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Abstract

In this paper, a modified nonlinear dynamic inequality on time scales is
used to study the boundedness of a class of nonlinear third-order dynamic
equations on time scales. These theorems contain as special cases results for
dynamic differential equations, difference equations and q-difference equations.
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1 Introduction
To unify and extend continuous and discrete analyses, the theory of time scales

was introduced by Hilger [1] in his Ph.D.Thesis in 1988. Since then, the theory

has been evolving, and it has been applied to various fields of mathematics; for

example, see [2,3] and the references therein. It is well known that Gronwall-type

integral inequalities and their discrete analogues play a dominant role in the study of

quantitative properties of solutions of differential, integral and difference equations.

During the last few years, some Gronwall-type integral inequalities on time scales

and their applications have been investigated by many authors. For example, we

refer readers to [5-11]. In this paper, motivated by the paper [4], we obtain the

bounds of the solutions of a class of nonlinear dynamic equations of the third order

on time scales, which generalizes the main result of [4]. For all the detailed defini-

tions, notation and theorems on time scales, we refer the readers to the excellent

monographs [2,3] and references given therein. We also present some preliminary
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results that are needed in the remainder of this paper as useful lemmas for the

discussion of our proof.

In what follows, R denotes the set of real number, R+ = [0,+∞); C(M,S)

denotes the class of all continuous functions defined on a set M with range in a set

S; T is an arbitrary time scale and Crd denotes the set of rd-continuous functions.

Throughout this paper, we always assume that t0 ∈ T , T0 = [t0,+∞) ∩ T .

2 Preliminary

Lemma 2.1 Suppose u(t), a(t) ∈ Crd(T0, R+), and a is nondecreasing, f(t, s),

f∆
t (t, s) ∈ Crd(T0 × T0, R+), ω ∈ C(R+, R+) is nondecreasing. If for t ∈ T0, u(t)

satisfies the following inequality

u(t) ≤ a(t) +

∫ t

t0

f(t, s)ω(u(s))∆s, t ∈ T0, (2.1)

then

u(t) ≤ G−1
[
G(a(t)) +

∫ t

t0

f(t, s)∆s
]
, t ∈ T0, (2.2)

where

G(v) =

∫ v

v0

1

ω(r)
dr, v ≥ v0 > 0, G(+∞) = +∞. (2.3)

Proof For arbitrarily fixed t̃0 > t0, by the condition, we have

u(t) ≤ a(t̃0) +

∫ t

t0

f(t̃0, s)ω(u(s))∆s, t ∈ [t0, t̃0].

Let z(t) = a(t̃0)+
∫ t
t0
f(t̃0, s)ω(u(s))∆s, then we get z(t0) = a(t̃0) and u(t) ≤ z(t).

Since

z∆(t) = f(t̃0, t)ω(u(t)) ≤ f(t̃0, t)ω(z(t)),

we have

z∆(t)

ω(z(t))
≤ f(t̃0, t).

Furthermore, for t ∈ [t0, t̃0], if σ(t) > t, then

[G(z(t))]∆ =
G(z(σ(t)))−G(z(t))

σ(t)− t
=

1

σ(t)− t

∫ z(σ(t))

z(t)

1

ω(r)
dr

≤ z(σ(t))− z(t)

σ(t)− t

1

ω(z(t))
=

z∆(t)

ω(z(t))
.

If σ(t) = t, then
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[G(z(t))]∆ = lim
s→t

G(z(t))−G(z(s))

t− s
= lim

s→t

1

t− s

∫ z(t)

z(s)

1

ω(r)
dr

= lim
s→t

z(t)− z(s)

t− s

1

ω(ξ)
=

z∆(t)

ω(z(t))
,

where G is defined in (2.3) and ξ lies between z(s) and z(t). So we always have

[G(z(t))]∆ ≤ z∆(t)

ω(z(t))
.

Using the above statements, we deduce that

[G(z(t))]∆ ≤ z∆(t)

ω(z(t))
≤ f(t̃0, t). (2.4)

Replacing t with s in (2.4), and an integration with respect to s from t0 to t

yields

G(z(t))−G(z(t0)) ≤
∫ t

t0

f(t̃0, s)∆s.

Hence,

G(z(t)) ≤ G(z(t0)) +

∫ t

t0

f(t̃0, s)∆s = G(a(t̃0)) +

∫ t

t0

f(t̃0, s)∆s,

and we have

z(t) ≤ G−1
[
G(a(t̃0)) +

∫ t

t0

f(t̃0, s)∆s
]
, t ∈ [t0, t̃0], (2.5)

where G−1 is the inverse function of G.

Let t = t̃0 in (2.5), then we get

z(t̃0) ≤ G−1
[
G(a(t̃0)) +

∫ t̃0

t0

f(t̃0, s)∆s
]
. (2.6)

Since t̃0 is chosen arbitrarily, from (2.6) we can obtain

z(t) ≤ G−1
[
G(a(t)) +

∫ t

t0

f(t, s)∆s
]
.

And then we get

u(t) ≤ G−1
[
G(a(t)) +

∫ t

t0

f(t, s)∆s
]
, t ∈ T0.

The proof of Lemma 2.1 is completed.
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Remark 2.1 Lemma 2.1 is similar to Theorem 3.1 in [10], but by defining a

new function of G, which has more extensive applications.

Definition[12] A function g ∈ C(R+, R+) is said to belong to the class of ℜ if

(1) g is nondecreasing,

(2) g(u)
v ≤ g(uv ) for u ≥ 0, v ≥ 1.

It is easy to see that g(u) ∈ ℜ implies
∫ +∞
1

1
g(s)ds = +∞.

Lemma 2.2 Suppose

(1) u(t) and a(t) ∈ Crd(T0, R+), a(t) ≥ 1 is nondecreasing on T0;

(2) fi(t, s),f
∆
i (t, s) ∈ Crd(T0 × T0, R+);

(3) hi ∈ ℜ (i = 1, 2, · · · ,m).

If for t ∈ T0, u(t) satisfies the following inequality

u(t) ≤ a(t) +

m∑
i=1

∫ t

t0

fi(t, s)hi[u(s)]∆s, t ∈ T0, (2.7)

then

u(t) ≤ a(t)
m∏
i=1

Li(t), t ∈ T0, (2.8)

where

Li(t) = G−1
i

[
Gi(1) +

∫ t

t0

fi(t, s)
( i−1∏

k=1

Lk(s)
)
∆s

]
, i = 1, 2, · · · ,m,

Gi(v) =

∫ v

v0

1

hi(r)
dr, v ≥ v0 > 0,

0∏
k=1

Lk(t) = 1.

(2.9)

Proof The proof is completely similar to that of Lemma 2.2 in [4], and we omit

the details here.

Lemma 2.3[13] Assume a < b ∈ T and F (τ, s) is a real-valued function on

T × T . Then ∫ b

a

∫ τ

a
F (τ, s)∆s∆τ =

∫ b

a

∫ b

σ(s)
F (τ, s)∆τ∆s, (2.10)

where σ(s) is the forward jump operator at s.

3 Main Results

Consider the following equation

(p2(t)(p1(t)x
∆)∆)∆ + f(t, x(t)) = 0, (3.1)
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and assume that the following hypotheses (denoted by (H)) are satisfied:

(1) p1(t), p2(t) ∈ Crd are positive for all t ≥ t0;

(2) f : T ×R → R satisfies

|f(t, x)| ≤
m∑
i=1

bi(t)hi(|x|) + bm+1(t),

where hi ∈ ℜ, bi ∈ Crd are nonnegative (i = 1, 2, · · · ,m+ 1);

(3) the uniqueness and the local existence of the solution of (3.1) are valid.

For convenience, for any function di ∈ Crd, we define
W1(t, s; d1) =

∫ t

s

1

d1(u)
∆u,

W2(t, s; d1, d2) =

∫ t

s

1

d1(u)
W1(u, s; d2)∆u,

(3.2)

and from Lemma 2.3, we can conclude another form of W2(t, s; d1, d2) :

W2(t, s; d1, d2) =

∫ t

s

1

d1(u)
W1(u, s; d2)∆u =

∫ t

s

∫ t

σ(τ)

1

d2(τ)

1

d1(u)
∆u∆τ

=

∫ t

s

1

d2(τ)
W1(t, σ(τ); d1)∆τ.

Lemma 3.1 If W2(t, t0; d1, d2) is bounded on T0, then W1(t, t0; d1) is also bound-

ed on T0; if lim
t→+∞

W1(t, t0; d1) = +∞, then lim
t→+∞

W2(t, t0; d1, d2) = +∞.

Proof Let t1 ∈ T0 be fixed and t1 > t0, then by (3.2), we can get

W2(t, t0; d1, d2) =

∫ t1

t0

1

d1(u)
W1(u, t0; d2)∆u+

∫ t

t1

1

d1(u)
W1(u, t0; d2)∆u

≥
∫ t

t1

1

d1(u)
W1(t1, t0; d2)∆u = W1(t1, t0; d2)W1(t, t1; d1),

which implies the validity of Lemma 3.1.

Theorem 3.1 Suppose that hypotheses (H) hold and the following conditions

are satisfied:

(1)
∫ t
t0
bi(s)W2(t, σ(s); p1, p2)∆s is bounded on T0 for 1 ≤ i ≤ m+ 1;

(2) W2(t, t0; p1, p2) is bounded on T0.

Then (i) every solution x(t) of (3.1) is bounded on T0; (ii) if bi(t) ∈ L1(t0,+∞) for

1 ≤ i ≤ m+ 1, then p2(t)(p1(t)x
∆)∆ is also bounded on T0.

Proof (i) Let x(t) be any solution of (3.1) with the initial time t = t0, existing

on some maximal interval I0 = [t0, L), here t0 < L ≤ +∞. By conditions (H), we

can easily see L = +∞.
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Integrating (3.1) from t0 to t, we get

(p1(t)x
∆(t))∆ =

p2(t0)[p1(t0)x
∆(t0)]

∆

p2(t)
−

∫ t

t0

f(s, x(s))∆s

p2(t)
. (3.3)

Integrating (3.3) from t0 to t, we get

x∆(t)=
p1(t0)x

∆(t0)

p1(t)
+

p2(t0)[p1(t0)x
∆(t0)]

∆

∫ t

t0

1

p2(s)
∆s

p1(t)
−

∫ t

t0

1

p2(τ)

∫ τ

t0

f(s, x(s))∆s∆τ

p1(t)
.

Integrating this equation again from t0 to t, and then using Lemma 2.3 we obtain

x(t) = x(t0)+p1(t0)x
∆(t0)

∫ t

t0

1

p1(u)
∆u+p2(t0)[p1(t0)x

∆(t0)]
∆

∫ t

t0

1

p1(u)

∫ u

t0

1

p2(s)
∆s∆u

−
∫ t

t0

1

p1(u)

∫ u

t0

1

p2(τ)

∫ τ

t0

f(s, x(s))∆s∆τ∆u

= x(t0) + p1(t0)x
∆(t0)W1(t, t0; p1) + p2(t0)[p1(t0)x

∆(t0)]
∆W2(t, t0; p1, p2)

−
∫ t

t0

∫ t

σ(s)

1

p1(u)
W1(u, σ(s); p2)f(s, x(s))∆u∆s

= x(t0) + p1(t0)x
∆(t0)W1(t, t0; p1) + p2(t0)[p1(t0)x

∆(t0)]
∆W2(t, t0; p1, p2)

−
∫ t

t0

W2(t, σ(s); p1, p2)f(s, x(s))∆s, (3.4)

where W1 and W2 are defined as in (3.2).

Now by conditions (H) and (3.4), we can get

|x(t)| ≤ N(t) +
m∑
i=1

∫ t

t0

W2(t, σ(s); p1, p2)bi(s)hi(|x(s)|)∆s, t ∈ T0, (3.5)

where

N(t)=1+|x(t0)|+p1(t0)W1(t, t0; p1)|x∆(t0)|+p2(t0)W2(t, t0; p1, p2)|[p1(t0)x∆(t0)]∆|

+

∫ t

t0

W2(t, σ(s); p1, p2)bm+1(s)∆s.

Since W2(t, t0; p1, p2) is bounded on T0, by Lemma 3.1, W1(t, t0; p1) is bounded

on T0.

By Lemma 2.2 and the last inequality, we conclude that

|x(t)| ≤ N(t)

m∏
i=1

Ui(t), t ∈ T0, (3.6)



108 ANN. OF APPL. MATH. Vol.33

where

Ui(t) = G−1
i

[
Gi(1) +

∫ t

t0

W2(t, σ(s); p1, p2)bi(s)
( i−1∏

k=1

Uk(s)
)
∆s

]
≤ G−1

i

[
Gi(1) +

( i−1∏
k=1

Uk(t)
)∫ t

t0

W2(t, σ(s); p1, p2)bi(s)∆s
]
,

where Gi is defined in (2.9).

By (3.6) we can easily observe that x(t) is bounded on T0.

(ii) Moreover, we easily obtain from (3.3) that

p2(t)|(p1(t)x∆(t))∆| ≤ p2(t0)|(p1(t0)x∆(t0))∆|+
∫ t

t0

bm+1(s)∆s+

m∑
i=1

hi(C)

∫ t

t0

bi(s)∆s,

where |x(t)| ≤ C holds for all t ∈ T0 by (i), here C is a constant. Hence, if also bi(t) ∈
L1(t0,+∞) for 1 ≤ i ≤ m + 1, then the boundedness of p2(t)(p1(t)x

∆(t))∆ follows

from the above inequality immediately. The proof of Theorem 3.1 is completed.

Theorem 3.2 Suppose that hypotheses (H) hold and the following conditions

are satisfied:

(1)
∫ t
t0
W2(t, σ(s); p1, p2)bi(s)∆s is bounded on T0, i = 1, 2, · · · ,m;

(2) lim
t→+∞

W1(t, t0; p1) = +∞, lim
t→+∞

W1(t, t0; p2) = +∞;

(3)
∫ +∞
t0

bm+1(s)∆s < +∞,
∫ +∞
t0

W2(s, t0; p1, p2)bi(s)∆s < +∞, i = 1, 2, · · · ,m.

Then for any solution of (3.1), we have (i) |x(t)| = O(W2(t, t0; p1, p2)) as t → +∞;

(ii) |p2(t)(p1(t)x∆(t))∆| = O(1) as t → +∞.

Proof (i) By Theorem 3.1, the solution of (3.1) exists on T0. Since

lim
t→+∞

W1(t, t0; p1) = +∞, lim
t→+∞

W1(t, t0; p2) = +∞,

we can easily get

lim
t→+∞

W1(t, t0; p1)

W2(t, t0; p1, p2)
= lim

t→+∞

∫ t

t0

1

p1(s)
∆s∫ t

t0

1

p1(s)
W1(s, t0; p2)∆s

= 0.

And by Lemma 3.1, we have lim
t→+∞

W2(t, t0; p1, p2) = +∞.

By the definition of W2(t, s; p1, p2), we easily observe that W2(t, σ(s); p1, p2) ≤
W2(t, t0; p1, p2) when t0 ≤ s ≤ t.

From (3.4) in the proof of Theorem 3.1 and conditions (H) we have
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|x(t)|
W2(t, t0; p1, p2)

≤ |x(t0)|
W2(t, t0; p1, p2)

+ p1(t0)|x∆(t0)|
W1(t, t0; p1)

W2(t, t0; p1, p2)
+ p2(t0)|[p1(t0)x∆(t0)]∆|

+

∫ t

t0

W2(t, σ(s); p1, p2)

W2(t, t0; p1, p2)
f(s, x(s))∆s

≤ |x(t0)|
W2(t, t0; p1, p2)

+ p1(t0)|x∆(t0)|
W1(t, t0; p1)

W2(t, t0; p1, p2)
+ p2(t0)|[p1(t0)x∆(t0)]∆|

+

m∑
i=1

∫ t

t0

W2(t, σ(s); p1, p2)

W2(t, t0; p1, p2)
bi(s)hi(|x(s)|)∆s+

∫ t

t0

W2(t, σ(s); p1, p2)

W2(t, t0; p1, p2)
bm+1(s)∆s

≤ H(t) +

m∑
i=1

∫ t

t0

W2(t, σ(s); p1, p2)bi(s)hi

( |x(s)|
W2(s, t0; p1, p2)

)
∆s, (3.7)

where

H(t) = 1 +
|x(t0)|

W2(t, t0; p1, p2)
+ p1(t0)|x∆(t0)|

W1(t, t0; p1)

W2(t, t0; p1, p2)

+p2(t0)|[p1(t0)x∆(t0)]∆|+
∫ t

t0

bm+1(s)∆s.

Now using Lemma 2.2 to the last inequality, we find

|x(t)| ≤ W2(t, t0; p1, p2)H(t)

m∏
i=1

Vi(t), t ∈ T0, (3.8)

where

Vi(t) = G−1
i

[
Gi(1) +

∫ t

t0

W2(t, σ(s); p1, p2)bi(s)
( i−1∏

k=1

Vk(s)
)
∆s

]
≤ G−1

i

[
Gi(1) +

( i−1∏
k=1

Vk(t)
)∫ t

t0

W2(t, σ(s); p1, p2)bi(s)∆s
]
,

where Gi is defined in (2.9).

By conditions of Theorem 3.2 and letting t → +∞ in (3.8), we obtain the desired

relation in (i).

(ii) By (3.8) we derive from (3.3) that

p2(t)|(p1(t)x∆(t))∆|

≤ p2(t0)|(p1(t0)x∆(t0))∆|+
∫ t

t0

bm+1(s)∆s+

m∑
i=1

∫ t

t0

bi(s)hi(|x(s)|)∆s
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≤ p2(t0)|(p1(t0)x∆(t0))∆|+
∫ t

t0

bm+1(s)∆s

+

m∑
i=1

∫ t

t0

bi(s)W2(s, t0; p1, p2)hi

( |x(s)|
W2(s, t0; p1, p2)

)
∆s

≤ p2(t0)|(p1(t0)x∆(t0))∆|+
∫ t

t0

bm+1(s)∆s+

m∑
i=1

hi(M)

∫ t

t0

bi(s)W2(s, t0; p1, p2)∆s,

where the number M > 0 is the upper bound of H(t)
m∏
i=1

Vi(t) on T0. Thus the proof

of the Theorem 3.2 is now completed.
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