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Abstract

In this paper, we study two kinds of first-order singular discrete systems.
By the fixed point index theory, we investigate the existence and multiplicity
of positive periodic solutions of the systems.
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1 Introduction

Let T > 3 be an integer. In this paper, we are concerned with the existence

and multiplicity of positive T -periodic solutions of the following singular discrete

systems

∆ui(t) = −ai(t)gi(u(t))ui(t) + λbi(t)fi(u(t− τ(t))), t ∈ Z, i = 1, 2, · · · , n (1.1)

and

∆ui(t) = ai(t)gi(u(t))ui(t)− λbi(t)fi(u(t− τ(t))), t ∈ Z, i = 1, 2, · · · , n, (1.2)

where u = (u1, · · · , un) ∈ Rn, ai, bi : Z → [0,∞) are T -periodic functions with

T−1∑
t=0

ai(t) > 0,

T−1∑
t=0

bi(t) > 0;

gi ∈ C(Rn
+, [0,∞)) and fi : Rn

+\{0} → [0,∞) are continuous, i = 1, 2, · · · , n; τ :

Z → Z is a T -periodic function and λ is a positive parameter.

In the past few years, there has been considerable interest in the existence of

periodic solutions of equations

u′(t) = a(t)g(u(t))u(t)− λb(t)f(u(t− τ(t))) (1.3)
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and

u′(t) = −a(t)g(u(t))u(t) + λb(t)f(u(t− τ(t))), (1.4)

where a, b ∈ C(R, [0,∞)) are T -periodic functions with∫ T

0
a(t)dt > 0,

∫ T

0
b(t)dt > 0,

and τ is a continuous T -periodic function. Equations (1.3) and (1.4) have been

proposed as models for a variety of physiological processes and conditions including

production of blood cells, respiration, and cardiac arrhythmias. See for example,

[1-8,12] and the references therein. On the other hand, many authors paid their

attention to the existence of positive periodic solutions of singular systems of the

first-order and second-order differential equations, see Chu [9], Jiang [10], Wang

[11,12] and the references therein. It has been shown that many results of nonsingular

systems still valid for singular cases.

Let
R+ = [0,∞), Rn

+ =

n∏
i=1

R+,

and for any u = (u1, · · · , un) ∈ Rn
+,

∥u∥ =

n∑
i=1

|ui|.

Recently, Wang [12] studied the existence and multiplicity of positive periodic solu-

tions of the following singular non-autonomous n-dimensional system

x′i(t) = −ai(t)xi(t) + λbi(t)fi(x1(t), · · · , xn(t)), i = 1, · · · , n (1.5)

under assumptions

(H1) ai, bi ∈ C(R, [0,∞)) are ω-periodic functions such that
∫ ω
0 ai(t)dt > 0,∫ ω

0 bi(t)dt > 0, i = 1, · · · , n;
(H2) fi : Rn

+\{0} → (0,∞) are continuous, i = 1, · · · , n.
By using Krasnoselskii fixed point theorem in a cone, the author established the

existence and multiplicity of positive periodic solutions of (1.5) with superlinearity

or sublinearity assumptions at infinity for an appropriately chosen parameter.

However, to the best of our knowledge, the existence results of positive periodic

solutions for first-order discrete systems (1.1) and (1.2) with singular nonlinearities

are relatively little. Motivated by the above considerations, in this paper, we study

the existence and multiplicity of positive T -periodic solutions of singular discrete

systems (1.1) and (1.2). Obviously, (1.1) is a discrete analogue of system (1.5) when

gi ≡ 1, i = 1, 2, · · · , n and τ ≡ 0, and we are interested in establishing the similar

results as [12, Theorem 1.1] for systems (1.1) and (1.2).
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We make the following assumptions:

(C1) ai, bi : Z → [0,∞) are T -periodic functions with
T−1∑
t=0

ai(t) > 0,
T−1∑
t=0

bi(t) > 0,

i = 1, 2, · · · , n; τ : Z → Z is a T -periodic function.

(C2) gi ∈ C(Rn
+, [0,∞)) satisfies 0 < li ≤ gi(u) ≤ Li < ∞, fi : Rn

+\{0} → (0,∞)

is continuous, i = 1, 2, · · · , n.
(C3) 0 ≤ liai(t) ≤ Liai(t) < 1, t ∈ T := {0, 1, · · · , T − 1}, i = 1, 2, · · · , n.
Our main results can be stated as below.

Theorem 1.1 Let (C1)-(C3) hold. Suppose lim
∥u∥→0

fi(u) = ∞ for some i =

1, 2, · · · , n, then:
(i) If lim

∥u∥→∞
fi(u)
∥u∥ = 0, i = 1, 2, · · · , n, then for all λ > 0, (1.1) admits a positive

periodic solution.

(ii) If lim
∥u∥→∞

fi(u)
∥u∥ = ∞, i = 1, 2, · · · , n, then (1.1) admits two positive periodic

solutions for λ > 0 sufficiently small.

(iii) There exists a λ0 > 0 such that (1.1) admits a positive periodic solution for

0 < λ < λ0.

Remark 1.1 Theorem 1.1, which improves the corresponding ones established

for single difference equations in [17-21], is the discrete analogues of [12, Theorem

1.1] when gi ≡ 1, i = 1, 2, · · · , n and τ ≡ 0. For more details on the periodic

solutions of systems (1.1) and (1.2), we refer the readers to [13-16].

The following well-known theorem plays a key role in proving our main results.

Theorem A[22,23] Let E be a Banach space and P be a cone in E. For r > 0,

define Pr = {u ∈ P : ∥u∥ < r}. Assume T : P r → P is completely continuous such

that Tu ̸= u for u ∈ ∂Pr = {u ∈ P : ∥u∥ = r}.
(i) If ∥Tu∥ > ∥u∥ for u ∈ ∂Pr, then i(T, Pr, P ) = 0.

(ii) If ∥Tu∥ < ∥u∥ for u ∈ ∂Pr, then i(T, Pr, P ) = 1.

2 Preliminaries

Set

σli =
T−1∏
s=0

(1− ai(s)li), σLi =
T−1∏
s=0

(1− ai(s)Li), σ = min
i=1,2,··· ,n

{σLi(1− σli)

1− σLi

}
.

For r > 0, define

M(r) = max
{
fi(u) : u ∈ Rn

+, σr ≤ ∥u∥ ≤ r, i = 1, 2, · · · , n
}
> 0,

m(r) = min
{
fi(u) : u ∈ Rn

+, σr ≤ ∥u∥ ≤ r, i = 1, 2, · · · , n
}
> 0,

Γ = σ · min
i=1,2,··· ,n

{
T−1∑
s=0

bi(s)
σLi

1− σLi

}
, Λ =

n∑
i=1

(
T−1∑
s=0

bi(s)
1

1− σli

)
.
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Let E =
{
u : Z → R |u(t+ T ) = u(t), t ∈ Z

}
be a Banach space with the norm

∥u∥∞ = max
t∈T

|u(t)|, and X be a Banach space defined by

X :=

n︷ ︸︸ ︷
E × E × · · · × E,

which is equipped with the norm ∥u∥ =
n∑

i=1
∥ui∥∞ for u = (u1, · · · , un) ∈ X.

Define

K =
{
u ∈ X : ui(t) ≥

σLi(1− σli)

1− σLi

∥ui∥∞, i = 1, · · · , n, t ∈ T
}
.

It is not difficult to check that K is a cone in X. For r > 0, let

Ωr = {u ∈ K : ∥u∥ < r},

then ∂Ωr = {u ∈ K : ∥u∥ = r}.
Let Tλ : X → X be a mapping with components (T 1

λ , · · · , Tn
λ ):

T i
λu(t) = λ

t+T−1∑
s=t

Ki(t, s)bi(s)fi(u(s− τ(s))),

where

Ki(t, s) =

t+T−1∏
θ=s+1

(1− a(θ)g(u(θ)))

1−
T−1∏
θ=0

(1− a(θ)g(u(θ)))

, s ∈ {t, t+ 1, · · · , t+ T − 1}.

It follows from (C3) that
σLi

1− σLi

≤ Ki(t, s) ≤
1

1− σli
, s ∈ {t, t+ 1, · · · , t+ T − 1}.

Moreover, we can easily get

0 <
σLi(1− σli)

1− σLi

< 1.

Lemma 2.1 Let (C1)-(C3) hold. Then Tλ(K)⊂K and Tλ : K→K is compact

and continuous.

Proof In view of the definition of K, for u ∈ K and i = 1, 2, · · · , n,

(T i
λu)(t+ T ) = λ

t+2T−1∑
s=t+T

Ki(t+ T, s)bi(s)fi(u(s− τ(s)))

= λ
t+T−1∑
s=t

Ki(t+ T, s+ T )bi(s+ T )fi(u(s+ T − τ(s+ T )))

= λ
t+T−1∑
s=t

Ki(t+ T, s+ T )bi(s)fi(u(s− τ(s))) = (T i
λu)(t).
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Indeed, since ai is T -periodic and u ∈ K, we get

Ki(t+ T, s+ T ) = Ki(t, s), i = 1, 2, · · · , n,

and thus Tλu ∈ X. One can show that, for u ∈ K and t ∈ T,

(T i
λu)(t) ≥

σLi

1− σLi

t+T−1∑
s=t

bi(s)fi(u(s− τ(s)))

=
σLi(1− σli)

1− σLi

· 1

1− σli
· λ

t+T−1∑
s=t

bi(s)fi(u(s− τ(s)))

≥ σLi(1− σli)

1− σLi

∥T i
λu∥∞, i = 1, 2, · · · , n.

Therefore Tλ(K) ⊂ K and Tλ : K → K is compact and continuous. The proof is

completed.

Using the similar methods as in the proof of [12, Lemma 2.2] with obvious

changes, we can obtain the following lemma.

Lemma 2.2 Let (C1)-(C3) hold. Then u ∈ K\{0} is a positive periodic solution

of system (1.1) if and only if u is a fixed point of Tλ in K\{0}.
Lemma 2.3 Let (C1)-(C3) hold. For any η > 0 and u ∈ K\{0}, if there exists

a fi such that fi(u(t)) ≥
n∑

j=1
uj(t)η for t ∈ T, then ∥Tλu∥ ≥ λΓη∥u∥.

Proof Since u ∈ K\{0} and fi(u(t)) ≥
n∑

j=1
uj(t)η for t ∈ T, we have

T i
λu(t) ≥

σLi

1− σLi

λ

t+T−1∑
s=t

bi(s)fi(u(s− τ(s)))

≥ λ
σLi

1− σLi

T−1∑
s=0

bi(s)

(
η

n∑
j=1

σLj (1− σlj )

1− σLj

∥uj∥∞

)

≥ λσ
T−1∑
s=0

bi(s)
σLi

1− σLi

η∥u∥,

which implies ∥Tλu∥ ≥ λΓη∥u∥. The proof is completed.

Let f̂i : [1,∞) → R+ be a function defined by

f̂i(s) = max{fi(u) : u ∈ Rn
+, 1 ≤ ∥u∥ ≤ s}, i = 1, 2, · · · , n.

Then f̂i is nondecreasing on [1,∞).

Lemma 2.4[11,12] If lim
∥u∥→∞

fi(u)
∥u∥ exists (which can be infinity), then lim

s→∞
f̂i(s)
s

exists and
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lim
s→∞

f̂i(s)

s
= lim

∥u∥→∞

fi(u)

∥u∥
.

Lemma 2.5 Suppose (C1)-(C3) hold and r > 1
σ . If there exists an ε > 0 such

that f̂i(r) ≤ εr, i = 1, 2, · · · , n, then ∥Tλu∥ ≤ λεΛ∥u∥ for u ∈ ∂Ωr.

Proof For u ∈ ∂Ωr, we have

∥Tλu∥ ≤ λ ·
n∑

i=1

t+T−1∑
s=t

1

1− σli
bi(s)f̂i(u(s− τ(s)))

≤ λ ·
n∑

i=1

T−1∑
s=0

1

1− σli
bi(s)ε∥u∥

= λ ·
n∑

i=1

(
T−1∑
s=0

bi(s)
1

1− σli

)
· ε∥u∥ = λΛε∥u∥,

and the proof is completed.

When u ∈ ∂Ωr, r > 0, the definitions of M(r) and m(r) yield

m(r) ≤ fi(u(t)) ≤ M(r), t ∈ T, i = 1, 2, · · · , n.

Thus by the similar manners as in the proof of Lemmas 2.3 and 2.5, we can easily

obtain the following lemmas.

Lemma 2.6 Let (C1)-(C3) hold. If u ∈ ∂Ωr and r > 0, then ∥Tλu∥ ≥ λΓ
σm(r).

Lemma 2.7 Let (C1)-(C3) hold. If u ∈ ∂Ωr and r > 0, then ∥Tλu∥ ≤ λΛM(r).

3 Proof of Theorem 1.1

(i) It follows from the assumption that there exists an r1 > 0 such that

fi(u) ≥ η∥u∥

for u ∈ Rn
+ with 0 < ∥u∥ ≤ r1, where η > 0 is chosen satisfying λΓη > 1. If

u ∈ ∂Ωr1 , then

fi(u(t)) ≥ η

n∑
j=1

uj(t), for t ∈ T.

Lemma 2.3 implies ∥Tλu∥ ≥ λΓη∥u∥ > ∥u∥, for u ∈ ∂Ωr1 .

On the other hand, since lim
∥u∥→∞

fi(u)
∥u∥ = 0, i = 1, 2, · · · , n, Lemma 2.4 yields

lim
s→∞

f̂i(s)
s = 0, i = 1, 2, · · · , n. Therefore there exists an r2 > max{2r1, 1

σ} such that

f̂i(r2) ≤ εr2, i = 1, 2, · · · , n,

where ε > 0 satisfies λΛε < 1. And then by Lemma 2.5, we get

∥Tλu∥ ≤ λεΛ∥u∥ < ∥u∥, for u ∈ ∂Ωr2 .
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It follows from Theorem A that

i(Tλ,Ωr1 ,K) = 0, i(Tλ,Ωr2 ,K) = 1,

consequently i(Tλ,Ωr2\Ωr1 ,K) = 1. Hence, Tλ has a fixed point u in Ωr2\Ωr1 ,

which is just a positive periodic solution of system (1.1).

(ii) Let r1 > 0 be fixed. By Lemma 2.7, there exists a λ0 > 0 such that

∥Tλu∥ < ∥u∥, for u ∈ ∂Ωr1 , 0 < λ < λ0.

In view of lim
∥u∥→0

fi(u) = ∞ for some i = 1, 2, · · · , n, there is a positive number

r2 < r1 such that fi(u) ≥ η∥u∥ for u ∈ Rn
+ with 0 < ∥u∥ ≤ r2, where η > 0 is

chosen so that λΓη > 1. Then for u ∈ ∂Ωr2 , we get

fi(u(t)) ≥ η

n∑
j=1

uj(t), t ∈ T.

Lemma 2.3 implies ∥Tλu∥ ≥ λΓη∥u∥ > ∥u∥, for u ∈ ∂Ωr2 .

It follows from lim
∥u∥→∞

fi(u)
∥u∥ = ∞, i = 1, 2, · · · , n that there exists an Ĥ > 0 such

that

fi(u) ≥ η∥u∥

for u ∈ Rn
+ with ∥u∥ ≥ Ĥ, where η > 0 is chosen so that λΓη > 1. Let r3 =

max{2r1, Ĥσ }. If u ∈ ∂Ωr3 , then

min
t∈T

n∑
i=1

ui(t) ≥ σ∥u∥ = σr3 ≥ Ĥ,

which yields

fi(u(t)) ≥ η

n∑
j=1

uj(t), for t ∈ T.

And then Lemma 2.3 shows

∥Tλu∥ ≥ λΓη∥u∥ > ∥u∥, for u ∈ ∂Ωr3 .

By Theorem A, we can easily obtain

i(Tλ,Ωr1 ,K) = 1, i(Tλ,Ωr2 ,K) = 0, i(Tλ,Ωr3 ,K) = 0,

consequently

i(Tλ,Ωr1\Ωr2 ,K) = 1, i(Tλ,Ωr3\Ωr1 ,K) = −1.

Hence Tλ has two fixed points lying in Ωr1\Ωr2 and Ωr3\Ωr1 for 0 < λ < λ0, which

are positive periodic solutions of (1.1).



54 ANN. OF APPL. MATH. Vol.34

(iii) For a fixed number r1 > 0, Lemma 2.7 implies there exists a λ0 > 0 such

that

∥Tλu∥ < ∥u∥, for u ∈ ∂Ωr1 , 0 < λ < λ0.

On the other hand, since lim
∥u∥→0

fi(u) = ∞ for some i = 1, 2, · · · , n, there is a positive

number r2 < r1 such that

fi(u) ≥ η∥u∥,

for u ∈ Rn
+ with 0 < ∥u∥ ≤ r2, where η > 0 is chosen so that λΓη > 1. If u ∈ ∂Ωr2 ,

then

fi(u(t)) ≥ η
n∑

j=1

uj(t), for t ∈ T.

It follows from Lemma 2.3 that ∥Tλu∥ ≥ λΓη∥u∥ > ∥u∥, for u ∈ ∂Ωr2 .

Using Theorem A again, we can get

i(Tλ,Ωr1 ,K) = 1, i(Tλ,Ωr2 ,K) = 0,

so i(Tλ,Ωr1\Ωr2 ,K) = 1. Hence, Tλ has a fixed point u in Ωr1\Ωr2 for 0 < λ < λ0,

which is a positive periodic solution of system (1.1). The proof is completed.

4 Positive Periodic Solutions of System (1.2)

In this Section, we shall establish the existence and multiplicity of positive T -

periodic solutions of singular discrete system (1.2), that is,

∆ui(t) = ai(t)gi(u(t))ui(t)− λbi(t)fi(u(t− τ(t))), t ∈ Z, i = 1, · · · , n,

where λ, τ, ai, bi, fi(u), gi(u) satisfy the same assumptions stated for system

(1.1). In view of (1.2), we can define an operator Tλ : X → X with components

(T 1
λ , · · · , Tn

λ ):

T i
λu(t) = λ

t+T−1∑
s=t

Gi(t, s)bi(s)fi(u(s− τ(s))),

where

Gi(t, s) =

t+T−1∏
θ=s+1

(1 + a(θ)gi(u(θ)))

T−1∏
θ=0

(1 + a(θ)gi(u(θ)))− 1

, s ∈ {t, t+ 1, · · · , t+ T − 1}.

Clearly, (C1) and (C2) imply for all t ∈ T and i = 1, 2, · · · , n,

1

ρLi − 1
≤ Gi(t, s) ≤

ρLi

ρli − 1
, t ≤ s ≤ t+ T − 1
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and 0 <
ρli−1

(ρLi
−1)ρLi

< 1. Here

ρli =

T−1∏
s=0

(1 + ai(s)li), ρLi =

T−1∏
s=0

(1 + ai(s)Li), i = 1, 2, · · · , n.

Define a cone in X by

K =
{
u ∈ X : ui(t) ≥

ρli − 1

(ρLi − 1)ρLi

∥ui∥∞, i = 1, · · · , n, t ∈ T
}
.

By the similar arguments as in Sections 2 and 3, we can establish the following

theorems.

Theorem 4.1 Let (C1) and (C2) hold. Assume lim
∥u∥→0

fi(u) = ∞ for some

i = 1, 2, · · · , n.
(i) If lim

∥u∥→∞
fi(u)
∥u∥ = 0, i = 1, 2, · · · , n, then for all λ > 0, (1.2) admits a positive

periodic solution.

(ii) If lim
∥u∥→∞

fi(u)
∥u∥ = ∞, i = 1, 2, · · · , n, then (1.2) admits two positive periodic

solutions for λ > 0 sufficiently small.

(iii) There exists a λ0 > 0 such that (1.2) admits a positive periodic solution for

0 < λ < λ0.

Finally, consider discrete systems (1.1) and (1.2) without singularities, that is,

we replace (C2) with the following condition.

(Ĉ2) gi ∈ C(Rn
+, [0,∞)) satisfies 0 < li ≤ gi(u) ≤ Li < ∞, fi : Rn

+ → [0,∞) is

continuous and fi(u) > 0 for u ∈ Rn
+ with u ̸= 0, i = 1, 2, · · · , n.

Then the following two theorems can be established by the similar methods

adopted in Sections 2 and 3.

Theorem 4.2 Let (C1), (Ĉ2) and (C3) hold. Assume lim
∥u∥→0

fi(u)
∥u∥ = 0 for

i = 1, 2, · · · , n.
(i) If lim

∥u∥→∞
fi(u)
∥u∥ = ∞, i = 1, 2, · · · , n, then for all λ > 0, (1.1) admits a positive

periodic solution.

(ii) If lim
∥u∥→∞

fi(u)
∥u∥ = 0, i = 1, 2, · · · , n, then (1.1) admits two positive periodic

solutions for λ > 0 sufficiently large.

(iii) There exists a λ0 > 0 such that (1.1) admits a positive periodic solution for

λ > λ0.

Theorem 4.3 Let (C1) and (Ĉ2) hold. Assume lim
∥u∥→0

fi(u)
∥u∥ = 0 for i =

1, 2, · · · , n.
(i) If lim

∥u∥→∞
fi(u)
∥u∥ = ∞, i = 1, 2, · · · , n, then for all λ > 0, (1.2) admits a positive

periodic solution.
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(ii) If lim
∥u∥→∞

fi(u)
∥u∥ = 0, i = 1, 2, · · · , n, then (1.2) admits two positive periodic

solutions for λ > 0 sufficiently large.

(iii) There exists a λ0 > 0 such that (1.2) admits a positive periodic solution for

λ > λ0.

Remark 4.1 Note that Theorems 4.1-4.3 enrich and complement Theorem 1.1.

And obviously, Lemma 2.6 is crucial to prove Theorems 4.2-4.3.
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