.1) we can also derive the following estimates:

∥ξ1∥L∞(0,T ;Lγ− (Ω))
, ∥ξ2∥L∞(0,T ;Lγ(Ω)) ≤ c (6.6)

and

∥√ρ∥L2(0,T ;H2(Ω)) ≤ c. (6.7)

Similarly, we obtain

ρ ∈ L∞(0, T ;L3(Ω)). (6.8)

Remark 1 Note in particular that the first of estimate (6.4) implies that

ρ > 0 a.e. on (0, T )× Ω.

Estimate of the velocity vector field. We use the Holder inequality to write

∥∇u∥Lp(0,T ;Lq(Ω)) ≤ c(1 + ∥ξ1(ρ)−1/2∥
L2γ− (0,T ;L6γ− (Ω))

)∥√ρ∇u∥L2((0,T )×Ω), (6.9)

where p = 2γ−

γ−+1
, q = 6γ−

3γ−+1
. Therefore, the Korn inequality together with the

Sobolev imbedding implies

u ∈ L
2γ−

γ−+1
(
0, T ;L

6γ−

3γ−+1 (Ω)
)
. (6.10)

Next, by a similar argument

∥u∥Lp′ (0,T ;Lq′ (Ω)) ≤ c(1 + ∥ξ1(ρ)−1/2∥
L2γ− (0,T ;L6γ− (Ω))

)∥√ρu∥L2((0,T )×Ω) (6.11)

with p′ = 2γ−, q′ = 6γ−

3γ−+1
. By a simple interpolation between (6.10) and (6.11), we

obtain

u ∈ L
10γ−

3γ−+3
(
0, T ;L

10γ−

3γ−+3 (Ω)
)
. (6.12)
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Since γ− > 3, we see in particular that u ∈ L
5
2 (0, T ;L

5
2 (Ω)) uniformly with respect

to ε and λ.

Remark 2 By the estimates of the temperature we can deduce that

θ > 0 a.e. on (0, T )× Ω,

6.1 Passage to the limit with ε → 0
With the B-D estimate at hand, especially with the bound on ∆s+1ρε in L2((0,T )×

Ω), which is now uniform with respect to ε, we may perform the limit passage sim-

ilarly to that in previous step. Indeed, the uniform estimates allow us to extract

subsequences, such that

ε∆s∇uε, ε∇ρε, ε∆
s+1ρε → 0 strongly in L2((0, T )× Ω), (6.13)

therefore

ε∇ρε∇uε → 0 strongly in L1((0, T )× Ω). (6.14)

The strong convergence of the density as well as the velocity (since ρε) can be

obtained identically as in previous step. Therefore we focus only on the strong

convergence of the temperature and the limit passage in the total energy balance.

From (3.18) and (4.7), it follows that

θε → θ weakly in L2(0, T ;W 1,2(Ω)) (6.15)

and

εθ−2
ε , εθ5ε → 0 strongly in L1((0, T )× Ω). (6.16)

The pointwise convergence of the temperture is deduced from the version of the

Aubin-Lions lemma, see [23].

Lemma 6.1 Let vε be a sequence of functions bounded in L2(0, T ;Lq(Ω)) and

in L∞(0, T ;L1(Ω)), where q > 6
5 . Furthermore, assume that

∂tvε ≥ gε in D′
((0, T )× Ω), (6.17)

where gε is bounded in L1(0, T ;W−m,r(Ω)) for some m ≥ 0, r > 1 independent of ε.

Then there exists a subsequence vε which converges to v strongly in L2(0,T ;W−1,2(Ω)).

We will apply this lemma to vε = ρεθε+βθ4ε . Then, we can repeat the estimates

from (4.17) to (4.24) to check that

∂tvε ≥ gε = −div(uερεθε + βuεθ
4
ε) + div(κ∇θε) +

ε

θ2
− εθ5

−
(
Pm +

β

3

)
divuε +

1

ρε

∂Pc

∂ρε
|∇ρε|2 + νρε|D(uε)|2

+λ|∆s∇(ρεuε)|2 + λε|∆s+1ρε|2 + 2δ2ρε|∇2 log ρε|2. (6.18)
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Moreover, the r.h.s. is bounded in L1(0, T ;W−1,p(Ω))∪L1(0, T ;W−2,q(Ω)) for some

p, q > 1. Therefore, the above lemma and the strong convergence of ρε imply in

particular that

θ4ε → θ4ε strongly in L2(0, T ;W−1,2(Ω)).

On the other hand, we also know that θε → θ weakly in L2(0, T ;W 1,2(Ω)), therefore a

simple argument based on the monotonicity of f(x) = x4 implies strong convergence

of θε in Lq(0, T ;L3q(Ω)) for any q < B.

Let us finish this subsection with the list of the limit equations:

– the continuity equation

∂ρ + div(ρu) = 0

is satisfied pointwisely on [0, T ]× Ω;

– the momentum equation

−
∫ T

0

∫
Ω
ρu · ∂tϕdxdt−

∫
Ω
m0 · ϕ(0)dx+

∫ T

0

∫
Ω
λ∆s∇(ρu) : ∆s∇(ρϕ)dxdt

−
∫ T

0

∫
Ω
(ρu⊗ u)∇ϕdxdt+

∫ T

0

∫
Ω
νρDu : Dϕdxdt−

∫ T

0

∫
Ω
Pdivϕdxdt

+

∫ T

0

∫
Ω
λ∆sdiv(ρϕ) : ∆s+1(ρ)dxdt+ 2δ2

∫ T

0

∫
Ω
ρ∇2 log ρ · ∇ϕdxdt = 0 (6.19)

holds for any test function ϕ ∈ L2(0, T ;W 2s+1(Ω)) ∩W 1,2(0, T ;W 1,2(Ω)) such that

ϕ(·, T ) = 0;

– the total energy equation∫ T

0

∫
Ω

(
ρ
|u|2

2
+ ρe+

λ

2
|∇∆sρ|2 − δ2ρ∆log ρ

)
∂tϕdxdt

+

∫ T

0

∫
Ω

(
ρe+ ρ

|u|2

2
u− δ2ρ∆log ρu

)
· ∇ϕdxdt−

∫ T

0

∫
Ω
κ∇θ · ∇ϕdxdt

+

∫ T

0

∫
Ω
Pu · ∇ϕdxdt−

∫ T

0

∫
Ω
νρD(u)u · ∇ϕdxdt

= −
∫ T

0

∫
Ω

( ε

θ2
− εθ5

)
ϕdxdt+

∫ T

0

∫
Ω
Rε,λdxdt

−
∫ T

0

∫
Ω

(
ρ
|u|2

2
+ ρe+

λ

2
|∇∆sρ|2

)
(0)ϕ(0)dxdt (6.20)

holds for any test function ϕ ∈ L2(0, T ;W 2s+1(Ω)) ∩W 1,2(0, T ;W 1,2(Ω)) such that

ϕ(·, T ) = 0 and

Rε,λ(ρ, θ,u, ϕ)=λ[∆(div(ρuϕ))∆s+1ρ−∆div(ρu)∆s+1ρϕ]−λ∆sdiv(ρu)∇∆s+1ρ · ∇ϕ

−λ[|∆s∇(ρu)|2ϕ−∆s∇(ρu) : ∆s∇(ρuϕ)]. (6.21)
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Moreover, using the lower semicontinuity of norm and passing to the limit in (4.33),

∂t(ρθ + βθ4) + div(uρθ + βuθ4) + div(κ∇θ)

≥ −
(
Pm +

β

3

)
divu+ νρ|D(u)|2 + λ|∆s∇(ρu)|2 + 2δ2ρ|∇2 log ρ|2 (6.22)

is satisfied in the sense of distributions on (0, T )× Ω.

6.2 Passage with λ → 0
In this section, from the uniform estimate derived in the previous section and

Lion-Aubin lemma, we deduce the strong compactness of the sequence
√
ρλ, pc(ρλ),

1/
√
ρλ and

√
ρλuλ, showed below.

Lemma 6.2 Under the hypothesis of Theorem 1.1, we have for a fixed δ

√
ρλ → √

ρ, strongly in L2(0, T ;H1(Ω)),

pc(ρλ) → pc(ρ), strongly in L1(0, T ;L1(Ω)),

1/
√
ρλ → 1/

√
ρ, strongly in C(0, T ;Lp(Ω)), p < 6,

√
ρλuλ → √

ρu, strongly in L2(0, T ;L2(Ω)),

uλ → u, strongly in L2(0, T ;L2(Ω)).

Proof Firstly we show the strong convergence of the sequence
√
ρλ. The esti-

mate ∥∇√
ρλ∥L∞(0,T ;L2(Ω))≤c together with the conservation of the mass ∥ρλ(t)∥L1(Ω)

= ∥ρλ(0)∥L1(Ω) gives the L∞(0, T ;H1(Ω)) bound, we also have the L2(0, T ;H2(Ω))

bounded. Next, noticing that

∂t
√
ρλ = −1

2

√
ρλdivuλ − uλ · ∇√

ρλ =
1

2

√
ρλdivuλ − div(uλ

√
ρλ),

we can show that

∥√ρλ∥L2(0,T ;H−1(Ω)) ≤ c.

Thus we can apply the Lion-Aubin lemma to obtain the strong convergence of
√
ρλ

to
√
ρ in L2(0, T ;H1(Ω)).

Sobolev imbedding implies that ρλ is bounded in L∞(0, T ;L3(Ω)) and therefore

ρλuλ =
√
ρλ

√
ρλuλ is bounded in L∞(0, T ;L3/2(Ω))

The continuity equation thus yields ∂tρλ bounded in L∞(0, T ;W−1,3/2(Ω)). More-

over, since ∇ρλ = 2
√
ρλ∇

√
ρλ, ∇ρλ is bounded in L∞(0, T ;L3/2(Ω)), hence the

compactness of ρλ in C([0, T ];L
3/2
loc (Ω)).

Next we show the strong convergence of the sequence of the cold pressure. From

the previous section we can yield pc(ρλ) is bounded in L5/3((0, T ) × Ω). Since we

already know that pc(ρλ) converges almost everywhere to pc(ρλ), those bounds yield

the strong convergence of pc(ρλ) in L1
loc((0, T )× Ω).
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Moreover, we deduce the strong convergence of the sequence of 1√
ρλ
, and rewrite

the equation as follows

∂t

( 1
√
ρλ

)
+∇ ·

( uλ√
ρλ

)
= − 3

2
√
ρλ

div(uλ).

Using the pervious estimates, we have∥∥∥∂t( 1
√
ρλ

)∥∥∥
L∞(0,T ;W−1,1(Ω))

≤ c.

This estimate, ∥( 1√
ρλ
)∥

L∞(0,T ;L2γ− (Ω))
≤ c and ∥∇ 1√

ρλ
∥L2(0,T ;L2(Ω)) ≤ c allow us

again to apply the Lion-Aubin lemma to obtain the strong convergence of 1√
ρλ

in

C([0, T ];Lp(Ω)) for p < 6.

Moreover, we derive the strong convergence of the sequences of ρλuλ and
√
ρλuλ,

and notice that

∇·(ρλuλ) = ρ∇·(uλ)+uλ∇ρλ =
√
ρλ

√
ρλ∇·(uλ)+2

√
ρλuλ∇(

√
ρλ) ∈ L2(0, T ;L2(Ω)).

Using the momentum equation, we can get information on ∂t(ρλuλ) and therefore

through the the Lion-Aubin lemma to obtain the almost everywhere convergence of

ρu. From this and the almost everywhere convergence of 1√
ρλ
, we get the sequence

√
ρλuλ converges almost everywhere to

√
ρu, then using the uniform boundedness

of the sequence
√
ρλuλ belonging to Lp′([0, T ];Lq′(Ω)) for p′, q′ > 2, we obtain the

strong convergence of the sequence
√
ρλuλ in L2(0, T ;L2(Ω)).

Combing the strong convergence of ρ
−1/2
λ to ρ−1/2 in C([0, T ];Lp(Ω)) for p < 6

with the strong convergence of the sequence
√
ρλuλ in L2(0, T ;L2(Ω)), we deduce

that uλ converges to u in L2(0, T ;Lp(Ω)) for all p < 3/2. Recalling the uniform

u ∈ L
5
2 (0, T ;L

5
2 (Ω)) we deduce that uλ converges strongly to u in L2(0, T ;L2(Ω)).

The proof is completed.

When we have these estimates, we can pass to the limit in

ρλuλ, ρλuλ ⊗ uλ, ρD(uλ), pc(ρλ), ∇√
ρλ ⊗∇√

ρλ,

and in the quantum term ρλ∇(
∆
√
ρλ√
ρλ

) namely the terms with
√
ρλ or ∇√

ρλ, thus

we can pass the limit in the equation of the mass and momentum equation except

the first part of the pressure Rρλθλ where this term can be shown to deal with the

strong convergence of the temperature, therefore it remains us to pass to the limit

in the equation of the energy, the main problem in this process is to get the strong

convergence of the temperature.

Strong convergence of the temperature. The difference with the previous

chapter is that we cannot use the higher order either for the velocity or for the

density in order to deduce the boundedness of the time derivative of temperature in

a appropriate space. However, the idea of proving compactness of the temperature
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is, as previously, to apply Lemma 6.2 with ε = λ, vλ = ρλθλ + βθ4λ. Therefore, our

next aim is to check that its assumptions are satisfied uniformly with respect to λ.

First, note that vλ is bounded in L2(0, T ;Lq(Ω)) and in L∞(0, T ;L1(Ω)), where

q > 6
5 , uniformly with respect to λ. Indeed, it follows directly from (4.2) and (4.6).

Further, one deduces that ∂tvλ ≥ gλ, where gλ has the following form

gλ = −div(uλρλθλ + βuλθ
4
ε) + div(κ∇θλ)−

(
Pm +

β

3
θ4λ

)
divuλ

+νρλ|D(uλ)|2 + λ|∆s∇(ρλuλ)|2 + 2δ2ρλ|∇2 log ρλ|2, (6.23)

and is bounded in L1(0, T ;W−m,r(Ω)) for some m ≥ 0, r > 1 independent of λ.

Indeed, this can be estimated, similarly to (4.18)-(4.22) except for the terms that

contains velocity. For them we may write

∥uλρλθλ∥L12/11((0,T )×Ω)≤C∥√ρλuλ∥L2((0,T )×Ω)∥
√
ρλ∥L∞(0,T ;L6(Ω)∥θλ∥L∞(0,T ;L4(Ω)≤C,

(6.24)

on account of (4.20) and (6.10), further

∥uλθ
4
ε∥L40/31((0,T )×Ω) ≤ C∥uλ∥L5/2((0,T )×Ω)∥θ

4
ε∥L8/3((0,T )×Ω) ≤ C. (6.25)

For the internal pressure we have

∥ρλθλdivuλ∥L12/11((0,T )×Ω)

≤ C∥√ρλdivuλ∥L2((0,T )×Ω)∥
√
ρλ∥L∞(0,T ;L6(Ω)∥θλ∥L∞(0,T ;L4(Ω) ≤ C, (6.26)

and the term θ4λdivuλ is bounded in L1((0, T )×Ω) as was shown in (5.24). Since the

last two terms in (6.23) are also uniformly bounded in L1((0, T )×Ω), the assumptions

of Lemma 6.1 are satisfied with m = 1, r > 1. Therefore, there exists a subsequence

vλ convergent to v strongly in L2(0, T ;W−1,2(Ω), which can be used to show the

strong convergence of θλ exactly as in the previous section.

Passage to the limit in the nonlinear terms. The last step in the limit

passage λ → 0 is the verification of convergence in the nonlinear terms of the system.

The most demanding of them are in the energy equation, and we only justify the

limit passage in this case. The correction of energy λ∇2s+1ρλ → 0 strongly in

L2((0, T )× Ω), therefore the energy

Eλ = ρλec(ρλ) + ρλθλ + βθ4λ +
1

2
ρλ|uλ|2 +

λ

2
|∇2s+1ρλ|2 − δ2ρλ∆log ρλ

converges to E due to the strong convergence of ρλ, θλ,
√
ρλuλ and the weak conver-

gence of ∆ρλ . Similarly uλρλθλ, ρλu
3
λ and Puλ converge weakly to uρθ, ρu3 and

Pu respectively, due to uniform bounds in Lp((0, T ) × Ω) for p > 1 from Lemma

6.2, the strong convergence of ρλ, θλ and uλ.
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For the quantum flux, we pass to the limit in ρλ∆uλ namely in terms with

uλ∆ρλ, uλ∇ρλ or uρλ, Since uλ converges strongly to u in L2(0, T ;L2(Ω)) , ρλ
and ∇ρλ converges strongly to ρ and ∇ρ in L2(0, T ;L2(Ω)) respectively and ∆ρλ
converges weakly to ∆ρ in L2(0, T ;L2(Ω)). As a consequence, ρλ∆uλ converges

weakly to ρ∆u.

The stress quantum flux ρλuλ∇2 log ρλ converges weakly to ρu∇2ρ. Indeed,

ρλuλ∇2 log ρλ = uλ∇2ρλ − 4∇√
ρλ ⊗√

ρλuλ,

since uλ converges strongly to u in L2(0, T ;L2(Ω)), ρλ and ∇ρλ converges strongly

to ρ and ∇ρ in L2(0, T ;L2(Ω)) respectively and ∆ρλ converges weakly to ∆ρ in

L2(0, T ;L2(Ω)), thus we complete this limit process.

Limit passage in the heat flux term κ∇θλ can be performed directly, since it

involves only the sequences ρλ and θλ which are strongly convergent, and a sequence

∇θλ which converges to ∇θ in L2((0, T )× Ω).

We are now ready to prove that the corrector term Rλ converges to 0 strongly

in L1((0, T )× Ω) as λ → 0. In fact, we have∫ T

0

∫
Ω
|Rλ(ρλ, θλ)|dxdt

= λ

∫ T

0

∫
Ω
|(∆s∇(ρλuλ)∆

s(ρλuλ)+∆s(ρλuλ)∆
s+1ρλ+∆sdiv(ρλuλ)∇∆sρλ) · ∇ϕ|dxdt

≤ (∥∇ϕ∥L∞((0,T )×Ω))λ[∥ρλuλ∥L2(0,T ;W 2s,2)(Ω)∥ρλuλ∥L2(0,T ;W 2s+1,2)(Ω)], (6.27)

thus we must show that the right hand side of the above inequality converges to 0.

But this is evident, since one can use the Gagliardo-Nirenberg interpolation inequal-

ity and uniform bounds for ρλuλ in L∞(0, T ;L3/2(Ω); for ρλ in L∞(0, T ;L3(Ω); and

for
√
λρλuλ and

√
λρλ in L2(0, T ;W 2s+1,2(Ω) and L2(0, T ;W 2s+2,2(Ω), respectively.

This finishes the proof of the main Theorem 1.1.
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