CYCLES EMBEDDING ON FOLDED HYPERCUBES WITH FAULTY NODES* ${ }^{*}$

Dan Yuan \ddagger Hongmei Liu, Maozheng Tang
(College of Science, Three Gorges University, Hubei 443002, PR China)

Abstract

Let $F F_{v}$ be the set of faulty nodes in an n-dimensional folded hypercube $F Q_{n}$ with $\left|F F_{v}\right| \leq n-1$ and all faulty vertices are not adjacent to the same vertex. In this paper, we show that if $n \geq 4$, then every edge of $F Q_{n}-F F_{v}$ lies on a fault-free cycle of every even length from 6 to $2^{n}-2\left|F F_{v}\right|$.

Keywords folded hypercube; interconnection network; fault-tolerant; path

2000 Mathematics Subject Classification 68M15; 68M10

1 Introduction

The n-dimensional hypercube Q_{n} (or n-cube) is one of the most important topology of networks due to its excellent properties such as regularity, recursive structure, small diameter, vertex and edge transitive and relatively short mean distance [1]. In order to improve the performance of hypercube, the folded hypercube $F Q_{n}$ has been proposed [2].

Since a large-scale hypercube network fails in any component, it's desirable that the rest of the network continue to operate in spite of the failure. This leads to the graph-embedding problem with faulty edges and/or vertices. This problem has received much attention (see [3-10]).

The problem of embedding paths in an n-dimensional hypercube and folded hypercube has been well studied. Tsai [3] showed that for any subset F_{v} of $V\left(Q_{n}\right)$ with $\left|F_{v}\right| \leq n-2$, every edge of $Q_{n}-F_{v}$ lies on a cycle of every even length from 4 to $2^{n}-2\left|F_{v}\right|$ inclusive. Tsai [4] also showed that for any subset F_{v} of $V\left(Q_{n}\right)$ with $\left|F_{v}\right| \leq n-1$ and all faulty vertices are not adjacent to the same vertex, every edge of $Q_{n}-F_{v}$ lies on a cycle of every even length from 6 to $2^{n}-2\left|F_{v}\right|$ inclusive. Hsieh

[^0]and Shen [5] proved that every edge of $Q_{n}-F_{v}-F_{e}$ lies on a cycle of every even length from 4 to $2^{n}-2\left|F_{v}\right|$ even if $\left|F_{v}\right|+\left|F_{e}\right| \leq n-2$, where $n \geq 3$.

Let $F F_{v}$ and $F F_{e}$ denote the set of faulty nodes and faulty edges of $F Q_{n}$ respectively. Hsieh, Kuo and Huang [6] proved that if the folded hypercube $F Q_{n}$ has just only one fault node, then $F Q_{n}$ contains cycles of every even length from 4 to $2^{n}-2$ if $n \geq 3$, and cycles of every odd length from $n+1$ to $2^{n}-1$ when n is even, $n \geq 2$. Ma, Xu and $\mathrm{Du}[7]$ further demonstrated that $F Q_{n}-F F_{e}(n \geq 3)$ with $\left|F F_{e}\right| \leq 2 n-3$ contains a fault-free cycle passing through all nodes if each vertex is incident with at least two fault-free edges. Kuo and Hsieh [8] improved the conclusion of [7] and proved that $F Q_{n}-F F_{e}$ with $\left|F F_{e}\right|=2 n-3$ contains a fault-free cycle of every even length from 4 to 2^{n}. Xu , Ma and $\mathrm{Du}[9]$ further showed that every fault-free edge of $F Q_{n}-F F_{e}$ lies on a fault-free cycle of every even length from 4 to 2^{n} and every odd length from $n+1$ to $2^{n}-1$ if n is even, where $\left|F F_{e}\right| \leq n-1$. Then Cheng, Hao and Feng [10] proved that every fault-free edge of $F Q_{n}-F F_{v}$ lies on a fault-free cycle of every even length from 4 to $2^{n}-2\left|F F_{v}\right|$ and every odd length from $n+1$ to $2^{n}-2\left|F F_{v}\right|-1$ if n is even, where $\left|F F_{v}\right| \leq n-2$.

In this paper, under the conditional $\left|F F_{v}\right| \leq n-1$ and all faulty vertices are not adjacent to the same vertex, we show that if $n \geq 4$, then every edge of $F Q_{n}-F F_{v}$ lies on a fault-free cycle of every even length from 6 to $2^{n}-2\left|F F_{v}\right|$.

2 Preliminaries

Please see [1] for graph-theoretical terminology and notation is not defined here. A network is usually modeled by a simple connected graph $G=(V, E)$, where $V=V(G)($ or $E=E(G))$ is the set of vertices (or edges) of G. We define the vertex x to be a neighbor of y if $x y \in E(G)$. A graph G is bipartite if X, Y are two disjoint subsets of $V(G)$ such that $E(G)=\{x y \mid x \in X, y \in Y\}$. A graph $P=\left(u_{1}, u_{2}, \cdots, u_{k}\right)$ is called a path if the vertices $u_{1}, u_{2}, \cdots, u_{k}$ are distinct and any two consecutive vertices u_{i} and u_{i+1} are adjacent. u_{1} and u_{k} are called the end-vertices of P. If $u_{1}=u_{k}$, the path $P\left(u_{1}, u_{k}\right)$ is called a cycle (denoted by C). The length of a path P (a cycle C), denoted by $l(P)$ (or $l(C))$, is the number of edges in P (or $C)$. In general, the distance of two vertices x, y is the length of the shortest (x, y)-path.

The n-dimensional hypercube Q_{n} (or, n-cube) can be represented as an undirected graph with 2^{n} vertices. Every vertex $x \in Q_{n}$ is labeled as a binary string $x_{1} x_{2} \cdots x_{n}$ of length n from $00 \cdots 0$ to $11 \cdots 1$. Two vertices u and v are adjacent if their binary strings differ in exactly one bit. For convenience, we call $e \in E$ an edge of dimension i if its end-vertices strings differ in i th-bit. In the rest of this paper, we denote $x^{i}=x_{1} x_{2} \cdots \overline{x_{i}} \cdots x_{n}$, where $\overline{x_{i}}=1-x_{i}, x_{i}=0,1$. The Hamming
distance of two vertices $x=x_{1} x_{2} \cdots x_{n}$ and $y=y_{1} y_{2} \cdots y_{n}$ is $H(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$, the number of different bits between them. Let $d_{H}(x, y)$ be the shortest distance of x and y. Note that Q_{n} is a bipartite graph, and for any two distinct vertices x, y of $Q_{n}, d_{H}(x, y)=H(x, y) . N(x)$ denotes a set of the nodes which are neighbors of x.

As a variant of hypercube, the n-dimensional folded hypercube $F Q_{n}$ is obtained by adding more edges between its vertices.

Definition 1 The n-dimensional folded hypercube $F Q_{n}$ is a graph with $V\left(Q_{n}\right)=$ $V\left(F Q_{n}\right)$. Two vertices $x=x_{1} x_{2} \cdots x_{n}$ and y are connected by an edge if and only if
(i) $y=x_{1} x_{2} \cdots \overline{x_{i}} \cdots x_{n}$ (denoted by x^{i}), or
(ii) $y=\overline{x_{1} x_{2}} \cdots \overline{x_{i}} \cdots \overline{x_{n}}$ (denoted by \bar{x}).

Therefore, the hypercube Q_{n} is a spanning subgraph of the folded hypercube $F Q_{n}$ obtained by removing the second type of edges $x \bar{x}\left(x \in V\left(F Q_{n}\right)\right)$, called complementary edges of $F Q_{n}$ and denoted by $E_{c}=\left\{x \bar{x} \mid x \in V\left(F Q_{n}\right)\right\}$.

In general, the first type of edges are defined to be the hypercube edges, and denoted by $E_{i}=\left\{x x^{i}\right\}, i=1,2, \cdots, n$.

Lemma 1 An i-partition on $F Q_{n}$, where $1 \leq i \leq n$, is a partition of $F Q_{n}$ along dimension i into two $n-1$-cubes, denoted by Q_{n-1}^{0} and Q_{n-1}^{1}.

The nodes in Q_{n-1}^{0} (respectively, Q_{n-1}^{1}) can also be denoted by $0 x$ (respectively, $1 x)$ for brevity, where satisfying $0 x=x_{1} x_{2} \cdots x_{i} \cdots x_{n} \in Q_{n-1}^{0}$ satisfying $x_{i}=0$ (respectively, $1 x=x_{1} x_{2} \cdots x_{i} \cdots x_{n} \in Q_{n-1}^{1}$ satisfying $x_{i}=1$).

Lemma $2^{[4]}$ Let $f_{e}=0, f_{v}=n-1$, and every fault-free vertex is adjacent to at least two fault-free vertices in Q_{n} for $n \geq 4$. Then, every fault-free edge of Q_{n} lies on a fault-free cycle of every even length from 6 to $2^{n}-2 f_{v}$ inclusive.

Lemma $3^{[3]}$ Assume F_{v} is any subset of $V\left(Q_{n}\right)$. Every edge in $Q_{n}-F_{v}$ lies on a fault-free cycle of every even length from 4 to $2^{n}-2 f_{v}$ inclusive even if $\left|F_{v}\right| \leq n-2$, where $n \geq 3$.

Lemma $4^{[12]}$ Let $n \geq 2$ be an integer. For any two different fault-free vertices u and v in Q_{n} with $f_{e}+f_{v} \leq n-2$, there exists a fault-free uv-path of length l for each l satisfying $d_{H}(u, v)+2 \leq l \leq 2^{n}-2 f_{v}-1$ and $2 \mid\left(l-d_{H}(u, v)\right)$. Moreover, there must exist a fault-free uv-path of length $d_{H}(u, v)$ if $d_{H}(u, v) \geq n-1$.

Lemma $5^{[10]}$ Assume that $F Q_{n}$ is partitioned along dimension $i(1 \leq i \leq$ n) into two $n-1$-cubes, denoted by Q_{n-1}^{0} and $Q_{n-1}^{1}, 0 u$ and $0 v$ (respectively, $1 u$ and $1 v$) are two nodes in Q_{n-1}^{0} (respectively, $\left.Q_{n-1}^{1}\right)$. If $d_{H}(0 u, 0 v)=n-$ $2\left(\right.$ respectively, $\left.d_{H}(1 u, 1 v)=n-2\right)$, then $d_{H}(1 \bar{u}, 1 v)=1$ and $d_{H}(1 u, 1 \bar{v})=1$ (respectively, $d_{H}(0 \bar{u}, 0 v)=1$ and $\left.d_{H}(0 u, 0 \bar{v})=1\right)$; if $d_{H}(0 u, 0 v)=1$ (respectively, $\left.d_{H}(1 u, 1 v)=1\right)$, then $d_{H}(1 \bar{u}, 1 v)=n-2$ and $d_{H}(1 u, 1 \bar{v})=n-2$ (respectively,
$d_{H}(0 \bar{u}, 0 v)=n-2$ and $\left.d_{H}(0 u, 0 \bar{v})=n-2\right)$.
Lemma $6^{[5]}$ There exists a path of every odd length from 3 to $2^{n}-2\left|F_{v}\right|-1$ joining any two adjacent fault-free nodes in $Q_{n}-F_{v}$ even if $\left|F_{e}\right|=0$ and $\left|F_{v}\right| \leq n-2$, where $n \geq 3$.

Lemma $7^{[10]}$ Assume n is even and $F F_{v}$ is any subset of $V\left(F Q_{n}\right)$. Every edge of $F Q_{n}-F F_{v}$ lies on a fault-free cycle of every odd length from $n+1$ to $2^{n}-2\left|F F_{v}\right|-1$ inclusive even if $\left|F F_{v}\right| \leq n-2$, where $n \geq 2$.

Lemma 8 Assume that $F Q_{n}$ is partitioned along dimension $i(1 \leq i \leq n)$ into two $n-1$-cubes, denoted by Q_{n-1}^{0} and $Q_{n-1}^{1}, 0 u$ and $0 v$ (respectively, $1 u$ and $1 v$) are two nodes in Q_{n-1}^{0} (respectively, $\left.Q_{n-1}^{1}\right)$. If $d_{H}(0 u, 0 v)=n-3$ (respectively, $\left.d_{H}(1 u, 1 v)=n-3\right)$, then $d_{H}(1 \bar{u}, 1 v)=2$ and $d_{H}(1 u, 1 \bar{v})=2\left(\right.$ respectively, $d_{H}(0 \bar{u}, 0 v)$ $=2$ and $\left.d_{H}(0 u, 0 \bar{v})=2\right)$; if $d_{H}(0 u, 0 v)=2$ (respectively, $\left.d_{H}(1 u, 1 v)=2\right)$, then $d_{H}(1 \bar{u}, 1 v)=n-3$ and $d_{H}(1 u, 1 \bar{v})=n-3$ (respectively, $d_{H}(0 \bar{u}, 0 v)=n-3$ and $\left.d_{H}(0 u, 0 \bar{v})=n-3\right)$.

Proof If $d_{H}(0 u, 0 v)=n-3$, then $d_{H}(u, v)=n-3$, which implies $d_{H}(\bar{u}, v)=2$ and $d_{H}(u, \bar{v})=2$, thus $d_{H}(1 \bar{u}, 1 v)=2$ and $d_{H}(1 u, 1 \bar{v})=2$. By the similar discussion, if $d_{H}(1 u, 1 v)=n-3$, then $d_{H}(0 \bar{u}, 0 v)=2$ and $d_{H}(0 u, 0 \bar{v})=2$.

If $d_{H}(0 u, 0 v)=2$, then $d_{H}(u, v)=2$, which implies $d_{H}(\bar{u}, v)=n-3$ and $d_{H}(u, \bar{v})=n-3$, thus $d_{H}(1 \bar{u}, 1 v)=n-3$ and $d_{H}(1 u, 1 \bar{v})=n-3$. By the similar discussion, if $d_{H}(1 u, 1 v)=2$, then $d_{H}(0 \bar{u}, 0 v)=n-3$ and $d_{H}(0 u, 0 \bar{v})=n-3$. The proof is completed.

Lemma $\mathbf{9}^{[2]}$ For any two vertices $u, v \in Q_{n}$, if $d(u, v)=k$, then there are n internal disjoint paths from u and v such that there are k paths of length k and $n-k$ paths of length $k+2$.

Lemma 10 ${ }^{[10]}$ Assume $F F_{v}$ is any subset of $V\left(F Q_{n}\right)$. Every edge in $F Q_{n}-F F_{v}$ lies on a fault-free cycle of every even length from 4 to $2^{n}-2\left|F F_{v}\right|$ inclusive even if $\left|F F_{v}\right| \leq n-2$, where $n \geq 3$.

Lemma 11 ${ }^{[9]}$ There is an automorphism σ of $F Q_{n}$ such that $\sigma\left(E_{i}\right)=E_{j}$ for any $i, j \in\{1,2, \cdots, n, c\}$.

3 Main Results

Before the proof, I give some symbols. $F F_{v}$ is the set of faulty vertices in $F Q_{n}$ and $F F_{v}^{i}$ is the set of faulty vertices in $Q_{n-1}^{i}, i=\{0,1\}$.

Lemma 12 Assume $F F_{v}$ is any subset of $V\left(F Q_{4}\right)$. Every edge in $F Q_{4}-F F_{v}$ lies on a fault-free cycle of every even length from 6 to $2^{4}-2\left|F F_{v}\right|$ inclusive even if $\left|F F_{v}\right| \leq 3$ and all faulty vertices are not adjacent to the same vertex.

Proof If $\left|F F_{v}\right|=f_{v} \leq 2$, by Lemma 10, the lemma holds. Therefore, we only need to consider the situation of $f_{v}=3$, every edge in $F Q_{4}-F F_{v}$ lies on a fault-
free cycle of every even length from 6 to 10 inclusive. By Lemma $1, F Q_{4}$ can be partitioned along dimension i into two 3 -cubes, denoted by Q_{3}^{0} and Q_{3}^{1}. There must exist an i such that $F F_{v}^{0} \nsubseteq N(u), u \in Q_{3}^{0}$ and $F F_{v}^{1} \nsubseteq N(v), v \in Q_{3}^{1}$ (We can simply divide one of the faulty vertex and the other faulty vertices into different parts $\left(Q_{3}^{0}\right.$ or Q_{3}^{1}) along an i-dimension. The proof is the condition that all faulty vertices are not adjacent to the same vertex. We can consider extreme situation. If $n-2$ faulty vertices are adjacent to the same vertex x, we can choose one of $n-2$ faulty vertices, denoted by y, then x and y have one bit differently. So we can partition along this dimension. Therefore y is in a part, other faulty vertices is in another part and all faulty vertices are not adjacent to the same vertex in this part).

Let $f_{v}^{i}=\left|F F_{v} \cap Q_{3}^{i}\right|, i=0,1, f_{v}=f_{v}^{0}+f_{v}^{1}=3$. Without loss of generality, let $F F_{v}=\left\{w_{1}, w_{2}, w_{3}\right\}, F F_{v}^{0}=\left\{w_{1}, w_{2}\right\} \in Q_{3}^{0}, F F_{v}^{1}=\left\{w_{3}\right\} \in Q_{3}^{1} . f_{v}^{0}=2$, $f_{v}^{1}=1$. e is a fault-free edge. $f_{v}^{0}=2, F F_{v}^{0} \nsubseteq N(u), u \in Q_{3}^{0}$, so $d_{H}\left(w_{1}, w_{2}\right)=1$ or $d_{H}\left(w_{1}, w_{2}\right)=3$.
(1) $e \in Q_{3}^{0}$.

Case $1 \quad d_{H}\left(w_{1}, w_{2}\right)=1$.
Then, $e \in C_{4}$, that is there exists a cycle C_{0} of every even length l_{0} containing e in Q_{3}^{0}, where $l_{0}=4$. Let $(x, y) \neq e$ be a fault-free edge in cycle C_{0} such that $\left(x^{i}, y^{i}\right)($ or $(\bar{x}, \bar{y}))$ is fault-free in Q_{3}^{1}. Let $C_{0}=\left\langle x, P_{0}, y, x\right\rangle$, then $l_{0}^{\prime}=l\left(P_{0}\right)=3$. Since $f_{v}^{1}=1$, by Lemma 4 , there exists a path P_{1} of every odd length l_{1} joining x^{i} and y^{i} (or \bar{x} and \bar{y}) in Q_{3}^{1}, where $3 \leq l_{1} \leq 5 .\left(x^{i}, y^{i}\right)$ (or (\bar{x}, \bar{y})) is fault-free, there exists a path P_{1}^{\prime} of every odd length joining x^{i} and y^{i} (or \bar{x} and \bar{y}) in Q_{3}^{1}, where $1 \leq l_{1}^{\prime} \leq 5$. Let $C=\left\langle x, P_{0}, y, y^{i}, P_{1}^{\prime}, x^{i}, x\right\rangle$ or $C=\left\langle x, P_{0}, y, \bar{y}, P_{1}^{\prime}, \bar{x}, x\right\rangle$ with even length $l=l_{0}^{\prime}+l_{1}^{\prime}+2$. Since $l_{0}^{\prime}=3$ and $1 \leq l_{1}^{\prime} \leq 5,6 \leq l \leq 10$.

Case $2 d_{H}\left(w_{1}, w_{2}\right)=3$.
Through observation, $e \in C_{6}$. Let $(x, y) \neq e$ be a fault-free edge in cycle C_{0} such that $\left(x^{i}, y^{i}\right)$ (or (\bar{x}, \bar{y})) is fault-free in Q_{3}^{1}. Let $C_{0}=\left\langle x, P_{0}, y, x\right\rangle$, then $l_{0}^{\prime}=l\left(P_{0}\right)$, $l_{0}^{\prime}=5$. Since $f_{v}^{1}=1$, by Lemma 4, there exists a path P_{1} of every odd length l_{1} joining x^{i} and y^{i} (or \bar{x} and \bar{y}) in Q_{3}^{1}, where $3 \leq l_{1} \leq 5$. (x^{i}, y^{i}) (or (\bar{x}, \bar{y})) is fault-free, there exists a path P_{1}^{\prime} of every odd length joining x^{i} and y^{i} (or \bar{x} and \bar{y}) in Q_{3}^{1}, where $1 \leq l_{1}^{\prime} \leq 5$. Let $C=\left\langle x, P_{0}, y, y^{i}, P_{1}^{\prime}, x^{i}, x\right\rangle$ or $C=\left\langle x, P_{0}, y, \bar{y}, P_{1}^{\prime}, \bar{x}, x\right\rangle$ with even length $l=l_{0}^{\prime}+l_{1}^{\prime}+2$. Since $l_{0}^{\prime}=5$ and $1 \leq l_{1}^{\prime} \leq 5,8 \leq l \leq 12$. We can obtain the desired even cycle of length 6 in C_{0}, where $l_{0}=6$. So $6 \leq l \leq 12$.
(2) $e \in Q_{3}^{1}$.

Case $1 d_{H}\left(w_{1}, w_{2}\right)=1$.
Since $f_{v}^{1}=1$, by Lemma 3 , there exists a cycle C_{1} of every even length l_{1} containing e in Q_{3}^{1}, where $4 \leq l_{1} \leq 6$. Let $(x, y) \neq e$ be a fault-free edge in cycle C_{1} such that $\left(x^{i}, y^{i}\right)$ (or (\bar{x}, \bar{y})) is fault-free in Q_{3}^{0}. Hence, there exists a path P_{1} of
every odd length l_{1}^{\prime} joining x and y in Q_{3}^{1}, where $3 \leq l_{1}^{\prime} \leq 5$. We can choose (x^{i}, y^{i}). Since $d_{H}\left(w_{1}, w_{2}\right)=1,\left(x^{i}, y^{i}\right) \in C_{4} .\left(x^{i}, y^{i}\right) \in C_{4},\left(x^{i}, y^{i}\right)$ is fault-free, then there exists a path P_{0} of every odd length l_{0} joining x^{i} and y^{i}, where $1 \leq l_{0} \leq 3$. Let $C=\left\langle x, P_{1}, y, y^{i}, P_{0}, x^{i}, x\right\rangle$ with even length $l=l_{0}+l_{1}^{\prime}+2$. Since $1 \leq l_{0} \leq 3$ and $3 \leq l_{1}^{\prime} \leq 5,6 \leq l \leq 10$.

Case $2 \quad d_{H}\left(w_{1}, w_{2}\right)=3$.
Since $f_{v}^{1}=1$, by Lemma 3, there exists a cycle C_{1} of every even length l_{1} containing e in Q_{3}^{1}, where $4 \leq l_{1} \leq 6$. Let $(x, y) \neq e$ be a fault-free edge in cycle C_{1} such that $\left(x^{i}, y^{i}\right)$ (or (\bar{x}, \bar{y})) is fault-free in Q_{3}^{0}. Hence, there exists a path P_{1} of every odd length l_{1}^{\prime} joining x and y in Q_{3}^{1}, where $3 \leq l_{1}^{\prime} \leq 5 . \quad d_{H}\left(w_{1}, w_{2}\right)=3$, through observation, $\left(x^{i}, y^{i}\right) \in C_{6}$ (or $\left.(\bar{x}, \bar{y}) \in C_{6}\right)$. We can choose $\left(x^{i}, y^{i}\right)$, then, there exists a path P_{0} of every odd length l_{0} joining x^{i} and y^{i} in Q_{3}^{0}, where $l_{0}=5$. Let $C=\left\langle x, P_{1}, y, y^{i}, P_{0}, x^{i}, x\right\rangle$ with even length $l=l_{0}+l_{1}^{\prime}+2$. Since $l_{0}=5$ and $3 \leq l_{1}^{\prime} \leq 5,10 \leq l \leq 12$. Let $C=\left\langle x, P_{1}, y, y^{i}, x^{i}, x\right\rangle$ with even length $l=1+l_{1}^{\prime}+2$, where $3 \leq l_{1}^{\prime} \leq 5$. Then $6 \leq l \leq 8$. So $6 \leq l \leq 12$.
(3) $e \in E_{i}$.

Case $1 d_{H}\left(w_{1}, w_{2}\right)=1$. Let $e=\left(x, x^{i}\right), x \in Q_{3}^{0}, x^{i} \in Q_{3}^{1}$.
Let (x, y) be a fault-free edge in such that $\left(x^{i}, y^{i}\right)$ is fault-free in Q_{3}^{1}.
$(x, y) \in C_{4},(x, y)$ is a fault-free edge, there exists a path P_{0} of every odd length l_{0} joining x and y in Q_{3}^{0}, where $1 \leq l_{0} \leq 3$. Since $f_{v}^{1}=1$, by Lemma 4 , there exists a path P_{1} of every odd length l_{1} joining x^{i} and y^{i} in Q_{3}^{1}, where $3 \leq l_{1} \leq 5$. Let $C=\left\langle x, P_{0}, y, y^{i}, P_{1}, x^{i}, x\right\rangle$ with even length $l=l_{0}+l_{1}+2$. Since $1 \leq l_{0} \leq 3$ and $3 \leq l_{1} \leq 5,6 \leq l \leq 10$.

Case $2 d_{H}\left(w_{1}, w_{2}\right)=3$. Let $e=\left(x, x^{i}\right), x \in Q_{3}^{0}, x^{i} \in Q_{3}^{1}$.
Let (x, y) be a fault-free edge in such that $\left(x^{i}, y^{i}\right)$ is fault-free in Q_{3}^{1}. Through observation, $(x, y) \in C_{6}$, there exists a path P_{0} of every odd length l_{0} joining x and y in Q_{3}^{0}, where $l_{0}=5$. Since $f_{v}^{1}=1$, by Lemma 4 , there exists a path P_{1} of every odd length l_{1} joining x^{i} and y^{i} in Q_{3}^{1}, where $3 \leq l_{1} \leq 5$. Let $C=\left\langle x, P_{0}, y, y^{i}, P_{1}, x^{i}, x\right\rangle$ with even length $l=l_{0}+l_{1}+2$. Since $l_{0}=5$ and $3 \leq l_{1} \leq 5,10 \leq l \leq 12$. Let $C=\left\langle x, y, y^{i}, P_{1}, x^{i}, x\right\rangle$ with even length $l=1+l_{1}+2$. Since $3 \leq l_{1} \leq 5,6 \leq l \leq 8$. Therefore, $6 \leq l \leq 12$.
(4) $e \in E_{c}$. Let $e=(x, \bar{x}), x \in Q_{3}^{0}, \bar{x} \in Q_{3}^{1}$.

Let $\{\bar{x}, \bar{y}\}$ replace $\left\{x^{i}, y^{i}\right\}$, the following proof is similar to (3) $e \in E_{i}$. The proof is completed.

Theorem 1 Assume $F F_{v}$ is any subset of $V\left(F Q_{n}\right)$. Every edge in $F Q_{n}-F F_{v}$ lies on a fault-free cycle of every even length from 6 to $2^{n}-2\left|F F_{v}\right|$ inclusive even if $\left|F F_{v}\right| \leq n-1$ and all faulty vertices are not adjacent to the same vertex, where $n \geq 4$.

Proof If $\left|F F_{v}\right|=f_{v} \leq n-2$, by Lemma 10, the theorem holds. When $n=4$, Lemma 12 holds. Therefore, we only need to consider the situation of $\left|F F_{v}\right|=$ $f_{v}=n-1$, where $n \geq 5$. By Lemma $1, F Q_{n}$ can be partitioned along dimension i into two $n-1$-cubes, denoted by Q_{n-1}^{0} and Q_{n-1}^{1}. There must exist an i such that $F F_{v}^{0} \nsubseteq N(u), u \in Q_{n-1}^{0}$ and $F F_{v}^{1} \nsubseteq N(v), v \in Q_{n-1}^{1}$ (We can simply divide one of the faulty vertex and the other faulty vertices into different parts (Q_{n-1}^{0} or Q_{n-1}^{1}) along an i-dimension. The proof is the condition that all faulty vertices are not adjacent to the same vertex. We can consider extreme situation. If $n-2$ faulty vertices are adjacent to the same vertex x, we can choose one of $n-2$ faulty vertices, denoted by y, then x and y have one bit differently. So we can partition along this dimension. Therefore y is in a part, other faulty vertices is in another part and all faulty vertices are not adjacent to the same vertex in this part).

Let $f_{v}^{i}=\left|F F_{v} \cap Q_{n-1}^{i}\right|, i=0,1, f_{v}=f_{v}^{0}+f_{v}^{1}=n-1$. e is a fault-free edge.
Case 1 If there exists an $i \in\{1,2, \cdots, n\}$ such that $f_{v}^{0}=n-2, f_{v}^{1}=1$, $F Q_{n}=Q_{n-1}^{0} \cup Q_{n-1}^{1}, F F_{v}^{0} \nsubseteq N(u), u \in Q_{n-1}^{0}$.

Case $1.1 e \in Q_{n-1}^{0}$.
Since $f_{v}^{0}=n-2$, by Lemma 2, there exists a cycle C_{0} of every even length l_{0} containing e in Q_{n-1}^{0}, where $6 \leq l_{0} \leq 2^{n-1}-2 f_{v}^{0}$. Let $(x, y) \neq e$ be a fault-free edge in cycle C_{0} such that $\left(x^{i}, y^{i}\right)$ (or (\bar{x}, \bar{y})) is fault-free in Q_{n-1}^{1} (Since $f_{v}^{1}=1$). Let $C_{0}=\left\langle x, P_{0}, y, x\right\rangle$, then $l_{0}^{\prime}=l\left(P_{0}\right), 5 \leq l_{0}^{\prime} \leq 2^{n-1}-2 f_{v}^{0}-1$. Since $f_{v}^{1}=1$, by Lemma 3 , there exists a cycle C_{1} of even length l_{1} containing edge $\left(x^{i}, y^{i}\right)($ or $(\bar{x}, \bar{y}))$ in Q_{n-1}^{1}, where $4 \leq l_{1} \leq 2^{n-1}-2 f_{v}^{1}$. Hence, there exists a path P_{1} of odd length l_{1}^{\prime} joining x^{i} and y^{i} (or \bar{x} and \bar{y}), where $3 \leq l_{1}^{\prime} \leq 2^{n-1}-2 f_{v}^{1}-1$. Let $C=\left\langle x, P_{0}, y, y^{i}, P_{1}, x^{i}, x\right\rangle$ or $C=\left\langle x, P_{0}, y, \bar{y}, P_{1}, \bar{x}, x\right\rangle$ with even length $l=l_{0}^{\prime}+l_{1}^{\prime}+2$. Since $5 \leq l_{0}^{\prime} \leq 2^{n-1}-2 f_{v}^{0}-1$ and $3 \leq l_{1}^{\prime} \leq 2^{n-1}-2 f_{v}^{1}-1,10 \leq l \leq 2^{n}-2\left(f_{v}^{0}+f_{v}^{1}\right)$. We can obtain the desired even cycle of length from 6 to 8 in C_{0}, where $6 \leq l_{0} \leq 2^{n-1}-2 f_{v}^{0}$. So $6 \leq l \leq 2^{n}-2\left(f_{v}^{0}+f_{v}^{1}\right)$.

Case $1.2 e \in Q_{n-1}^{1}$.
Since $f_{v}^{1}=1$, by Lemma 3, there exists a cycle C_{1} of even length l_{1} containing edge e in Q_{n-1}^{1}, where $4 \leq l_{1} \leq 2^{n-1}-2 f_{v}^{1}$. Let C_{k} be a fault-free k-cycle covering the edge e in Q_{n-1}^{1}, where $k=2^{n-1}-2 f_{v}^{1}$. Obviously, there are $2^{n-2}-f_{v}^{1}$ mutually disjoint edges excluding e in $C_{k} \cdot 2\left(2^{n-2}-f_{v}^{1}\right) \geq f_{v}^{0}$ is easy to be hold, where $f_{v}^{0}=n-2, f_{v}^{1}=1$. Thus, there exists an $(x, y) \neq e$ which is a fault-free edge in cycle C_{1} such that $\left(x^{i}, y^{i}\right)$ (or (\bar{x}, \bar{y})) is fault-free in Q_{n-1}^{0}. Let $C_{1}=\left\langle x, P_{1}, y, x\right\rangle$, then $l_{1}^{\prime}=l\left(P_{1}\right), 3 \leq l_{1}^{\prime} \leq 2^{n-1}-2 f_{v}^{1}-1$. Since $f_{v}^{0}=n-2$, and $\left(x^{i}, y^{i}\right)$ (or (\bar{x}, \bar{y})) is fault-free edge, by Lemma 2 , there exists a cycle C_{0} of even length l_{0} containing edge $\left(x^{i}, y^{i}\right)($ or $(\bar{x}, \bar{y}))$ in Q_{n-1}^{0}, where $6 \leq l_{0} \leq 2^{n-1}-2 f_{v}^{0}$. Hence, there exists a path P_{0} of odd length l_{0}^{\prime} joining x^{i} and y^{i} (or \bar{x} and \bar{y}), where $5 \leq l_{0}^{\prime} \leq 2^{n-1}-2 f_{v}^{0}-1$. Let
$C=\left\langle x, P_{1}, y, y^{i}, P_{0}, x^{i}, x\right\rangle$ or $C=\left\langle x, P_{1}, y, \bar{y}, P_{0}, \bar{x}, x\right\rangle$ with even length $l=l_{0}^{\prime}+l_{1}^{\prime}+2$. Since $5 \leq l_{0}^{\prime} \leq 2^{n-1}-2 f_{v}^{0}-1$ and $3 \leq l_{1}^{\prime} \leq 2^{n-1}-2 f_{v}^{1}-1,10 \leq l \leq 2^{n}-2\left(f_{v}^{0}+f_{v}^{1}\right)$. We can obtain the desired even cycle of length from 6 to 8 in C_{1}, where $4 \leq l_{1} \leq$ $2^{n-1}-2 f_{v}^{1}$. So $6 \leq l \leq 2^{n}-2\left(f_{v}^{0}+f_{v}^{1}\right)$.

Case $1.3 e \in E_{i}$.
Let $e=\left(x, x^{i}\right), x \in Q_{n-1}^{0}, x^{i} \in Q_{n-1}^{1}$.
Since $f_{v}^{0}=n-2, f_{v}^{1}=1, F F_{v}^{0} \nsubseteq N(u), u \in Q_{n-1}^{0}, x$ has at least 2 fault-free neighbors y_{1}, y_{2} in $Q_{n-1}^{0} . f_{v}^{1}=1$, one of the y_{1}^{i}, y_{2}^{i} must be fault-free in Q_{n-1}^{1}. Therefore, there must exist an edge (x, y) in Q_{n-1}^{0} such that (x^{i}, y^{i}) is fault-free in Q_{n-1}^{1}. Since $f_{v}^{0}=n-2$, by Lemma 2, there exists a cycle C_{0} of every even length l_{0} containing (x, y) in Q_{n-1}^{0}, where $6 \leq l_{0} \leq 2^{n-1}-2 f_{v}^{0}$. Let $C_{0}=\left\langle x, P_{0}, y, x\right\rangle$, then $l_{0}^{\prime}=l\left(P_{0}\right), 5 \leq l_{0}^{\prime} \leq 2^{n-1}-2 f_{v}^{0}-1$. Since $f_{v}^{1}=1$, by Lemma 6 , there exists a cycle P_{1} of odd length l_{1} joining x^{i} and y^{i}, where $3 \leq l_{1} \leq 2^{n-1}-2 f_{v}^{1}-1$. Since $\left(x^{i}, y^{i}\right)$ is fault-free, there exists a cycle P_{1}^{\prime} of odd length l_{1}^{\prime} joining x^{i} and y^{i}, where $1 \leq l_{1}^{\prime} \leq 2^{n-1}-2 f_{v}^{1}-1$. Let $C=\left\langle x, P_{0}, y, y^{i}, P_{1}^{\prime}, x^{i}, x\right\rangle$ with even length $l=l_{0}^{\prime}+l_{1}^{\prime}+2$. Since $5 \leq l_{0}^{\prime} \leq 2^{n-1}-2 f_{v}^{0}-1$ and $1 \leq l_{1}^{\prime} \leq 2^{n-1}-2 f_{v}^{1}-1,8 \leq l \leq 2^{n}-2\left(f_{v}^{0}+f_{v}^{1}\right)$. Let $C=\left\langle x, y, y^{i}, P_{1}, x^{i}, x\right\rangle$ with $l=1+l\left(P_{1}\right)+2, l\left(P_{1}\right)=3$, we can obtain the desired even cycle of length 6 . So $6 \leq l \leq 2^{n}-2\left(f_{v}^{0}+f_{v}^{1}\right)$.

Case $1.4 e \in E_{c}$.
The following proof is similar to Case 1.3.
Case 2 If there exists an $i \in\{1,2, \cdots, n\}$ such that $f_{v}^{0} \leq f_{v}^{1} \leq n-3 . F Q_{n}=$ $Q_{n-1}^{0} \cup Q_{n-1}^{1}$.

Case $2.1 e \in Q_{n-1}^{0}$.
Since $f_{v}^{0} \leq n-3$, by Lemma 3 , there exists a cycle C_{0} of every even length l_{0} containing edge e in Q_{n-1}^{0}, where $4 \leq l_{0} \leq 2^{n-1}-2 f_{v}^{0}$. Let C_{k} be a fault-free k-cycle covering the edge e in Q_{n-1}^{0}, where $k=2^{n-1}-2 f_{v}^{0}$. Obviously, there are $2^{n-2}-f_{v}^{0}$ mutually disjoint edges excluding e in $C_{k} .2\left(2^{n-2}-f_{v}^{0}\right)>f_{v}^{1}$ is easy to be hold, where $f_{v}^{0} \leq f_{v}^{1} \leq n-3$. Thus, there exists an $(x, y) \neq e$ which is a fault-free edge in cycle C_{k} such that $\left(x^{i}, y^{i}\right)$ (or (\bar{x}, \bar{y})) is fault-free in Q_{n-1}^{1}. Then, there exists a path
P_{0} of every odd length l_{0}^{\prime} joining x and y in Q_{n-1}^{0}, where $3 \leq l_{0}^{\prime} \leq 2^{n-1}-2 f_{v}^{0}-1$. Since $f_{v}^{1} \leq n-3$, by Lemma 3, there exists a cycle C_{1} of every even length l_{1} containing edge $\left(x^{i}, y^{i}\right)$ (or (\bar{x}, \bar{y})) in Q_{n-1}^{1}, where $4 \leq l_{1} \leq 2^{n-1}-2 f_{v}^{1}$. (x^{i}, y^{i}) (or $(\bar{x}, \bar{y}))$ is fault-free edge, so there exists a path P_{1} of odd length l_{1}^{\prime} joining x^{i} and $y^{i}\left(\right.$ or \bar{x} and \bar{y}), where $1 \leq l_{1}^{\prime} \leq 2^{n-1}-2 f_{v}^{1}-1$. Let $C=\left\langle x, P_{0}, y, y^{i}, P_{1}, x^{i}, x\right\rangle$ or $C=\left\langle x, P_{0}, y, \bar{y}, P_{1}, \bar{x}, x\right\rangle$ with even length $l=l_{0}^{\prime}+l_{1}^{\prime}+2$. Since $3 \leq l_{0}^{\prime} \leq 2^{n-1}-2 f_{v}^{0}-1$ and $1 \leq l_{1}^{\prime} \leq 2^{n-1}-2 f_{v}^{1}-1,6 \leq l \leq 2^{n}-2\left(f_{v}^{0}+f_{v}^{1}\right)$.

Case $2.2 \quad e \in Q_{n-1}^{1}$.
The following proof is similar to Case 2.1.
Case $2.3 e \in E_{i}$.
By Lemma 11, the proof is completed.
Case $2.4 \quad e \in E_{c}$.
By Lemma 11, the proof is completed.
The proof of Theorem 1 is finished.

4 Conclusion

The folded hypercube $F Q_{n}$ is an important network topology for parallel processing computer systems. According to [4], we can prove the same conclusion in $F Q_{n}$. Under the condition $\left|F F_{v}\right| \leq n-1$ and all faulty vertices are not adjacent to the same vertex, we show that if $n \geq 4$, then every edge of $F Q_{n}-F F_{v}$ lies on a fault-free cycle of every even length from 6 to $2^{n}-2\left|F F_{v}\right|$.

References

[1] J.M. Xu, Graph and Application of Graphs, Dordrecht/Boston/London: Kluwer Academic publishers, 2003.
[2] Y. Saad and M.H. Schultz, Topological properties of hypercubes, IEEE. Trans. on Comput., 37:7(1988),867-872.
[3] C.-H. Tsai, Cycles embedding in hypercubes with node failures, Information Processing Letters, 102(2007),242-246.
[4] C.-H. Tsai, C.-R.Yu, Embedding various even cycles in a hypercube with node failures, The 24th Workshop on Combinatorial Mathematics and Computation Theory, 2007, 237-243.
[5] S.-Y. Hsieh, T.-H. Shen, Edge-bipancyclicity of a hypercube with faulty vertices and edges, Discrete Applied Mathematics, 156(2008),1802-1808.
[6] S.-Y. Hsieh, C.-N. Kuo, H.-L. Huang, 1-vertex-fault-tolerant cycles embedding on folded hypercubes, Discrete Applied Mathematics, 15(2009),3094-3098.
[7] M.J. Ma, J.M. Xu, Z.Z. Du, Edge-fault-tolerant hamiltonicity of folded hypercube, Journal of University of Science and Technology of China, 36:3(2006),244-248.
[8] C.N. Kuo, S.Y. Hsieh, Pancyclicity and bipancyclicity of conditional faulty folded hypercubes, Information Sciences, 180(2010),2904-2914.
[9] J.M. Xu, M.J. Ma, Z.Z. Du, Edge-fault-tolerant properties of hypercubes and folded hypercubes, Australasian Journal of Combinatorics, 35(2006),7-16.
[10] D.Q. Cheng, R.X. Hao, Y.Q. Feng, Cycles embedding on folded hypercubes with faulty nodes, Discrete Applied Mathematics, 161(2013),2894-2900.
[11] S.-Y. Hsieh, C.-N. Kuo, Hamiltonian-connectivity and strongly Hamiltonian-laceability of folded hypercubes, Computers and Mathematics with Applications, 53(2007),10401044.
[12] M. Ma, G. Liu, X. Pan, Path embedding in faulty hypercubes, Applied Mathematics and Computation, 192(2007),233-238.
[13] D.Q. Cheng, R.X. Hao, Y.Q. Feng, Embedding even cycles on folded hypercubes with conditional faulty edges, Information Processing Letters, 115(2015),945-949.
[14] Weiping Han, S.Y. Wang, The g-Extra Conditional Diagnosability of Folded Hypercubes, Applied Mathematical Sciences, 146:9(2015),7247-7254.
[15] D.Q. Cheng, R.X. Hao, Y.Q. Feng, Odd cycles embedding on folded hypercubes with conditional faulty edges, Information Sciences, 282(2014),180-189.
(edited by Mengxin He)

[^0]: *This project was supported by NSFC (11371162) and NSFC(11171129) and HuBei (T201103).
 ${ }^{\dagger}$ Manuscript received October 10, 2015
 ${ }^{\ddagger}$ Corresponding author. E-mail: 1101358757@qq.com

