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Abstract

Let FFv be the set of faulty nodes in an n-dimensional folded hypercube
FQn with |FFv| ≤ n − 1 and all faulty vertices are not adjacent to the same
vertex. In this paper, we show that if n ≥ 4, then every edge of FQn − FFv

lies on a fault-free cycle of every even length from 6 to 2n − 2|FFv|.
Keywords folded hypercube; interconnection network; fault-tolerant;

path
2000 Mathematics Subject Classification 68M15; 68M10

1 Introduction

The n-dimensional hypercube Qn (or n-cube) is one of the most important topol-

ogy of networks due to its excellent properties such as regularity, recursive structure,

small diameter, vertex and edge transitive and relatively short mean distance [1].

In order to improve the performance of hypercube, the folded hypercube FQn has

been proposed [2].

Since a large-scale hypercube network fails in any component, it’s desirable that

the rest of the network continue to operate in spite of the failure. This leads to

the graph-embedding problem with faulty edges and/or vertices. This problem has

received much attention (see [3-10]).

The problem of embedding paths in an n-dimensional hypercube and folded

hypercube has been well studied. Tsai [3] showed that for any subset Fv of V (Qn)

with |Fv| ≤ n− 2, every edge of Qn − Fv lies on a cycle of every even length from 4

to 2n − 2|Fv| inclusive. Tsai [4] also showed that for any subset Fv of V (Qn) with

|Fv| ≤ n− 1 and all faulty vertices are not adjacent to the same vertex, every edge

of Qn − Fv lies on a cycle of every even length from 6 to 2n − 2|Fv| inclusive. Hsieh
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and Shen [5] proved that every edge of Qn − Fv − Fe lies on a cycle of every even

length from 4 to 2n − 2|Fv| even if |Fv|+ |Fe| ≤ n− 2, where n ≥ 3.

Let FFv and FFe denote the set of faulty nodes and faulty edges of FQn respec-

tively. Hsieh, Kuo and Huang [6] proved that if the folded hypercube FQn has just

only one fault node, then FQn contains cycles of every even length from 4 to 2n−2 if

n ≥ 3, and cycles of every odd length from n+1 to 2n−1 when n is even, n ≥ 2. Ma,

Xu and Du [7] further demonstrated that FQn − FFe (n ≥ 3) with |FFe| ≤ 2n− 3

contains a fault-free cycle passing through all nodes if each vertex is incident with

at least two fault-free edges. Kuo and Hsieh [8] improved the conclusion of [7] and

proved that FQn−FFe with |FFe| = 2n−3 contains a fault-free cycle of every even

length from 4 to 2n. Xu, Ma and Du [9] further showed that every fault-free edge

of FQn − FFe lies on a fault-free cycle of every even length from 4 to 2n and every

odd length from n+1 to 2n− 1 if n is even, where |FFe| ≤ n− 1. Then Cheng, Hao

and Feng [10] proved that every fault-free edge of FQn − FFv lies on a fault-free

cycle of every even length from 4 to 2n − 2|FFv| and every odd length from n + 1

to 2n − 2|FFv| − 1 if n is even, where |FFv| ≤ n− 2.

In this paper, under the conditional |FFv| ≤ n−1 and all faulty vertices are not

adjacent to the same vertex, we show that if n ≥ 4, then every edge of FQn − FFv

lies on a fault-free cycle of every even length from 6 to 2n − 2|FFv|.

2 Preliminaries

Please see [1] for graph-theoretical terminology and notation is not defined here.

A network is usually modeled by a simple connected graph G = (V,E), where

V = V (G) (or E = E(G)) is the set of vertices (or edges) of G. We define the vertex

x to be a neighbor of y if xy ∈ E(G) . A graph G is bipartite if X,Y are two disjoint

subsets of V (G) such that E(G) = {xy|x ∈ X, y ∈ Y }. A graph P = (u1, u2, · · · , uk)
is called a path if the vertices u1, u2, · · · , uk are distinct and any two consecutive

vertices ui and ui+1 are adjacent. u1 and uk are called the end-vertices of P . If

u1 = uk, the path P (u1, uk) is called a cycle (denoted by C). The length of a path

P (a cycle C), denoted by l(P ) (or l(C)), is the number of edges in P (or C). In

general, the distance of two vertices x, y is the length of the shortest (x, y)-path.

The n-dimensional hypercube Qn (or, n-cube) can be represented as an undi-

rected graph with 2n vertices. Every vertex x ∈ Qn is labeled as a binary string

x1x2 · · ·xn of length n from 00 · · · 0 to 11 · · · 1. Two vertices u and v are adjacent

if their binary strings differ in exactly one bit. For convenience, we call e ∈ E an

edge of dimension i if its end-vertices strings differ in ith-bit. In the rest of this

paper, we denote xi = x1x2 · · ·xi · · ·xn, where xi = 1− xi, xi = 0, 1. The Hamming
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distance of two vertices x = x1x2 · · ·xn and y = y1y2 · · · yn is H(x, y) =
n∑

i=1
|xi − yi|,

the number of different bits between them. Let dH(x, y) be the shortest distance of

x and y. Note that Qn is a bipartite graph, and for any two distinct vertices x, y of

Qn, dH(x, y) = H(x, y). N(x) denotes a set of the nodes which are neighbors of x.

As a variant of hypercube, the n-dimensional folded hypercube FQn is obtained

by adding more edges between its vertices.

Definition 1 The n-dimensional folded hypercube FQn is a graph with V (Qn) =

V (FQn). Two vertices x = x1x2 · · ·xn and y are connected by an edge if and only

if

(i) y = x1x2 · · ·xi · · ·xn (denoted by xi), or

(ii) y = x1x2 · · ·xi · · ·xn (denoted by x).

Therefore, the hypercube Qn is a spanning subgraph of the folded hypercube

FQn obtained by removing the second type of edges xx (x ∈ V (FQn)), called

complementary edges of FQn and denoted by Ec = {xx|x ∈ V (FQn)}.
In general, the first type of edges are defined to be the hypercube edges, and

denoted by Ei = {xxi}, i = 1, 2, · · · , n.
Lemma 1 An i-partition on FQn, where 1 ≤ i ≤ n, is a partition of FQn along

dimension i into two n− 1-cubes, denoted by Q0
n−1 and Q1

n−1.

The nodes in Q0
n−1 (respectively, Q1

n−1) can also be denoted by 0x (respectively,

1x) for brevity, where satisfying 0x = x1x2 · · ·xi · · ·xn ∈ Q0
n−1 satisfying xi = 0

(respectively, 1x = x1x2 · · ·xi · · ·xn ∈ Q1
n−1 satisfying xi = 1).

Lemma 2[4] Let fe = 0, fv = n − 1, and every fault-free vertex is adjacent to

at least two fault-free vertices in Qn for n ≥ 4. Then, every fault-free edge of Qn

lies on a fault-free cycle of every even length from 6 to 2n − 2fv inclusive.

Lemma 3[3] Assume Fv is any subset of V (Qn). Every edge in Qn−Fv lies on a

fault-free cycle of every even length from 4 to 2n−2fv inclusive even if |Fv| ≤ n−2,

where n ≥ 3.

Lemma 4[12] Let n ≥ 2 be an integer. For any two different fault-free vertices

u and v in Qn with fe + fv ≤ n− 2, there exists a fault-free uv-path of length l for

each l satisfying dH(u, v) + 2 ≤ l ≤ 2n − 2fv − 1 and 2|(l − dH(u, v)). Moreover,

there must exist a fault-free uv-path of length dH(u, v) if dH(u, v) ≥ n− 1.

Lemma 5[10] Assume that FQn is partitioned along dimension i (1 ≤ i ≤
n) into two n − 1-cubes, denoted by Q0

n−1 and Q1
n−1, 0u and 0v (respectively,

1u and 1v) are two nodes in Q0
n−1 (respectively, Q1

n−1). If dH(0u, 0v) = n −
2 (respectively, dH(1u, 1v) = n − 2), then dH(1u, 1v) = 1 and dH(1u, 1v) = 1

(respectively, dH(0u, 0v) = 1 and dH(0u, 0v) = 1); if dH(0u, 0v) = 1 (respectively,

dH(1u, 1v) = 1), then dH(1u, 1v) = n − 2 and dH(1u, 1v) = n − 2 (respectively,
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dH(0u, 0v) = n− 2 and dH(0u, 0v) = n− 2).

Lemma 6[5] There exists a path of every odd length from 3 to 2n − 2|Fv| − 1

joining any two adjacent fault-free nodes in Qn−Fv even if |Fe| = 0 and |Fv| ≤ n−2,

where n ≥ 3.

Lemma 7[10] Assume n is even and FFv is any subset of V (FQn). Every edge

of FQn−FFv lies on a fault-free cycle of every odd length from n+1 to 2n−2|FFv|−1

inclusive even if |FFv| ≤ n− 2, where n ≥ 2.

Lemma 8 Assume that FQn is partitioned along dimension i (1 ≤ i ≤ n)

into two n − 1-cubes, denoted by Q0
n−1 and Q1

n−1, 0u and 0v (respectively, 1u and

1v) are two nodes in Q0
n−1 (respectively, Q1

n−1). If dH(0u, 0v) = n− 3 (respectively,

dH(1u, 1v) = n−3), then dH(1u, 1v) = 2 and dH(1u, 1v) = 2 (respectively, dH(0u, 0v)

= 2 and dH(0u, 0v) = 2); if dH(0u, 0v) = 2 (respectively, dH(1u, 1v) = 2), then

dH(1u, 1v) = n − 3 and dH(1u, 1v) = n − 3 (respectively, dH(0u, 0v) = n − 3 and

dH(0u, 0v) = n− 3).

Proof If dH(0u, 0v) = n− 3, then dH(u, v) = n− 3, which implies dH(u, v) = 2

and dH(u, v) = 2, thus dH(1u, 1v) = 2 and dH(1u, 1v) = 2. By the similar discussion,

if dH(1u, 1v) = n− 3, then dH(0u, 0v) = 2 and dH(0u, 0v) = 2.

If dH(0u, 0v) = 2, then dH(u, v) = 2, which implies dH(u, v) = n − 3 and

dH(u, v) = n − 3, thus dH(1u, 1v) = n − 3 and dH(1u, 1v) = n − 3. By the similar

discussion, if dH(1u, 1v) = 2, then dH(0u, 0v) = n− 3 and dH(0u, 0v) = n− 3. The

proof is completed.

Lemma 9[2] For any two vertices u, v ∈ Qn, if d(u, v) = k, then there are n

internal disjoint paths from u and v such that there are k paths of length k and n−k

paths of length k + 2.

Lemma 10[10] Assume FFv is any subset of V (FQn). Every edge in FQn−FFv

lies on a fault-free cycle of every even length from 4 to 2n − 2|FFv| inclusive even if

|FFv| ≤ n− 2, where n ≥ 3.

Lemma 11[9] There is an automorphism σ of FQn such that σ(Ei) = Ej for

any i, j ∈ {1, 2, · · · , n, c}.

3 Main Results

Before the proof, I give some symbols. FFv is the set of faulty vertices in FQn

and FF i
v is the set of faulty vertices in Qi

n−1, i = {0, 1}.
Lemma 12 Assume FFv is any subset of V (FQ4). Every edge in FQ4 − FFv

lies on a fault-free cycle of every even length from 6 to 24 − 2|FFv| inclusive even if

|FFv| ≤ 3 and all faulty vertices are not adjacent to the same vertex.

Proof If |FFv| = fv ≤ 2, by Lemma 10, the lemma holds. Therefore, we only

need to consider the situation of fv = 3, every edge in FQ4 − FFv lies on a fault-
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free cycle of every even length from 6 to 10 inclusive. By Lemma 1, FQ4 can be

partitioned along dimension i into two 3-cubes, denoted by Q0
3 and Q1

3. There must

exist an i such that FF 0
v ̸⊆ N(u), u ∈ Q0

3 and FF 1
v ̸⊆ N(v), v ∈ Q1

3 (We can simply

divide one of the faulty vertex and the other faulty vertices into different parts (Q0
3

or Q1
3) along an i-dimension. The proof is the condition that all faulty vertices are

not adjacent to the same vertex. We can consider extreme situation. If n− 2 faulty

vertices are adjacent to the same vertex x, we can choose one of n−2 faulty vertices,

denoted by y, then x and y have one bit differently. So we can partition along this

dimension. Therefore y is in a part, other faulty vertices is in another part and all

faulty vertices are not adjacent to the same vertex in this part).

Let f i
v = |FFv ∩ Qi

3|, i = 0, 1, fv = f0
v + f1

v = 3. Without loss of generality,

let FFv = {w1, w2, w3}, FF 0
v = {w1, w2} ∈ Q0

3, FF 1
v = {w3} ∈ Q1

3. f0
v = 2,

f1
v = 1. e is a fault-free edge. f0

v = 2, FF 0
v ̸⊆ N(u), u ∈ Q0

3, so dH(w1, w2) = 1 or

dH(w1, w2) = 3.

(1) e ∈ Q0
3.

Case 1 dH(w1, w2) = 1.

Then, e ∈ C4, that is there exists a cycle C0 of every even length l0 containing

e in Q0
3, where l0 = 4. Let (x, y) ̸= e be a fault-free edge in cycle C0 such that

(xi, yi) (or (x, y)) is fault-free in Q1
3. Let C0 = ⟨x, P0, y, x⟩, then l′0 = l(P0) = 3.

Since f1
v = 1, by Lemma 4, there exists a path P1 of every odd length l1 joining xi

and yi (or x and y) in Q1
3, where 3 ≤ l1 ≤ 5. (xi, yi) (or (x, y)) is fault-free, there

exists a path P ′
1 of every odd length joining xi and yi (or x and y) in Q1

3, where

1 ≤ l′1 ≤ 5. Let C = ⟨x, P0, y, y
i, P ′

1, x
i, x⟩ or C = ⟨x, P0, y, y, P

′
1, x, x⟩ with even

length l = l′0 + l′1 + 2. Since l′0 = 3 and 1 ≤ l′1 ≤ 5, 6 ≤ l ≤ 10.

Case 2 dH(w1, w2) = 3.

Through observation, e ∈ C6. Let (x, y) ̸= e be a fault-free edge in cycle C0 such

that (xi, yi) (or (x, y)) is fault-free in Q1
3. Let C0 = ⟨x, P0, y, x⟩, then l′0 = l(P0),

l′0 = 5. Since f1
v = 1, by Lemma 4, there exists a path P1 of every odd length

l1 joining xi and yi (or x and y) in Q1
3, where 3 ≤ l1 ≤ 5. (xi, yi) (or (x, y)) is

fault-free, there exists a path P ′
1 of every odd length joining xi and yi (or x and y)

in Q1
3, where 1 ≤ l′1 ≤ 5. Let C = ⟨x, P0, y, y

i, P ′
1, x

i, x⟩ or C = ⟨x, P0, y, y, P
′
1, x, x⟩

with even length l = l′0 + l′1 + 2. Since l′0 = 5 and 1 ≤ l′1 ≤ 5, 8 ≤ l ≤ 12. We can

obtain the desired even cycle of length 6 in C0, where l0 = 6. So 6 ≤ l ≤ 12.

(2) e ∈ Q1
3.

Case 1 dH(w1, w2) = 1.

Since f1
v = 1, by Lemma 3, there exists a cycle C1 of every even length l1

containing e in Q1
3, where 4 ≤ l1 ≤ 6. Let (x, y) ̸= e be a fault-free edge in cycle

C1 such that (xi, yi) (or (x, y)) is fault-free in Q0
3. Hence, there exists a path P1 of
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every odd length l′1 joining x and y in Q1
3, where 3 ≤ l′1 ≤ 5. We can choose (xi, yi).

Since dH(w1, w2) = 1, (xi, yi) ∈ C4. (xi, yi) ∈ C4, (x
i, yi) is fault-free, then there

exists a path P0 of every odd length l0 joining xi and yi, where 1 ≤ l0 ≤ 3. Let

C = ⟨x, P1, y, y
i, P0, x

i, x⟩ with even length l = l0 + l′1 + 2. Since 1 ≤ l0 ≤ 3 and

3 ≤ l′1 ≤ 5, 6 ≤ l ≤ 10.

Case 2 dH(w1, w2) = 3.

Since f1
v = 1, by Lemma 3, there exists a cycle C1 of every even length l1

containing e in Q1
3, where 4 ≤ l1 ≤ 6. Let (x, y) ̸= e be a fault-free edge in cycle

C1 such that (xi, yi) (or (x, y)) is fault-free in Q0
3. Hence, there exists a path P1

of every odd length l′1 joining x and y in Q1
3, where 3 ≤ l′1 ≤ 5. dH(w1, w2) = 3,

through observation, (xi, yi) ∈ C6 (or (x, y) ∈ C6). We can choose (xi, yi), then,

there exists a path P0 of every odd length l0 joining xi and yi in Q0
3, where l0 = 5.

Let C = ⟨x, P1, y, y
i, P0, x

i, x⟩ with even length l = l0 + l′1 + 2. Since l0 = 5 and

3 ≤ l′1 ≤ 5, 10 ≤ l ≤ 12. Let C = ⟨x, P1, y, y
i, xi, x⟩ with even length l = 1 + l′1 + 2,

where 3 ≤ l′1 ≤ 5. Then 6 ≤ l ≤ 8. So 6 ≤ l ≤ 12.

(3) e ∈ Ei.

Case 1 dH(w1, w2) = 1. Let e = (x, xi), x ∈ Q0
3, x

i ∈ Q1
3.

Let (x, y) be a fault-free edge in such that (xi, yi) is fault-free in Q1
3.

(x, y) ∈ C4, (x, y) is a fault-free edge, there exists a path P0 of every odd length

l0 joining x and y in Q0
3, where 1 ≤ l0 ≤ 3. Since f1

v = 1, by Lemma 4, there exists

a path P1 of every odd length l1 joining xi and yi in Q1
3, where 3 ≤ l1 ≤ 5. Let

C = ⟨x, P0, y, y
i, P1, x

i, x⟩ with even length l = l0 + l1 + 2. Since 1 ≤ l0 ≤ 3 and

3 ≤ l1 ≤ 5, 6 ≤ l ≤ 10.

Case 2 dH(w1, w2) = 3. Let e = (x, xi), x ∈ Q0
3, x

i ∈ Q1
3.

Let (x, y) be a fault-free edge in such that (xi, yi) is fault-free in Q1
3. Through

observation, (x, y) ∈ C6, there exists a path P0 of every odd length l0 joining x and y

in Q0
3, where l0 = 5. Since f1

v = 1, by Lemma 4, there exists a path P1 of every odd

length l1 joining xi and yi in Q1
3, where 3 ≤ l1 ≤ 5. Let C = ⟨x, P0, y, y

i, P1, x
i, x⟩

with even length l = l0 + l1 + 2. Since l0 = 5 and 3 ≤ l1 ≤ 5, 10 ≤ l ≤ 12. Let

C = ⟨x, y, yi, P1, x
i, x⟩ with even length l = 1 + l1 + 2. Since 3 ≤ l1 ≤ 5, 6 ≤ l ≤ 8.

Therefore, 6 ≤ l ≤ 12.

(4) e ∈ Ec. Let e = (x, x), x ∈ Q0
3, x ∈ Q1

3.

Let {x, y} replace {xi, yi}, the following proof is similar to (3) e ∈ Ei. The proof

is completed.

Theorem 1 Assume FFv is any subset of V (FQn). Every edge in FQn −FFv

lies on a fault-free cycle of every even length from 6 to 2n − 2|FFv| inclusive even

if |FFv| ≤ n − 1 and all faulty vertices are not adjacent to the same vertex, where

n ≥ 4.
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Proof If |FFv| = fv ≤ n − 2, by Lemma 10, the theorem holds. When n = 4,

Lemma 12 holds. Therefore, we only need to consider the situation of |FFv| =

fv = n − 1, where n ≥ 5. By Lemma 1, FQn can be partitioned along dimension

i into two n − 1-cubes, denoted by Q0
n−1 and Q1

n−1. There must exist an i such

that FF 0
v ̸⊆ N(u), u ∈ Q0

n−1 and FF 1
v ̸⊆ N(v), v ∈ Q1

n−1 (We can simply divide

one of the faulty vertex and the other faulty vertices into different parts (Q0
n−1 or

Q1
n−1) along an i-dimension. The proof is the condition that all faulty vertices are

not adjacent to the same vertex. We can consider extreme situation. If n− 2 faulty

vertices are adjacent to the same vertex x, we can choose one of n−2 faulty vertices,

denoted by y, then x and y have one bit differently. So we can partition along this

dimension. Therefore y is in a part, other faulty vertices is in another part and all

faulty vertices are not adjacent to the same vertex in this part).

Let f i
v = |FFv ∩Qi

n−1|, i = 0, 1, fv = f0
v + f1

v = n− 1. e is a fault-free edge.

Case 1 If there exists an i ∈ {1, 2, · · · , n} such that f0
v = n − 2, f1

v = 1,

FQn = Q0
n−1 ∪Q1

n−1, FF 0
v ̸⊆ N(u), u ∈ Q0

n−1.

Case 1.1 e ∈ Q0
n−1.

Since f0
v = n − 2, by Lemma 2, there exists a cycle C0 of every even length l0

containing e in Q0
n−1, where 6 ≤ l0 ≤ 2n−1 − 2f0

v . Let (x, y) ̸= e be a fault-free edge

in cycle C0 such that (xi, yi) (or (x, y)) is fault-free in Q1
n−1 (Since f1

v = 1). Let

C0 = ⟨x, P0, y, x⟩, then l′0 = l(P0), 5 ≤ l′0 ≤ 2n−1−2f0
v −1. Since f1

v = 1, by Lemma

3, there exists a cycle C1 of even length l1 containing edge (xi, yi) (or (x, y)) in Q1
n−1,

where 4 ≤ l1 ≤ 2n−1− 2f1
v . Hence, there exists a path P1 of odd length l′1 joining xi

and yi (or x and y), where 3 ≤ l′1 ≤ 2n−1−2f1
v −1. Let C = ⟨x, P0, y, y

i, P1, x
i, x⟩ or

C = ⟨x, P0, y, y, P1, x, x⟩ with even length l = l′0+l′1+2. Since 5 ≤ l′0 ≤ 2n−1−2f0
v−1

and 3 ≤ l′1 ≤ 2n−1 − 2f1
v − 1, 10 ≤ l ≤ 2n − 2(f0

v + f1
v ). We can obtain the

desired even cycle of length from 6 to 8 in C0, where 6 ≤ l0 ≤ 2n−1 − 2f0
v . So

6 ≤ l ≤ 2n − 2(f0
v + f1

v ).

Case 1.2 e ∈ Q1
n−1.

Since f1
v = 1, by Lemma 3, there exists a cycle C1 of even length l1 containing

edge e in Q1
n−1, where 4 ≤ l1 ≤ 2n−1 − 2f1

v . Let Ck be a fault-free k-cycle covering

the edge e in Q1
n−1, where k = 2n−1 − 2f1

v . Obviously, there are 2n−2 − f1
v mutually

disjoint edges excluding e in Ck. 2(2n−2 − f1
v ) ≥ f0

v is easy to be hold, where

f0
v = n − 2, f1

v = 1. Thus, there exists an (x, y) ̸= e which is a fault-free edge in

cycle C1 such that (xi, yi) (or (x, y)) is fault-free in Q0
n−1. Let C1 = ⟨x, P1, y, x⟩,

then l′1 = l(P1), 3 ≤ l′1 ≤ 2n−1 − 2f1
v − 1. Since f0

v = n− 2, and (xi, yi) (or (x, y)) is

fault-free edge, by Lemma 2, there exists a cycle C0 of even length l0 containing edge

(xi, yi) (or (x, y)) in Q0
n−1, where 6 ≤ l0 ≤ 2n−1−2f0

v . Hence, there exists a path P0

of odd length l′0 joining xi and yi (or x and y), where 5 ≤ l′0 ≤ 2n−1 − 2f0
v − 1. Let
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C = ⟨x, P1, y, y
i, P0, x

i, x⟩ or C = ⟨x, P1, y, y, P0, x, x⟩ with even length l = l′0+l′1+2.

Since 5 ≤ l′0 ≤ 2n−1− 2f0
v − 1 and 3 ≤ l′1 ≤ 2n−1− 2f1

v − 1, 10 ≤ l ≤ 2n− 2(f0
v + f1

v ).

We can obtain the desired even cycle of length from 6 to 8 in C1, where 4 ≤ l1 ≤
2n−1 − 2f1

v . So 6 ≤ l ≤ 2n − 2(f0
v + f1

v ).

Case 1.3 e ∈ Ei.

Let e = (x, xi), x ∈ Q0
n−1, xi ∈ Q1

n−1.

Since f0
v = n − 2, f1

v = 1, FF 0
v ̸⊆ N(u), u ∈ Q0

n−1, x has at least 2 fault-free

neighbors y1, y2 in Q0
n−1. f1

v = 1, one of the yi1, y
i
2 must be fault-free in Q1

n−1.

Therefore, there must exist an edge (x, y) in Q0
n−1 such that (xi, yi) is fault-free in

Q1
n−1. Since f0

v = n − 2, by Lemma 2, there exists a cycle C0 of every even length

l0 containing (x, y) in Q0
n−1, where 6 ≤ l0 ≤ 2n−1 − 2f0

v . Let C0 = ⟨x, P0, y, x⟩, then
l′0 = l(P0), 5 ≤ l′0 ≤ 2n−1 − 2f0

v − 1. Since f1
v = 1, by Lemma 6, there exists a

cycle P1 of odd length l1 joining xi and yi, where 3 ≤ l1 ≤ 2n−1 − 2f1
v − 1. Since

(xi, yi) is fault-free, there exists a cycle P ′
1 of odd length l′1 joining xi and yi, where

1 ≤ l′1 ≤ 2n−1−2f1
v−1. Let C = ⟨x, P0, y, y

i, P ′
1, x

i, x⟩ with even length l = l′0+l′1+2.

Since 5 ≤ l′0 ≤ 2n−1 − 2f0
v − 1 and 1 ≤ l′1 ≤ 2n−1 − 2f1

v − 1, 8 ≤ l ≤ 2n − 2(f0
v + f1

v ).

Let C = ⟨x, y, yi, P1, x
i, x⟩ with l = 1 + l(P1) + 2, l(P1) = 3, we can obtain the

desired even cycle of length 6. So 6 ≤ l ≤ 2n − 2(f0
v + f1

v ).

x

y

i
x x

i
y y

0

1n
Q

1

1n
Q

e

0
P 1

P

1.1case

x

y

i
x x

i
y y

0

1n
Q

1

1n
Q

e

0
P 1

P

1.2case

x

y

i
x

i
y

0

1n
Q

1

1n
Q

e

0
P 1

P

1.3case

Case 1.4 e ∈ Ec.

The following proof is similar to Case 1.3.

Case 2 If there exists an i ∈ {1, 2, · · · , n} such that f0
v ≤ f1

v ≤ n − 3. FQn =

Q0
n−1 ∪Q1

n−1.

Case 2.1 e ∈ Q0
n−1.

Since f0
v ≤ n − 3, by Lemma 3, there exists a cycle C0 of every even length l0

containing edge e in Q0
n−1, where 4 ≤ l0 ≤ 2n−1−2f0

v . Let Ck be a fault-free k-cycle

covering the edge e in Q0
n−1, where k = 2n−1 − 2f0

v . Obviously, there are 2n−2 − f0
v

mutually disjoint edges excluding e in Ck. 2(2n−2 − f0
v ) > f1

v is easy to be hold,

where f0
v ≤ f1

v ≤ n− 3. Thus, there exists an (x, y) ̸= e which is a fault-free edge in

cycle Ck such that (xi, yi) (or (x, y)) is fault-free in Q1
n−1. Then, there exists a path
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P0 of every odd length l′0 joining x and y in Q0
n−1, where 3 ≤ l′0 ≤ 2n−1 − 2f0

v − 1.

Since f1
v ≤ n − 3, by Lemma 3, there exists a cycle C1 of every even length l1

containing edge (xi, yi) (or (x, y)) in Q1
n−1, where 4 ≤ l1 ≤ 2n−1 − 2f1

v . (xi, yi) (or

(x, y)) is fault-free edge, so there exists a path P1 of odd length l′1 joining xi and

yi (or x and y), where 1 ≤ l′1 ≤ 2n−1 − 2f1
v − 1. Let C = ⟨x, P0, y, y

i, P1, x
i, x⟩ or

C = ⟨x, P0, y, y, P1, x, x⟩ with even length l = l′0+l′1+2. Since 3 ≤ l′0 ≤ 2n−1−2f0
v−1

and 1 ≤ l′1 ≤ 2n−1 − 2f1
v − 1, 6 ≤ l ≤ 2n − 2(f0

v + f1
v ).

Case 2.2 e ∈ Q1
n−1.

The following proof is similar to Case 2.1.

Case 2.3 e ∈ Ei.

By Lemma 11, the proof is completed.

Case 2.4 e ∈ Ec.

By Lemma 11, the proof is completed.

The proof of Theorem 1 is finished.

4 Conclusion

The folded hypercube FQn is an important network topology for parallel pro-

cessing computer systems. According to [4], we can prove the same conclusion in

FQn. Under the condition |FFv| ≤ n − 1 and all faulty vertices are not adjacent

to the same vertex, we show that if n ≥ 4, then every edge of FQn − FFv lies on a

fault-free cycle of every even length from 6 to 2n − 2|FFv|.
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