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Abstract

In this paper, a modified nonlinear dynamic inequality on time scales is
used to study the boundedness of a class of nonlinear third-order dynamic
equations on time scales. These theorems contain as special cases results for
dynamic differential equations, difference equations and ¢-difference equations.
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1 Introduction

To unify and extend continuous and discrete analyses, the theory of time scales
was introduced by Hilger [1] in his Ph.D.Thesis in 1988. Since then, the theory
has been evolving, and it has been applied to various fields of mathematics; for
example, see [2,3] and the references therein. It is well known that Gronwall-type
integral inequalities and their discrete analogues play a dominant role in the study of
quantitative properties of solutions of differential, integral and difference equations.

During the last few years, some Gronwall-type integral inequalities on time scales
and their applications have been investigated by many authors. For example, we
refer readers to [5-11]. In this paper, motivated by the paper [4], we obtain the
bounds of the solutions of a class of nonlinear dynamic equations of the third order
on time scales, which generalizes the main result of [4]. For all the detailed defini-
tions, notation and theorems on time scales, we refer the readers to the excellent
monographs [2,3] and references given therein. We also present some preliminary

*This research was partially supported by the NSF of China (Grant.11271225) and Pro-
gram for Scientific Research Innovation Team in Colleges and Universities of Shandong
Province.

fManuscript received July 9, 2016

fCorresponding author. E-mail: znn199192@163.com

102



No.1 N.N. Zhu, etc., Boundedness of A Class of Nonlinear Dynamic Eqs. 103

results that are needed in the remainder of this paper as useful lemmas for the
discussion of our proof.

In what follows, R denotes the set of real number, Ry = [0,+00); C(M,S)
denotes the class of all continuous functions defined on a set M with range in a set
S; T is an arbitrary time scale and C.4 denotes the set of rd-continuous functions.
Throughout this paper, we always assume that ¢ty € T', Ty = [to, +o0) N T

2 Preliminary

Lemma 2.1 Suppose u(t),a(t) € Crq(To, R+), and a is nondecreasing, f(t,s),
fA(t,s) € Cra(To x Ty, Ry), w € C(Ry, Ry) is nondecreasing. If for t € Ty, u(t)
satisfies the following inequality

ult) < alt) + tt £t s)w(u(s)As, te Ty, (2.1)
then 0 t
ult) < G [G(a(t)) +] f(t,s)As}, teT, (2.2)
where .
G(v) = /UO Mdr, v >y >0, G(400) = +00. (2.3)

Proof For arbitrarily fixed ¢y > tg, by the condition, we have
t
u(t) <alto) + [ f(to, s)w(u(s))As, € [to,to].
to

Let z(t) = a(tNO)—i-fttO f(to, s)w(u(s))As, then we get z(to) = a(ty) and u(t) < z(t).

Since
22(t) = f(to, hw(u(t)) < f(fo, hw(=(t)),
we have
22() ~
G0 < f(to; 1)

Furthermore, for t € [to, to], if o(t) > t, then

G(=(0)]2 = G(z(o(1) — G(2(t)) _ )1_ t /ZZ(U(t)) i N

o(t)—t ot

If o(t) = t, then
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L GE)-Ges) .1 0
(G(E)]* = lim t—s =l /Z dr
~ lim z(t) — z(s) 1 _ 22(t)
sot o t—s w()  w(z(t)

where G is defined in (2.3) and & lies between z(s) and z(t). So we always have
22(t)
w(z(t))

Using the above statements, we deduce that

t)
t)

w(z(

(G0 <

228(

[G=(1))]* < < f(to,1). (2.4)

Replacing t with s in (2.4), and an integration with respect to s from ¢y to ¢
yields

GG0) - Glett) < [ (i)
Hence, )
Gle() < Gletto) + [ F1fo,5)80 = Glatie)) + [ 1G9
and we have O 0
(0 < G Gla@) + [ @0 9], el 25)

where G~1 is the inverse function of G.
Let ¢t =ty in (2.5), then we get

) < G [Glal@e) + [ F(Es)hs] (2.6

to

Since tg is chosen arbitrarily, from (2.6) we can obtain

At <G [G(a(t)) + | f S)As].

< ;
And then we get
t
ult) < G [G(a(t)) + f(t,s)As}, te Ty
to

The proof of Lemma 2.1 is completed.
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Remark 2.1 Lemma 2.1 is similar to Theorem 3.1 in [10], but by defining a
new function of GG, which has more extensive applications.

Definition!'? A function g € C(Ry, R) is said to belong to the class of R if

(1) g is nondecreasing,

(2) 99 < g() for u >0, v > 1.

It is easy to see that g(u) € R implies fl

e )dS*—i-oo

Lemma 2.2 Suppose
(1) u(t) and a(t) € Cra(To, R+), a(t) > 1 is nondecreasing on Ty;
(2) fi(t> S)7fiA(t> S) € Crd(TO x To, R+),'
B)hi€R (i=1,2,--,m).
If for t € Ty, u(t) satisfies the following inequality

Z fz (t,s)hi[u(s)]As, te Ty, (2.7)
then .
u(t) < a(t) [[Lit), teT, (2.8)
i=1
where
Lit) = 671 Gi(1) fzt,s)(f[Lk Jas|, =12 ,
k=
Gi(v) = s hir dr, v>v9>0 (2.9)
0
I1ze) =
\ k=1

Proof The proof is completely similar to that of Lemma 2.2 in [4], and we omit
the details here.
Lemma 2.3"3 Assume a < b € T and F(7,s) is a real-valued function on

T xT. Then
// (1,8)AsAT = // (1,8)ATAS, (2.10)

where o(s) is the forward jump operator at s.

3 Main Results

Consider the following equation

(p2() (p1 (1)) ) + (¢, 2(t) = 0, (3.1)
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and assume that the following hypotheses (denoted by (H)) are satisfied:
(1) p1(t), pa(t) € Cyq are positive for all ¢ > tp;
(2) f:T x R — R satisfies

< b (ORulla) + b (0

where h; € R, b; € C,q are nonnegative (i = 1,2,--- ,m+ 1);
(3) the uniqueness and the local existence of the solution of (3.1) are valid.

For convenience, for any function d; € C,.4, we define

¢
1
Wi(t,s;dy) = Au,
1( S 1) /sdl(u) u 5
" 32)
W2(t73;d1,d2)_/ le(u,ssdz)Au,

and from Lemma 2.3, we can conclude another form of Wy(t, s;dy, da) :

WZ(th;dl,dQ):/t 1:(LU) (u, s;do) Au_//
/ di

Lemma 3.1 If Ws(t,to; d1,d2) is bounded on Ty, then W1 (t,to; dy) is also bound-
ed on Ty; if lim Wi(t, to;d1) = 400, then lim Ws(t, to; d1,d2) = +o0.
t——+00 t—+00
Proof Let t; € Tj be fixed and ¢; > to, then by (3.2), we can get

(t,o(r);dy1)AT.

t

g 1
Wa(t, to;dy,do) = ——Wi(u,to; d Au—i—/ ——Wi(u, tg; do)Au
(bt de) = [ Witk [ Wt d)

t
> / %Wl(tl, t(); dz)Au = Wl(tl, to; dQ)Wl(t, tl; dl),
t di(u)

which implies the validity of Lemma 3.1.

Theorem 3.1 Suppose that hypotheses (H) hold and the following conditions
are satz’sﬁed

ft s)Wa(t,o(s);p1,p2)As is bounded on Ty for 1 <i <m+1;

( ) WQ(t to; p1,p2) is bounded on Tp.
Then (i) every solution x(t) of (3.1) is bounded on Ty; (ii) if bi(t) € L1(to, +o0) for
1<i<m-+1, then pa(t)(p1(t)x™)? is also bounded on T.

Proof (i) Let z(t) be any solution of (3.1) with the initial time ¢ = ¢¢, existing
on some maximal interval Iy = [to, L), here tg < L < 4o00. By conditions (H), we

can easily see L = +o00.
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Integrating (3.1) from ¢ty to t, we get

tf(s,x(s))As
(1 (D)7 (1) = pa(to)[p1(to)a> (t0)]®  J4y ‘ (3.3)

P2(t) pa(t)
Integrating (3.3) from ¢y to ¢, we get

St [ —as [ (s (s Asar
xA(t):pl(t0>ﬂ?A(to) pa(to)[p1(to)z> (to)] /tOPZ(S)A _/tOPQ(T) tof( ,z(s))AsA
pl(t) p1(t) pl(t) .

Integrating this equation again from ¢y to ¢, and then using Lemma 2.3 we obtain

t

x(t)za:(to)+P1(to)xA(to)/ Au+p2(to)[Pl(to)JDA(to)]A/t ! /t L AsAu

to P1(u) to P1(1) Jyy p2(5)

_/tt })/tu ! Tf(s,x(s))AsATAu

o P1{tt 0 p2( )
z(to) + p1(to)x (tO)Wl(t to; p1) + p2(to)[p1(to)z™ (to)| > Wa(t, to; p1, p2)
// : Wi(u,o(s);p2) f(s,z(s))Auls

tol o(s) P1(1)

= x(to) + p1(to)x™ (to) Wi (¢, to; p1) + pa(to)[p1 (to)z™ (to))* Wal(t, to; p1, p2)

Wa(t, o(s); p1,p2) f (s, x(s))As, (34)

to

where W and Wy are defined as in (3.2).
Now by conditions (H) and (3.4), we can get

|z(t)] < N(t) Z Wgta ); p1, p2)bi(8)hi(|z(s)))As,  t € Ty, (3.5)

where

N(t) = 14|z (to) [+p1 (to) Wi (t, to; p1) |22 (to) | +p2 (to) Wa(t, to; p1, p2)| [p1 (to) 2™ (t0)] |

Wa(t,o(s); p1,p2)bms1(s)As.

to

Since Wa(t,to; p1,p2) is bounded on Tp, by Lemma 3.1, Wi (¢, to; p1) is bounded
on T1p.
By Lemma 2.2 and the last inequality, we conclude that

()] < N(#) ﬁ Ui(t), teT, (3.6)
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Ui(t) =G / ); P1,p2)b (HUk ) }

s Gi { (Hl ) Wz(t o(s )§p17p2)bi(S)AS},

where G is defined in (2.9).
By (3.6) we can easily observe that x(¢) is bounded on Tj.
(ii) Moreover, we easily obtain from (3.3) that

t m t
pa()|(p1 (D)2 (£))2] < pa(to)|(p1(to)a™ (t)) | +/t bn1(5)As + hi(C)/t bi(s)As,
0 i=1 0
where |z(t)| < C holds for all t € Ty by (i), here C'is a constant. Hence, if also b;(t) €
Ly (tg, +00) for 1 < i < m + 1, then the boundedness of py(t)(py(t)z>(t))> follows
from the above inequality immediately. The proof of Theorem 3.1 is completed.
Theorem 3.2 Suppose that hypotheses (H) hold and the following conditions
are satisfied:
1) ftf) Wo(t,o(s); p1,p2)bi(s)As is bounded on Ty, i = 1,2,--+ ,m
(2) t£+moo Wi (t, to; p1) = +00, lim Wi (t, to; p2) = +00;

(3) tjoo bm+1(8)As < +o0, ft Wg (s,to;p1,p2)bi(8)As < +00,i=1,2,--- . m
Then for any solution of (3.1), we have (i) |z(t)] = O(Wa(t,to; p1,p2)) ast — +o0;
(i) [p2(t)(p1(t)22(t)2] = O(1) as t — +oc.

Proof (i) By Theorem 3.1, the solution of (3.1) exists on 7p. Since

Jdm Wit to;pr) = +oo,  lim Wit to; p2) = +oo,

we can easily get

s
o Wilbtoip) to P1(s) 0
t—+oo WQ(t7tO§plap2) t—+oo [ .
W1<S7t0;p2)AS
to p]_(S)

And by Lemma 3.1, we have tlgrnoo Wa(t, to; p1, p2) = +00.

By the definition of Ws(t, s;p1,p2), we easily observe that Wa(t, o(s); p1,p2) <
Wa(t, to; p1,p2) when tg < s < t.

From (3.4) in the proof of Theorem 3.1 and conditions (H) we have
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_ ®
WQ(t7t0;p17p2)
|z (to)| A Wi (t, to; p1) INTRYN
< PO (k)P ()| O Yt to)x = (t
WQ(t,tO;ppr) pl( O)| ( 0)|W2(t7t0;p17p2) p2( O)le( 0) ( O)] |

" Wa(t, o(s); p1,p2)

to W?(tato;plapQ)
|z(to)] A Wi(t,to; p1)

< VUL g ()2 (o) | P
Wa(t, to; p1, p2) P10l 0)‘W2(t,t0§p1’p2)

+Z/ Watt.of pl’pQ)bZ( e 8 tWz(t,a(s);p1,p2)bm+1(s)As

f(s,z(s))As

_l’_

+ pa(to)|[p1(fo) 2> (to)]°

to Wal(t, to; p1,p2) o Wal(t,to;p1,p2)
|z(s)|
t) + W (t,o( b;(s)h; As, 3.7
Z 2( )ip1,P2)bi(s) (WQ(S,t0§p1»P2)) (38.7)
where
|z (to)] Wi (t,to; p1)

Hit)=1+ +p1(to)z (to)]

Wa(t, to; p1, p2) Wa(t, to; p1, p2)

a(t0)lpat0)e ()] + [ b (s)As.

to

Now using Lemma 2.2 to the last inequality, we find
m
|.’E(t)| < WQ(tathplap2)H(t)H‘/z(t)? te T07 (38)

where

Vi(t):Gi_l[Gi(l)"’_/tWZ(t>U( ); P1,p2)b (HVk ) }

<G;! [Gi(l) + (ﬁ Vk(t)> Wz(tﬂ(s);pl,Pz)bi(S)AS],

k=1 to

where Gj is defined in (2.9).
By conditions of Theorem 3.2 and letting ¢ — 400 in (3.8), we obtain the desired

relation in (i).
(ii) By (3.8) we derive from (3.3) that

p2(D)|(pr(8)a™ ()2

< pa(to)|(p1 () (1)) + / ma(s A“Z/ s
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t

< pa(to)|(pr (to)2™ (F0))2 | + / bt (5)As

< pa(t0)| (s (o) (1) + [

where the number M > 0 is the upper bound of H (t)

to

s [ ja(s)]
+ /wa s,to; p1,p2)hi As
i=1 7 to ( ) 2( oH 2) (WQ(SatO;plap2)>

t t

bnt1(8)As + Z hi(M) [ bi(s)Wa(s,to; p1,p2)As,

to i=1 to

Vi(t) on Tp. Thus the proof

»—-:S

7

of the Theorem 3.2 is now completed.
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