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Abstract

In this paper, the dynamics of a delayed phytoplankton-zooplankton model
is considered. Taking the delay due to the gestation of zooplankton as param-
eter, we describe the local Hopf bifurcation by center manifold theorem and
normal form, then we discuss the global existence of periodic solution. At last,
some simulations are given to support our result.
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1 Introduction
Recently, there have been many works about the phytoplankton-zooplankton

model [1-5,7]. The model is important for aquatic environment. The phytoplank-

ton could produce much oxygen and absorb much carbon dioxide, they benefit our

environment very much. As we know, some phytoplankton could be harmful for zoo-

plankton, they could create toxin substance which could kill the aquatic animals.

From [1,4,5], we know that the delay caused by the maturity of toxic-phytoplankton

plays an important role on the dynamic of phytoplankton-zooplankton system, which

seems that delay could cause rich dynamics. In [4], the author considered two harm-

ful phytoplankton-zooplankton model with two delays

dP1

dt
= r1P1

(
1− P1

K

)
− α1P1P2 − ρ1P1Z,

dP2

dt
= r2P2

(
1− P2

K

)
− α2P1P2 − ρ2P2Z,

dZ

dt
= (r1P1 + r2P2)Z − dZ − θ1P1(t− τ1)Z − θ2P2(t− τ2)Z,

(1.1)
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where local Hopf bifurcation was discussed with two different delays. In the delayed

two zooplankton-phytoplankton model with competition [1]

dP

dt
= rP

(
1− P

K

)
− µ1PZ1

α1 + P
− µ2PZ1

α2 + P
,

dZ1

dt
=
β1PZ1

α1 + P
− ρ1P (t− τ)Z1

α1 + P (t− τ)
− d1Z1 − g1Z

2
1 ,

dZ2

dt
=
β2PZ1

α2 + P
− ρ2P (t− τ)Z2

α2 + P (t− τ)
− d2Z2 − g1Z

2
2 .

(1.2)

The authors discussed the local Hopf bifurcation under taking delay τ as the param-

eter. As we know, when the delay τ is located in a sufficiently small neighborhood

of the critical value, local hopf bifurcation occurs. But it is difficult to show the

global existence of periodic solution. The works about the global Hopf bifurcation

of phytoplankton-zooplankton system have been obtained in recent years, such as

[2,3,7]. In [2], the authors assumed the delay of gestation equals the delay required

for maturity of toxic phytoplankton. The global Hopf bifurcation of the following

system was discussed
dP

dt
= rP (t)

(
1− P (t)

K

)
− βP (t)Z(t)

1 + γ1P (t)
,

dZ

dt
=

e−δτ1β1P (t− τ1)Z(t− τ1)

1 + γ1P (t− τ1)
− δZ(t)− e−δτ2ρP (t− τ2)Z(t− τ2)

1 + γ2P (t− τ2)
.

(1.3)

In [7], the authors only considered the delay caused by the gestation of zooplank-

ton, and the global Hopf bifurcation was discussed,
dP

dt
= rP

(
1− P

K

)
− αPZ,

dZ

dt
= βP (t− τ)Z(t− τ)− µZ − θPZ

γ + P
.

(1.4)

Besides, there have been other works about the global Hopf bifurcation [8,9]. In

our opinion, competition is a common phenomena in nature, so we take competition

into the zooplankton, model (1.4) becomes
dP

dt
= rP

(
1− P

K

)
− µPZ

α+ P
,

dZ

dt
=
βP (t− τ)Z(t− τ)

α+ P (t− τ)
− ρP (t)Z(t)

α+ P (t)
− dZ − gZ2,

(1.5)

where P and Z denote the densities of the phytoplankton and zooplankton respec-

tively, r denotes the intrinsic growth rate, and K is the environmental carrying
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capacity. We select a Holling type Π functional response, d denotes the death rate

of zooplankton, g is the intraspecific competition coefficient, µ is the maximum

uptake rate of zooplankton, ρ is the rate of toxic substance produced by per unit

biomass of phytoplankton, β denotes the ratio of biomass conversion. We assume

µ > β > ρ, inspired by the above works, we shall describe the local Hopf bifurcation

and global existence of periodic solution in this paper, also we assume that P (θ) ≥ 0,

Z(θ) ≥ 0, θ ∈ [−τ, 0]. Similar to [1], if there is no delay and β − ρ − d < 0, then

Ż ≤ 0, we reject this situation by assuming β − ρ− d > 0.

In the following, the stability and direction of local Hopf bifurcation will be

discussed in Section 1. In Section 2, we discuss the global Hopf bifurcation, at last,

some numerical simulations for supporting the result are given in Section 3.

2 Stability and Direction of the Hopf Bifurcation

Before discussion, we should give the condition for the existence and unique-

ness of the equilibrium (P ∗, Z∗). If the equilibrium (P ∗, Z∗) exists, the following

equations should hold: 
rP ∗

(
1− P ∗

K

)
=
µP ∗Z∗

α+ P ∗ ,

(β − ρ− d)P ∗ − dα

g(α+ P ∗)
= Z∗.

From these we obtain dα
β−ρ−d < P ∗ < K. Substituting Z∗ into the first equation, we

define a function:

h(P ) = r
(
1− P

K

)
(α+ P )2 − µ

g

(
(β − ρ− d)P − dα

)
,

We know h(K) < 0, h( dα
β−ρ−d) > 0, so there exists at least one root P ∗ satisfying

h(P ∗) = 0 when P ∗ ∈ ( dα
β−ρ−d ,K). If h(P ) is a monotone function, (P ∗, Z∗) is

unique, so we get following result:

Lemma 2.1 If dα
β−ρ−d < P ∗ < K and the function h(P ) is monotone on

( dα
β−ρ−d ,K), then the unique equilibrium (P ∗, Z∗) exists.

We assume h(P ) is decrease on ( dα
β−ρ−d ,K), so the equilibrium point (P ∗, Z∗) is

unique. We make translation u(t) = P (t) − P ∗ and v(t) = Z(t) − Z∗, then (1.5)

becomes 
du

dt
= a11u(t) + a12v(t) + hot,

dv

dt
= a21u(t) + a22v(t) + a23u(t− τ) + a24v(t− τ) + hot,

(2.1)
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where

a11 = −rP
∗

K
+

µP ∗Z∗

(α+ P ∗)2
, a12 = − µP ∗

α+ P ∗ , a21 = − ραZ∗

(α+ P ∗)2
,

a22 = − ρP ∗

α+ P ∗ − d− 2gZ∗, a23 =
βZ∗

α+ P ∗ − ρP ∗Z∗

(α+ P ∗)2
, a24 =

βP ∗

α+ P ∗ .

The associated characteristic equation:

λ2 +A21λ+A20 + (B21λ+B20)e
−λτ = 0, (2.2)

where A21 = −(a11+a22), A20 = a11a22−a12a21, B21 = −a24, B20 = a11a24−a12a23,
when τ = 0, (2.2) becomes λ2 + (A21 +B21)λ+A20 +B20 = 0, then all the roots of

(2.2) have negative real parts if and only if

A21 +B21 > 0, A20 +B20 > 0, (H1)

so the equilibrium (P ∗, Z∗) is locally asymptotically stable when (H1) holds.

When τ > 0, from [6], if and only if when the roots pass through the imaginary

axis, the stability switch occurs. Let λ = ωi (ω > 0) be a root of equation (2.2), and

we obtain that {
B21ω cos(ωτ)−B20 sin(ωτ) = −A21ω,

B21ω sin(ωτ) +B20 cos(ωτ) = −A20 + ω2.
(2.3)

Squaring and adding both of the equations,

ω4 + (A2
21 − 2A20 −B2

21)ω +A2
20 −B2

20 = 0. (2.4)

Let v = ω2, then we get

v2 + (A2
21 − 2A20 −B2

21)v +A2
20 −B2

20 = 0.

For the existence of positive root and transversality, we assume:

A2
20 −B2

20 < 0, A2
21 − 2A20 −B2

21 > 0. (H2)

Denote h(z) = z2 + (A2
21 − 2A20 −B2

21)z +A2
20 −B2

20, then h(z) has a positive root

z under (H2), so equation (2.4) has a root ω =
√
z. From (2.3) we obtain

τj =
1

ω
arccos

(B20ω
2 −B21ω

2A21

B2
20 +B2

21ω
2

)
+

2jπ

ω
, j = 0, 1, 2 · · · , (2.5)

where ±iω are pairs of pure imaginary roots of (2.2). From the above discussion

and (H1),(H2), we have:

Lemma 2.2 Suppose λ is a root of equation (2.2), when τ = τj, j = 0, 1, 2, · · · ,
then

dReλ(τ)

dτ

∣∣∣
τ=τj

> 0. (2.6)
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Proof Taking the derivative of λ with τ in equation (2.2), we get(dλ
dτ

)−1
=

(2λ+A21)e
λτ +B21

B21λ2 +B20λ
− τ

λ
,

Re
(dλ
dτ

)−1

τ=τj
= Re

{(2λ+A21)e
λτ +B21

B21λ2 +B20λ

}
τ=τj

=
A2

21 − 2A20 −B2
21

ω2B2
21 +B2

20

.

From (2.3) and (H2) we konw

sign
dReλ

dτ τ=τj
= signRe

(dλ
dτ

)−1

τ=τj
> 0.

Applying Lemmas 2.1 and 2.2, and assumption (H1),(H2), we obtain:

Theorem 2.1 The positive equilibrium point E∗ of system (1.5) is locally

asymptotically stable for τ ∈ [0, τ0] and Hopf bifurcation occurs when τ = τj, j =

0, 1, 2, · · · .
Let iω be the purely imaginary roots of (2.2) when τ = τj . Following the method

of [13], we could obtain the formulaes which determine the direction, stability and

period of bifurcated periodic solution.

Theorem 2.2 (1) The direction of Hopf bifurcation is decided by parameter µ2,

which is supercritical if µ2 > 0 and subcritical if µ2 < 0. (2) The periodic solution

about the Hopf bifurcation is stable if β2 < 0 and unstable if β2 > 0. (3) T2 is the

period of bifurcated periodic solution, where when T2 > 0, the period increases; when

T2 < 0, the period decreases. The calculations of µ2, β2, T2 are given in Appendix.

3 Global Hopf Bifurcation

Now we discuss the global continuation of periodic solution. Let X = C([−τ, 0],
R2), ut(θ) = (P (t+ θ), Z(t+ θ)), t ≥ 0, θ ∈ [−τ, 0], then system (1.5) is equivalent

to

u̇t = F (ut, τ, T ), (3.1)

where

F (Φ, τ, T ) =

 rϕ1(0)
(
1− ϕ1(0)

K

)
− µϕ1(0)ϕ2(0)

α+ ϕ1(0)

βϕ1(−τ)ϕ2(−τ)
α+ ϕ1(−τ)

− ρϕ1(0)ϕ2(0)

α+ ϕ1(0)
− dϕ2(0)− gϕ22(0)


with Φ = (ϕ1, ϕ2), and F : X ×R+ ×R+ −→ R2

+ is a mapping, we have a mapping

F̂ = F |R2
+
× R+ × R+ by restrict F to the subspace of constant function in X. If

F̂ (û, τ̂ , T̂ ) = 0, then the point (û, τ̂ , T̂ ) is called a stationary point, where
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F̂ (u, τ, T ) =

 rP
(
1− P

K

)
− µPZ

α+ P
βPZ

α+ P
− ρPZ

α+ P
− dZ − gZ2


and

DuF̂ (u, τ, T ) =

r − 2rP

K
− µZ

α+ P
+

µPZ

(α+ P )2
− µP

α+ P
(β − ρ)Z

α+ P
− (β − ρ)PZ

(α+ P )2
(β − ρ)P

α+ P
− d− 2gZ

 .

F and F̂ satisfy the following conditions:

(A1) F̂ ∈ C2(R2
+ ×R+ ×R+, R

2
+);

(A2) DûF (û, τ, T ) is an isomorphism at the equilibrium (û, τ, T );

(A3) F (Φ, τ, T ) is differentiable with respect to Φ.

For any stationary solution (û, τ, T ), the characteristic matrix of system (3.1) is

∆(û, τ, T )(λ) = λI −DF (û, τ, T )(eλ·I), that is

△(û, τ, T )(λ)

=


λ− r+

2rP̂

K
+

µẐ

α+P̂
− µP̂ Ẑ

(α+P̂ )2

µP̂

α+P̂

ρẐ

α+P̂
− −ρP̂ Ẑ
(α+P̂ )2

−
( βẐ

α+P̂
− ρP̂ Ẑ

(α+P̂ )2

)
e−λτ λ+

ρP̂

α+P̂
+d+2gẐ− βP̂

α+P̂
e−λτ

 .

The zeros of det(∆(û, τ, T ))(λ) = 0 are called characteristic roots. From (A2)

we conclude that λ = 0 is not a character root.

If (û, τ̂ , T̂ ) satisfies det(∆û(im
2π

T̂
)) = 0, we call it is a center. A center (û, τ̂ , T̂ )

is said to be isolated if it is the only center in some neighborhood of (û, τ̂ , T̂ ) and it

has finite characteristic value of form im2π

T̂
.

From the local Hopf bifurcation, we conclude that (u∗, τj ,
2π
ω ), j = 0, 1, 2, · · · is

a isolated center, then there exists a smooth curve λ : (τj − δ, τj + δ) → C such

that det(∆(u∗, τj ,
2π
ω )(λ(τ)) = 0, |λ(τ)− iω| < ε for τ ∈ [τj − δ, τj + δ], λ(τj) = iω,

and Redλdτ |τ=τj > 0. Define Ωε, 2π
ω

= (v, T ) : 0 < v < ε, |T − 2π
ω | < ε, and we conclude

that for τ ∈ [τj − δ, τj + δ]× ∂Ωε, 2π
ω
,

(A4) if and only if v=0, τ=τ j , T= 2π
ω , j = 0, 1, 2, · · · , det(∆(u∗, τ, T )(v+i2πT ))=0.

The hypotheses (A1)-(A4) in [11] are satisfied. We put H±(u∗, τj ,
2π
ω )(v, T ) =

det(∆(u∗, τj ± δ), 2πω )(v + 2πi
T ).

The crossing number γ(u∗, τj ,
2π
ω ) of center (u∗, τj ,

2π
ω ) can be defined as

γ
(
u∗, τj ,

2π

ω

)
= degB

(
H−

(
u∗, τj ,

2π

ω

)
,Ω

(
ε,

2π

ω

))
−degB

(
H+

(
u∗, τj ,

2π

ω

)
,Ω

(
ε,

2π

ω

))
= −1.
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For the periodic solution of system (3.1), we define

Σ(F ) = Cl((u, τ, T ) ∈ X ×R+ ×R+| u is a T -periodic solution),

N(F ) = ((û, τ̂ , T̂ ) ∈ R4
+|F (û, τ̂ , T̂ ) = 0).

Let l(u∗, τj ,
2π
ω ) denote the connected component of (u∗, τj ,

2π
ω ) in Σ(F ). For

(û, τ̂ , T̂ ) = (u∗, τj ,
2π
ω ), we get

Σ
(û,τ̂ ,T̂ )∈l(u∗,τj ,

2π
ω
)∩N(F )

γ(û, τ̂ , T̂ ) < 0.

The connected component l(u∗, τj ,
2π
ω ) through (u∗, τj ,

2π
ω ) in Σ(F ) is nonempty,

since the first crossing number of each center is always −1. By Theorem 3.3 [11],

we conclude l(u∗, τj ,
2π
ω ) is unbounded, which is presented as follows.

Lemma 3.1 l(u∗, τj ,
2π
ω ) is unbounded for each center (u∗, τj ,

2π
ω ).

By the fundamental theory in [12], system (1.5) admits the existence and unique-

ness of the solutions with the initial condition:

P (θ) = ϕ(θ) ≥ 0, Z(θ) = ψ(θ) ≥ 0, θ ∈ [−τ, 0], ϕ(0) > 0, ψ(0) > 0. (3.2)

Lemma 3.2 All the nonconstant periodic solutions of system (1.5) are positive

and bounded with the initial condition (3.2) when τ is bounded.

Proof Let (P (t), Z(t)) be a solution of system (1.5), and consider Z(t) for

t ∈ [0, τ ],

dZ

dt
=
βP (t− τ)Z(t− τ)

α+ P (t− τ)
− ρP (t)Z(t)

α+ P (t)
− dZ − gZ2

≥ −ρP (t)Z(t)
α+ P (t)

− dZ − gZ2.

Since ϕ(θ) ≥ 0, ψ(θ) ≥ 0 for θ ∈ [−τ, 0], we get

Z(t) ≥ ψ(0) exp
[ ∫ t

0

(
− ρP (s)

α+ P (s)
− d− gZ(s)

)
ds

]
> 0, t ∈ [0, τ ].

Thus, Z(t) is positive for t ∈ [0, τ ], similarly

P (t) = ϕ(0) exp
[ ∫ t

0

(
r
(
1− P (s)

K

)
− µZ(s)

α+ P (s)

)
ds

]
> 0, t ∈ [0, τ ],

so we could expand the result to [τ, 2τ ], · · · , [nτ, (n + 1)τ ], n ∈ N . Thus P (t) > 0,

Z(t) > 0 for t ≥ 0. Now we consider the uniformly bounded, from the first equation

of (1.5), Ṗ ≤ rP (1− P
K ), then we obtain lim sup

t→∞
P (t) ≤ K, so for sufficiently small

ε > 0, there exists a T1 > 0 sufficiently large, such that P (t) < K + ε for all t ≥ T1.

For the boundedness of Z(t), we define W (t) = P (t− τ) + µ
βZ(t) for t ≥ 0. Then
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Ẇ =
dP (t− τ)

dt
+
µ

β

dZ

dt

= rP (t− τ)
(
1− P (t− τ)

K

)
− ρµ

β

PZ

α+ P
− µd

β
Z − µg

β
Z2

≤ −d
(
P (t− τ) +

µ

β
Z
)
+ P (t− τ)

(
d+ r − rP (t− τ)

K

)
= −dW (t) + P (t− τ)

(
d+ r − rP (t− τ)

K

)
= −dW +

K

4r
(d+ r)2,

so by the comparison theory [14], we obtain W (t) ≤W (0) + K(d+r)2

4dr .

Thus we complete the proof.

Lemma 3.3 If assumption (H1) and the condition of Lemma 2.1 hold, system

(1.5) has no nontrivial periodic solution with period τ .

Proof For (1.5), suppose there is a nontrivial period solution with period τ .

Then for the following system, there exists has a nontrivial periodic solution
dP

dt
= rP

(
1− P

K

)
− µPZ

α+ P
,

dZ

dt
=
βP (t)Z(t)

α+ P (t)
− ρP (t)Z(t)

α+ P (t)
− dZ − gZ2.

(3.3)

We know that P-axis and Z-axis are invariant manifold of system (1.5), and there

is no orbit cross the coordinate axis for the orbit do not intersect each other, so all

the orbit must in the first quadrant, and the equilibrium E∗ should in the interior

of the periodic orbit. But from Lemma 2.1 and (H1), the equilibrium E∗ is unique

and stable, so it is globally stable in the first quadrant. The periodic orbit does not

exist. Thus there is no period orbit in the first quadrant.

Theorem 3.1 If (H1) and Lemma 2.1 hold, for each τ > τj, j = 1, 2, · · · ,
system (1.5) has at least j + 1 period solutions.

Proof It is sufficient to prove the connected component l(u∗, τj ,
2π
ω ) onto τ space

is [τ ,+∞), where τ ≤ τj , j = 0, 1, 2, · · · . From Lemma 3.3, we know system (3.3)

have not nontrivial period solution, so the projection of l(u∗, τj ,
2π
ω ) onto τ space

is always from zero. From expression (2.5), we obtain 2π
ω < τj for j > 0. Suppose

the projection of l(u∗, τj ,
2π
ω ) onto τ space is unbounded, there exist τ∗ > 0, so

the projection of l(u∗, τj ,
2π
ω ) onto τ space is in the interval (0, τ∗), from 2π

ω < τj ,

j ≥ 1 and Lemma 3.3, 0 < T < τ∗ for (u(t), τ, T ) ∈ l(u∗, τj ,
2π
ω ), which mean the

projection of l(u∗, τj ,
2π
ω ) onto T space is also bounded, by Lemma 3.2 we obtain

that the connected component l(u∗, τj ,
2π
ω ) is bounded, which contradict Lemma 3.1,

so the proof is completed.
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4 Numerical Simulations
Now we give simulations of (1.5), except taking g = 0.0008. Take the same

parameter as the first and second equations in [1], system (1.5) takes:
dP

dt
= 5P

(
1− P

4

)
− 0.6PZ

2 + P
,

dZ

dt
=

0.43P (t− τ)Z(t− τ)

2 + P (t− τ)
− 0.1PZ

2 + P
− 0.11Z − 0.0008Z2.

(4.1)

By computation, conditions of Theorem 2.1 are satisfied, then there exists a

unique equilibrium point (1.218265, 18.650750), such that (H1) and (H2) hold. We

have the critical value τ0 = 0.41226, so when τ ∈ (0, τ0), E
∗ is asymptotically

stable, and a periodic orbit turns up when τ passes through the critical value, which

is shown in Figures 1 and 2, respectively.
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Figure 1: The positive equilibrium E∗ is asymptotically stable (τ = 0.2637 < τ0)

0 500 1000
0

0.5

1

1.5

2

2.5

time t

x 1(t)

0 500 1000
14

15

16

17

18

19

20

21

time t

x 2(t)

0 2 4
14

15

16

17

18

19

20

21

x
1
(t)

x 2(t)

Figure 2: a Hopf bifurcation occurs when τ = 0.73376 > τ0
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By computation, we have C1(0) = 7.435905197 ∗ 10−3 − 1.438814764 ∗ 10−2i,

µ2 = −6.47369616 ∗ 10−2, β2 = 1.487181039 ∗ 10−2 and T2 = 3.770080024 ∗ 10−2.

From Theorem 2.2 we get the Hopf bifurcation which is subcritical (µ2 < 0) at τ0,

and the periodic orbit bifurcated from equilibrium point is unstable (β2 < 0).

We know system (1.5) has a periodic solution for large τ from global Hopf bi-

furcation. Figure 3 shows the period and the amplitude of the period solution for

different value of τ . We conclude that as τ increases from 1.2, 2.2 to 3.1, the period

and the amplitude of period solution increase.
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Figure 3: period and amplitudes of periodic solutions (τ = 1.2, 2.2, 3.1, respectively)

5 Proof of Theorem 2.2
Now we take the similar method in [10] to compute the explicit formula about

µ2, β2 and T2. We assume system (1.5) undergoes Hopf bifurcation at E∗(P ∗, Z∗)

when τ = τj .

Letting u(t) = u(τt), v(t) = v(τt), dropping the bars for simplification, system

(2.1) becomes FDE in C = C([−1, 0], R2) as

ẋ(t) = Lµ(xt) + f(µ, xt), (5.1)

where x(t) = (u(t), v(t))⊤ ∈ R2, and Lµ : C → R and f are given respectively by

Lµ(ϕ) = (τj + µ)

(
a11 a12
a21 a22

)(
ϕ1(0)
ϕ2(0)

)
+ (τj + µ)

(
0 0
a23 a24

)(
ϕ1(−1)
ϕ2(−1)

)
(5.2)

and

f(τ, ϕ) = (τj + µ)

(
f1
f2

)
, (5.3)
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where

f1 = g1ϕ
2
1(0) + g2ϕ1(0)ϕ2(0) + g3ϕ

3
1(0) + g4ϕ

2
1(0)ϕ2(0),

f2 = h1ϕ
2
1(0) + h2ϕ

2
2(0) + h3ϕ1(0)ϕ2(0) + h4ϕ1(−1) + h5ϕ1(−1)ϕ2(−1)

+h6ϕ
3
1(0) + h7ϕ

3
1(−1) + h8ϕ

2
1(0)ϕ2(0) + h9ϕ

2
1(−1)ϕ2(−1).

g1 = − r

K
+

µZ∗α

(α+ P ∗)3
, g2 = − µα

(α+ P ∗)2
, g3 = − µαZ∗

(α+ P ∗)4
, g4 =

µα

(α+ P ∗)3
,

h1 =
ραZ∗

(α+P ∗)3
, h2 = −g, h3 = − ρα

(α+P ∗)2
, h4 = − βαZ∗

(α+P ∗)3
, h5 =

βα

(α+P ∗)2
,

h6 = − ραZ∗

(α+ P ∗)4
, h7 =

βαZ∗

(α+ P ∗)3
, h8 =

ρα

(α+ P ∗)3
, h9 = − βα

(α+ P ∗)3
.

By the Riesz representation theorem, there exists a function η(θ, µ) of bounded

variation for θ ∈ [−1, 0] such that

Lµ =

∫ 0

−1
dη(θ, µ)ϕ(θ), (5.4)

for θ ∈ C. In fact, we can choose

η(θ, µ) = (τj + µ)

(
a11 a12
a21 a22

)
δ(θ) + (τj + µ)

(
0 0
a23 a24

)
δ(θ + 1), (5.5)

where δ is the dirac function.

For ϕ ∈ C1([−1, 0], R2), define

A(µ)ϕ =


dϕ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
dη(µ, s)ϕ(s), θ = 0

and

R(µ)ϕ =

{
0, θ ∈ [−1, 0),
f(µ, ϕ), θ = 0,

then system (5.1) becomes

ẋt = A(µ) +R(µ)xt. (5.6)

For θ ∈ [−1, 0], for ψ ∈ C1([0, 1], (R2)∗), define

A∗ψ(s) =


−dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1
dη⊤(t, 0)ψ(−t), s = 0
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and a bilinear inner product

⟨ψ(s), ϕ(θ)⟩ = ψ(0)ϕ(0)−
∫ 0

−1

∫ θ

ξ=0
ψ(ξ − θ)dη(θ)ϕ(ξ)dξ, (5.7)

where η(θ) = η(θ, 0), then A(0) and A∗ are adjoint operators. By the discussion

of Section 2, we know ±iωτj are eigenvalues of A(0), thus they are also eigenvalues

of A∗, so we computer the eigenvector of A(0) and A∗ corresponding to iωτj and

−iωτj respectively.

Suppose q(θ) = (1, q)⊤eiθωτj is the eigenvector of A(0) corresponding to iωτj ,

then A(0)q(θ) = iτjωq(θ). From the definition of A, (5.4) and (5.5), we have

τj

 iω+
rP ∗

K
− µP ∗Z∗

(α+P ∗)2
µP ∗

α+P ∗
ραZ∗

(α+P ∗)2
−
( βZ∗

α+P ∗−
ρP ∗Z∗

(α+ P ∗)2

)
e−iωτj iω+

ρP ∗

α+P ∗+d+2gZ∗− βP ∗

α+P ∗ e
−iωτj

(1
q

)

=

(
0
0

)
,

then we obtain

q(0) = (1, q)⊤ =
(
1,

Z∗

α+ P ∗ − r(α+ P ∗)

µK
− iω(α+ P ∗)

µP ∗

)⊤
.

On the other hand, suppose q(s) = D(1, q∗)eisωτj , by the definition of A∗, (5.4) and

(5.5), we get

τj

−iω +
rP ∗

K
− µP ∗Z∗

(α+ P ∗)2
ραZ∗

(α+ P ∗)2
−

( βZ∗

α+ P ∗ − ρP ∗Z∗

(α+ P )2

)
eiωτj

µP ∗

α+ P ∗ −iω +
ρP ∗

α+ P ∗ + d+ 2gZ∗ − βP ∗

α+ P ∗ e
iωτj

(1
q∗

)
=

(
0
0

)
.

Thus we obtain

q∗(0) = D(1, q∗) = D
(
1,

µP ∗Z∗ + (α+ P ∗)2(− rP ∗

K + iω)

Z∗(ρα− (β(α+ P ∗)− ρP ∗)eiωτj )

)⊤
.

In order to assure ⟨q∗(s), q(θ)⟩ = 1, we computer value D, from (5.7)

⟨q∗(s), q(θ)⟩ = D(1, q∗)(1, q)⊤ −
∫ 0

−1

∫ θ

ξ=0
D(1, q∗)e−i(ξ−θ)ωτjdη(θ)(1, q)⊤eiξωτjdξ

= D

(
1 + q∗q + τje

−iωτj
(β(P ∗ + Z∗)

α+ P ∗ − ρP ∗Z∗

(α+ P ∗)2

)
q∗q

)
,

thus we get

D =
1

1 + qq∗ + τjeiωτj
(β(P ∗+Z∗)

α+P ∗ − ρP ∗Z∗

(α+P ∗)2

)
q∗q

.
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We computer the center manifold C0 at µ = 0. Let xt be the solution of (5.1)

defined by

z(t) = ⟨q∗, xt⟩, W (t, θ) = xt(θ)− 2Re(z(t)q(θ)). (5.8)

On the center manifold C0, we have

W (t, θ) =W (z, z, θ) =W20
z2

2
+W11zz +W02

z2

2
+ · · · ,

where z and z are local coordinates for center manifold C0 in the direction of q∗

and q∗ respectively. Note W (t, θ) is real if xt is real, then we only consider the real

solution. For the solution xt ∈ C0 of (5.1), since µ = 0,

ż(t) = iωτjz + ⟨q∗(θ), f(0,W (z, z, θ) + 2Re(zq(θ)))⟩
= iωτjz + q∗(0)f(0,W (z, z, θ) + 2Re(zq(0)))

≡ iωτjz + q∗(0)f0(z, z).

We write this equation as

ż(t) = iωτjz(t) + g(z, z),

where

g(z, z) = q∗(0)f0(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2!
+ · · · . (5.9)

Since xt(θ) = (x1t(θ), x2t(θ)) =W (t, θ)+zq(θ)+zq(θ), q(θ) = (1, q)⊤eiθωτj , we have

x1t(0) = z + z +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+O(|(z, z)|3),

x2t(0) = qz + qz +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+O(|(z, z)|3),

x1t(−1) = ze−iωτj + zeiωτj +W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz

+W
(1)
02 (−1)

z2

2
+O(|(z, z)|3),

x2t(−1) = zqe−iωτj + zqeiωτj +W
(2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz

+W
(2)
02 (−1)

z2

2
+O(|(z, z)|3).

From (5.9), we have

g(z, z) = q∗(0)f0(z, z) = τjD(1, q∗)

(
f1
f1

)
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= τjD
[
g1

(
z + z +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+O(|(z, z)|3)

)2

+g2

(
z + z +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+O(|(z, z)|3)

)
·
(
qz + qz +W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+O(|(z, z)|3)

)
+g3

(
z + z +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+O(|(z, z)|3)

)3

+g4

(
z + z +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+O(|(z, z)|3)

)2

·
(
qz + qz +W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+O(|(z, z)|3)

)]
+τjDq

∗
[
h1

(
z + z +W

(1)
20 (0) +

z2

2
+W

(1)
11 zz +W

(1)
02 (0)

z2

2
+O(|(z, z)|3)

)2

+h2

(
qz + qz +W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+O(|(z, z)|3)

)2

+h3

(
z + z +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

0
+O(|(z, z)|3)

)
·
(
qz + qz +W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+O(|(z, z)|3)

)
+h4

(
ze−iωτj + zeiωτj +W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz +W

(1)
02 (−1)

z2

2
+O(|(z, z)|3)

)2

+h5

(
ze−iωτj + zeiωτj +W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz +W

(1)
02 (−1)

z2

2
+O(|(z, z)|3)

)
·
(
zqe−iωτj + zqeiωτj +W

(2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz +W

(2)
02 (−1)

z2

2
+O(|(z, z)|3)

)
+h6

(
z + z +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+O(|(z, z)|3)

)3

+h7

(
ze−iωτj + zeiωτj +W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz +W

(1)
02 (−1)

z2

2
+O(|(z, z)|3)

)3

+h8

(
z + z +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+O(|(z, z)|3)

)2

·
(
qz + qz +W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+O(|(z, z)|3)

)
+h9

(
ze−iωτj + zeiωτj +W

(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz +W

(1)
02 (−1)

z2

2
+O(|(z, z)|3)

)2

·
(
zqe−iωτj + zqeiωτj +W

(2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz +W

(2)
02 (−1)

z2

2
+O(|(z, z)|3)

)]
.

Comparing the coefficients with (5.9), we get
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g20 = 2τjD(g1 + g2q) + 2τjq
∗D(h1 + h2q

2 + h3q + (h4 + h5q)e
−2iωτj ),

g11 = τjD(2g1 + g2(q + q)) + τjq
∗D(2(h1 + h4) + 2h2qq + (h3 + h5)(q + q)),

g02 = 2τjD(g1 + g2q) + 2τjq
∗D(h2q

2 + h3q + h4e
2iωτj + h5qe

2iωτj ),

g21 = 2τjD
[
g1(W

(1)
20 (0) + 2W

(1)
11 (0)) + g2

(1
2
qW

(1)
20 (0) +

1

2
W

(2)
20 (0)

+qW
(1)
11 (0) +W

(2)
11 (0)

)
+ 3g3 + g4(2q + q)

]
+2τjq

∗D
[
h1(W

(1)
20 (0) + 2W

(1)
11 (0)) + h2(qW

(2)
20 (0) + 2qW

(2)
11 (0))

+h3

(1
2
qW

(1)
20 (0) + qW

(1)
11 (0) +

1

2
W

(2)
20 (0) +W

(2)
11 (0)

)
+h4(W

(1)
20 (−1)eiωτj + 2W

(1)
11 (−1)e−iωτj )

+h5

((1
2
qW

(1)
20 (−1) +

1

2
W

(2)
20 (−1)

)
eiωτj + (qW

(1)
11 (−1) +W

(2)
11 (−1))e−iωτj

)
+3h6 + 3h7e

−iωτj + h8(2q + q) + h9((2q + q)e−iωτj )
]
. (5.10)

To computer W20(θ) and W11(θ) in g21, from (5.6) and (5.8), we have

Ẇ = ẋt − żq − żq

=

{
AW − 2Req∗(0)f0q(θ), θ ∈ [−1, 0],

AW − 2Req∗(0)f0q(0) + f0, θ = 0

≡ AW +H(z, z, θ), (5.11)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02

z2

2
+ · · · . (5.12)

Expanding the above series and comparing the corresponding coefficients, we

obtain

(A− 2iωτj)W20(θ) = −H20(θ), AW11(θ) = −H11(θ), · · · . (5.13)

From (5.11), we know for θ ∈ [−1, 0),

H(z, z, θ) = −q∗(0)f0q(θ)− q∗(0)f0q(θ) = −gq(θ)− gq(θ). (5.14)

Comparing the coefficients with (5.12), we get

H20 = −g20q(θ)− g02q(θ), (5.15)

H11 = −g11q(θ)− g11q(θ). (5.16)

From (5.13), (5.15) and the definition of A, we get

Ẇ20(θ) = 2iτjωW20(θ) + g20qθ + g02q(θ).
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Note that q(θ) = (1, q)⊤eiθωτj , hence

W20(θ) =
ig20
ωτj

q(0)eiθωτj +
ig02
3ωτj

q(0)e−iθωτj + E1e
2iθωτj , (5.17)

where E1 = (E
(1)
1 , E

(2)
1 ) ∈ R2 is a constant vector, similarly from (5.13) and (5.16),

we get

W11(θ) = − ig11
ωτj

q(0)eiθωτj +
ig11
ωτj

q(0)e−iθωτj + E2, (5.18)

where E2 = (E
(1)
2 , E

(2)
2 ) ∈ R2 is a constant vector. In the following, we seek appro-

priate E1, E2, from the definition A and (5.13), we obtain∫ 0

−1
dη(θ)W20(θ) = 2iτjωW20(0)−H20(0) (5.19)

and ∫ 0

−1
dη(θ)W11(θ) = −H11(0), (5.20)

where η(θ) = η(θ, 0). From (5.11), we have

H20 = −g20q(0)− g02q(0) + 2τj

(
g1 + g2q

h1 + h2q
2 + h3q + (h4 + h5q)e

−2iωτj

)
(5.21)

and

H11(0) = −g11q(0)−g11q(0)+2τj

(
2g1 + g2(q + q)

2h1+2h2qq+h3(q+q)+2h4+h5(q+q)

)
. (5.22)

Substituting (5.17) and (5.21) into (5.19) and noting(
iτjωI −

∫ 0

−1
eiθωτjdη(θ)

)
q(0) = 0

and (
− iτjωI −

∫ 0

−1
e−iθωτjdη(θ)

)
q(0) = 0,

we obtain(
2iτjωI −

∫ 0

−1
e2iθωτjdη(θ)

)
E1 = 2τj

(
g1 + g2q

h1 + h2q
2 + h3q + (h4 + h5q)e

−2iωτj

)
,
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which leads to (
2iω − a11 −a12

−a21 − a23e
−2iωτj 2iω − a22 − a24e

−2iωτj

)
E1

= 2

(
g1 + g2q

h1 + h2q
2 + h3q + (h4 + h5q)e

−2iωτj

)
. (5.23)

Similarly, substisting (5.18) and (5.22) into (5.20), we get(
a11 a12

a21 + a23 a22 + a24

)
E2 = −

(
2g1 + g2(q + q)

2h1+2h2qq+h3(q+q)+2h4+h5(q+q)

)
. (5.24)

From (5.23) and (5.24), we could obtain the expression of E1 and E2. Then we

calculate the following values according to the above analysis and the expression of

g20, g11, g02 and g21:

C1(0) =
i

2τjω

(
g11g20 − 2| g11 |2 −

| g02 |2

3

)
+
g21
2
,

µ2 = −Re(C1(0))

Re(λ′(τj))
, β2 = 2Re(C1(0)),

T2 = − ImC1(0) + µ2Imλ
′(τj)

τjω
.
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