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Abstract

Let F'F, be the set of faulty nodes in an n-dimensional folded hypercube
FQ, with |FF,] <n —1 and all faulty vertices are not adjacent to the same
vertex. In this paper, we show that if n > 4, then every edge of F'Q,, — F'F,
lies on a fault-free cycle of every even length from 6 to 2" — 2|FF,|.
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1 Introduction

The n-dimensional hypercube @,, (or n-cube) is one of the most important topol-
ogy of networks due to its excellent properties such as regularity, recursive structure,
small diameter, vertex and edge transitive and relatively short mean distance [1].
In order to improve the performance of hypercube, the folded hypercube F (@, has
been proposed [2].

Since a large-scale hypercube network fails in any component, it’s desirable that
the rest of the network continue to operate in spite of the failure. This leads to
the graph-embedding problem with faulty edges and/or vertices. This problem has
received much attention (see [3-10]).

The problem of embedding paths in an n-dimensional hypercube and folded
hypercube has been well studied. Tsai [3] showed that for any subset F, of V(Q,)
with |F,| < n —2, every edge of @, — F, lies on a cycle of every even length from 4
to 2" — 2|F,| inclusive. Tsai [4] also showed that for any subset F, of V(Q,) with
|Fy| <n—1 and all faulty vertices are not adjacent to the same vertex, every edge
of @, — F, lies on a cycle of every even length from 6 to 2" — 2|F,,| inclusive. Hsieh
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and Shen [5] proved that every edge of @, — F, — F, lies on a cycle of every even
length from 4 to 2" — 2|F,| even if |F,| + |Fe| < n — 2, where n > 3.

Let F'F, and F'F, denote the set of faulty nodes and faulty edges of F'Q),, respec-
tively. Hsieh, Kuo and Huang [6] proved that if the folded hypercube F@,, has just
only one fault node, then F'@Q,, contains cycles of every even length from 4 to 2" —2 if
n > 3, and cycles of every odd length from n+1 to 2" —1 when n is even, n > 2. Ma,
Xu and Du [7] further demonstrated that FQ, — FF, (n > 3) with |[FF.| <2n —3
contains a fault-free cycle passing through all nodes if each vertex is incident with
at least two fault-free edges. Kuo and Hsieh [8] improved the conclusion of [7] and
proved that F'Q,, — FF, with |F'F,| = 2n— 3 contains a fault-free cycle of every even
length from 4 to 2". Xu, Ma and Du [9] further showed that every fault-free edge
of FQ, — FF, lies on a fault-free cycle of every even length from 4 to 2" and every
odd length from n+1 to 2" — 1 if n is even, where |F'F¢| < n—1. Then Cheng, Hao
and Feng [10] proved that every fault-free edge of FQ, — FF, lies on a fault-free
cycle of every even length from 4 to 2" — 2|FF,| and every odd length from n + 1
to 2" — 2|FF,| — 1 if n is even, where |FF,| <n — 2.

In this paper, under the conditional |F'F,| < n—1 and all faulty vertices are not
adjacent to the same vertex, we show that if n > 4, then every edge of FQ, — FF,
lies on a fault-free cycle of every even length from 6 to 2" — 2|F'F,|.

2 Preliminaries

Please see [1] for graph-theoretical terminology and notation is not defined here.
A network is usually modeled by a simple connected graph G = (V| E), where
V =V(Q) (or E = E(Q)) is the set of vertices (or edges) of G. We define the vertex
x to be a neighbor of y if zy € E(G) . A graph G is bipartite if X, Y are two disjoint
subsets of V(G) such that E(G) = {zy|z € X,y € Y}. A graph P = (uy,ua,- - ,ug)
is called a path if the vertices w1, uo, - ,ux are distinct and any two consecutive
vertices u; and u;y1 are adjacent. u; and wuy are called the end-vertices of P. If
u; = ug, the path P(uj,uy) is called a cycle (denoted by C'). The length of a path
P (a cycle C), denoted by I(P) (or I(C)), is the number of edges in P (or C). In
general, the distance of two vertices z,y is the length of the shortest (z,y)-path.

The n-dimensional hypercube @,, (or, n-cube) can be represented as an undi-
rected graph with 2" vertices. Every vertex x € @, is labeled as a binary string
2122 - - Ty, of length n from 00---0 to 11---1. Two vertices u and v are adjacent
if their binary strings differ in exactly one bit. For convenience, we call e € E an
edge of dimension 7 if its end-vertices strings differ in ¢th-bit. In the rest of this
paper, we denote &' = x1Ty - T - - - Tn, where T; = 1 — x;, ; = 0, 1. The Hamming
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n
distance of two vertices z = x1x2---xp and y = y1ya - yn is H(z,y) = > |z — i,
=1

the number of different bits between them. Let dy(x,y) be the shortestzzlistance of
x and y. Note that @, is a bipartite graph, and for any two distinct vertices x,y of
Qn, di(z,y) = H(x,y). N(x) denotes a set of the nodes which are neighbors of x.

As a variant of hypercube, the n-dimensional folded hypercube F'Q),, is obtained
by adding more edges between its vertices.

Definition 1 The n-dimensional folded hypercube F'Q,, is a graph with V(Q,,) =
V(FQ,). Two vertices © = z1x2-- -z, and y are connected by an edge if and only
if

(i) y = w129+ T - - 7, (denoted by z?), or

(ii) y = T1x2 - - - T; - - T, (denoted by ).

Therefore, the hypercube @,, is a spanning subgraph of the folded hypercube
F@,, obtained by removing the second type of edges 2z (z € V(FQ,)), called
complementary edges of FQ,, and denoted by E. = {2Z|z € V(FQ,)}.

In general, the first type of edges are defined to be the hypercube edges, and
denoted by E; = {zx'},i=1,2,--- ,n.

Lemma 1 An i-partition on FQy, where 1 < i < n, is a partition of F'Q,, along

dimension i into two n — 1-cubes, denoted by Q°_; and QL ;.

1
n—1

The nodes in Q°_, (respectively, QL _,) can also be denoted by Ox (respectively,
1z) for brevity, where satisfying Ox = m1x9---x; -2y € QY satisfying x; = 0
(respectively, 1z = x1x9 -+ ;- Ty € QL | satisfying x; = 1).

Lemma 24 Let f. =0, f, = n— 1, and every fault-free vertex is adjacent to
at least two fault-free vertices in Qn for n > 4. Then, every fault-free edge of Qn
lies on a fault-free cycle of every even length from 6 to 2" — 2f, inclusive.

Lemma 3B Assume F, is any subset of V(Qn). Every edge in Q,—F, lies on a
fault-free cycle of every even length from 4 to 2" —2f, inclusive even if |F,| < n—2,
where n > 3.

Lemma 4% Let n > 2 be an integer. For any two different fault-free vertices
u and v in Qn with fo+ f, < n—2, there exists a fault-free uv-path of length | for
each 1 satisfying dg(u,v) +2 <1 < 2" —2f, — 1 and 2|(l — dg(u,v)). Moreover,
there must exist a fault-free uv-path of length dg(u,v) if dg(u,v) > n — 1.

Lemma 519  Assume that FQ, is partitioned along dimension i (1 <i<
n) into two n — l-cubes, denoted by Q%_l and Q}z—p Ou and Ov (respectively,
lu and 1v) are two nodes in Q°_; (respectively, QL ;). If dy(Ou,0v) = n —
2 (respectively, dg(lu,lv) = n — 2), then dy(lu,lv) = 1 and dg(lu,1v) = 1
(respectively, di(0u,0v) = 1 and dg(0u,00) = 1); if dg(Ou,0v) = 1 (respectively,
dp(lu,1v) = 1), then dg(lu,1v) = n — 2 and dg(lu, 1) = n — 2 (respectively,
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dp (0w, 0v) =n — 2 and dg(0u, 00) = n — 2).

Lemma 60! There exists a path of every odd length from 3 to 2" — 2|F,| —1
joining any two adjacent fault-free nodes in Q,— F, even if |F.| = 0 and |F,| < n—2,
where n > 3.

Lemma 719 Assume n is even and FF, is any subset of V(FQ,). Every edge
of FQn—FF, lies on a fault-free cycle of every odd length from n+1 to 2" —2|F F,|—1
inclusive even if |FF,| <n — 2, where n > 2.

Lemma 8 Assume that FQ, is partitioned along dimension i (1 < i < n)
nto two n — 1-cubes, denoted by Qg_l and quz—p Ou and Qv (respectively, 1u and
1v) are two nodes in Q°_ (respectively, QL ). If dp(Ou,0v) = n — 3 (respectively,
dp(lu, 1v) = n—=3), then dy (11, 1v) = 2 and dg (1lu, 10) = 2 (respectively, d (0w, Ov)
= 2 and dg(0u,00) = 2); if dg(Ou,0v) = 2 (respectively, dpy(lu,lv) = 2), then
dg(lu,1v) = n — 3 and dg(lu, 1) = n — 3 (respectively, dgy(0u,0v) = n — 3 and
d(0u, 00) = n — 3).

Proof If dy(Ou,0v) = n — 3, then dy(u,v) = n — 3, which implies dy (u,v) = 2
and dg (u,v) = 2, thus dy (17, 1v) = 2 and dg(1lu, 19) = 2. By the similar discussion,
if dg(1u, lv) = n — 3, then dg (0T, 0v) = 2 and dy (0u, 00) = 2.

If dg(Ou,0v) = 2, then dy(u,v) = 2, which implies dgy(u,v) = n — 3 and
dp(u,v) = n — 3, thus dy(1w, lv) = n — 3 and dy (1w, 1v) = n — 3. By the similar
discussion, if dy(1lu, lv) = 2, then dg (0, 0v) =n — 3 and dgy(0u,00) = n — 3. The
proof is completed.

Lemma 92 For any two vertices u,v € Q, if d(u,v) = k, then there are n
internal disjoint paths from u and v such that there are k paths of length k and n—k
paths of length k + 2.

Lemma 1019 Assume FF, is any subset of V(FQy). Every edge in FQ,—FF,
lies on a fault-free cycle of every even length from 4 to 2™ — 2| F'F,| inclusive even if
|FFy| <n—2, where n > 3.

Lemma 119 There is an automorphism o of FQ,, such that o(E;) = E; for
any i,j € {1,2,--- ,n,c}.

3 Main Results

Before the proof, I give some symbols. F'F;, is the set of faulty vertices in F' @,
and FF! is the set of faulty vertices in Q¢,_;, i = {0,1}.

Lemma 12 Assume FF, is any subset of V(FQ4). Every edge in FQ4 — FF,
lies on a fault-free cycle of every even length from 6 to 2% — 2| FF,| inclusive even if
|FF,| <3 and all faulty vertices are not adjacent to the same vertez.

Proof If |FF,| = f, <2, by Lemma 10, the lemma holds. Therefore, we only
need to consider the situation of f, = 3, every edge in FQ4 — F'F, lies on a fault-
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free cycle of every even length from 6 to 10 inclusive. By Lemma 1, F(4 can be
partitioned along dimension i into two 3-cubes, denoted by Q9 and Q3. There must
exist an i such that FF? ¢ N(u), u € Q3 and FF! ¢ N(v), v € Qi (We can simply
divide one of the faulty vertex and the other faulty vertices into different parts (Qg
or Q3) along an i-dimension. The proof is the condition that all faulty vertices are
not adjacent to the same vertex. We can consider extreme situation. If n — 2 faulty
vertices are adjacent to the same vertex x, we can choose one of n— 2 faulty vertices,
denoted by y, then = and y have one bit differently. So we can partition along this
dimension. Therefore y is in a part, other faulty vertices is in another part and all
faulty vertices are not adjacent to the same vertex in this part).

Let fi = |[FE,NQ%,i=0,1, f, = fO+ fL = 3. Without loss of generality,
let FE, = {wi,wa, w3}, FFO = {wi,ws} € QY, FF! = {w3} € Q. f9 = 2,
fl=1. eis a fault-free edge. f0 =2, FF? Z N(u), u € QY, so dy (w1, wz) = 1 or
dH(wl,wg) =3.

(1) e € QY.

Case 1 dp(wi,wy) = 1.

Then, e € Cy, that is there exists a cycle Cy of every even length [y containing
e in QY, where [y = 4. Let (z,y) # e be a fault-free edge in cycle Cy such that
(2%, ") (or (Z,7)) is fault-free in Qi. Let Cy = (z, Po,y,x), then I, = I(Py) = 3.
Since f! =1, by Lemma 4, there exists a path P; of every odd length [; joining 2
and y' (or T and ¥) in Q3, where 3 < I; < 5. (z,y") (or (z,7)) is fault-free, there
exists a path P of every odd length joining z° and y* (or Z and y) in Q3, where
1 <1y <5 Let C = (x,Py,y,y", P|,x,z) or C = (v, Py,y,7y, P{,Z,r) with even
length | =Ij + 1} +2. Since [{; =3 and 1 <} <5, 6 <[ < 10.

Case 2 dy(wi,wy) = 3.

Through observation, e € Cg. Let (z,y) # e be a fault-free edge in cycle Cp such
that (2%, y%) (or (Z,7)) is fault-free in Q1. Let Cy = (=, Py, y,x), then I}, = I(P),
I, = 5. Since fl =1, by Lemma 4, there exists a path P; of every odd length
[y joining z* and y' (or T and ¥) in Q3, where 3 < I; < 5. (2%,9") (or (7,7)) is
fault-free, there exists a path Pj of every odd length joining z* and y* (or T and %)
in Qf, where 1 <1} <5. Let C = (x, Po,y,y", P{,2%,z) or C = (x, Po,y,Y, P|, T, )
with even length [ = [{; + 1] +2. Since I =5 and 1 <[} <5, 8 <[ < 12. We can
obtain the desired even cycle of length 6 in Cy, where [p = 6. So 6 <[ < 12.

(2) e € Q1.

Case 1 dH(wl,wg) =1.

Since f! = 1, by Lemma 3, there exists a cycle C; of every even length Iy
containing e in Q3, where 4 < [} < 6. Let (z,y) # e be a fault-free edge in cycle
Cy such that (2%, y%) (or (Z,7)) is fault-free in Q9. Hence, there exists a path P; of
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every odd length [} joining x and y in Q%, where 3 < 11 <5. We can choose (¢, y').
Since dg(wi,w2) = 1, (2%, y%) € Cy. (2%,y") € Cy, (2%,y") is fault-free, then there
exists a path Py of every odd length Iy joining 2 and ¢, where 1 < Iy < 3. Let
C = (z,P,y,y', Py, 2%, 2) with even length [ = lo + I} + 2. Since 1 < [y < 3 and
3<1,<5,6<1<10.

Case 2 dy(wi,wy) = 3.

Since f! = 1, by Lemma 3, there exists a cycle C; of every even length Iy
containing e in Q3, where 4 < I} < 6. Let (z,y) # e be a fault-free edge in cycle
Cy such that (z,y") (or (z,7)) is fault-free in QY. Hence, there exists a path P
of every odd length I} joining x and y in Q3, where 3 < I} < 5. dpy(wi,ws2) = 3,
through observation, (z°,y") € Cs (or (z,7) € Cg). We can choose (z%,y'), then,
there exists a path Py of every odd length [y joining 2 and y* in QY, where [y = 5.
Let C = (z,P1,y,y", Py, ', x) with even length [ = Iy + I} + 2. Since Iy = 5 and
3<1<5,10<1<12. Let C = (z,Py,y,y", 2, x) with even length [ = 1+ ] + 2,
where 3 <) <5. Then 6 <1<8. So6<1[<12.

(3) e € FE;.

Case 1 dy(wy,wz) =1. Let e = (x,2%), # € QY, 2 € Q3.

Let (x,y) be a fault-free edge in such that (2%, y) is fault-free in Q3.

(x,y) € Cy4, (z,y) is a fault-free edge, there exists a path Py of every odd length
lp joining « and y in Qg, where 1 < lp < 3. Since f} = 1, by Lemma 4, there exists
a path P of every odd length [; joining z’ and y' in Q3, where 3 < [; < 5. Let
C = (x, Py,y,y", P1, 2", ) with even length [ = Iy +I; +2. Since 1 < Iy < 3 and
3<h <5, 6<I<10.

Case 2 dy(wy,wz) = 3. Let e = (x,2%), v € QY, 2 € Q3.

Let (z,y) be a fault-free edge in such that (z¢,y*) is fault-free in Q3. Through
observation, (x,y) € Cg, there exists a path Py of every odd length [y joining x and y
in QY, where [y = 5. Since f! =1, by Lemma 4, there exists a path P; of every odd
length /1 joining 2% and v in Q1, where 3 <3 < 5. Let C = (z, Py, y,y", P1, 2%, x)
with even length | = lp + 11 + 2. Since l[p =5 and 3 <[} <5, 10 <[ < 12. Let
C = (z,y,y’, P, z', x) with even length [ =1 +1; + 2. Since 3<1; <5,6<1<8.
Therefore, 6 <[ < 12.

(4) e € E.. Let e = (2,7), 2 € Q3, T € Q3.

Let {Z,7} replace {x%,3'}, the following proof is similar to (3) e € E;. The proof
is completed.

Theorem 1 Assume F'F, is any subset of V(F Q). Every edge in FQy, — FF,
lies on a fault-free cycle of every even length from 6 to 2™ — 2|F'F,| inclusive even
if |[FFy| <n—1 and all faulty vertices are not adjacent to the same vertex, where
n > 4.
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Proof If |FF,| = f, <n — 2, by Lemma 10, the theorem holds. When n = 4,
Lemma 12 holds. Therefore, we only need to consider the situation of |FF,| =
fo =n—1, where n > 5. By Lemma 1, FQ, can be partitioned along dimension
i into two n — 1-cubes, denoted by Q° ; and QL ;. There must exist an i such

that FFY ¢ N(u), u € Q°_; and FF}! € N(v), v € QL_; (We can simply divide

one of the faulty vertex and the other faulty vertices into different parts (Q%_; or
1
n—1

not adjacent to the same vertex. We can consider extreme situation. If n — 2 faulty

) along an i-dimension. The proof is the condition that all faulty vertices are

vertices are adjacent to the same vertex x, we can choose one of n—2 faulty vertices,
denoted by y, then x and y have one bit differently. So we can partition along this
dimension. Therefore y is in a part, other faulty vertices is in another part and all
faulty vertices are not adjacent to the same vertex in this part).

Let fi =|FF,NQ,_1],i=0,1, f, = fO+ fl =n— 1. e is a fault-free edge.

Case 1 If there exists an i € {1,2,---,n} such that f0 = n -2 fl = 1,
FQn = Q%,l Uerth FFB Z N(u), u € ngl’

Case 1.1 e€@Q%_;.

Since f0 = n — 2, by Lemma 2, there exists a cycle Cy of every even length lg
containing e in Q%_,, where 6 < lp <2771 —2f0. Let (z,y) # e be a fault-free edge
in cycle Cy such that (2%, y%) (or (Z,7)) is fault-free in QL _; (Since f! = 1). Let
Co = (z, Py,y,z), then lfy = I(Py), 5 <1, <271 —2f9—1. Since f! = 1, by Lemma
3, there exists a cycle C; of even length I; containing edge (%, %) (or (Z,7)) in Q}_,
where 4 <13 < 2"~! —2fl Hence, there exists a path P; of odd length [} joining x*
and y* (or 7 and 7), where 3 <} < 2" 1 —2f1—1. Let C = (z, Py, y, ", P, 2%, x) or
C = (z, Py, y,7, P, T, x) with even length [ = [{+1]+2. Since 5 < [ < 2" 1-2f0—1
and 3 < Ip < 2nl—2fl — 1,10 <1 < 2" —2(f) + fl). We can obtain the
desired even cycle of length from 6 to 8 in Cp, where 6 < Iy < 2"t —2f% So
6<1<2m—2(f0+ fl).

Case 1.2 e€ QL ;.

Since f! = 1, by Lemma 3, there exists a cycle C; of even length [; containing
edge e in QL |, where 4 <1y <2771 —2fL. Let Oy be a fault-free k-cycle covering

n—1»
the edge e in QL |, where k = 2"~ —2fl Obviously, there are 2"~2 — fl! mutually
disjoint edges excluding e in Cj. 2(2"72 — f1) > f0 is easy to be hold, where
9 =mn—2 fl = 1. Thus, there exists an (x,y) # e which is a fault-free edge in
cycle Cy such that (z%,y%) (or (z,7)) is fault-free in QO_,. Let Cy = (x, P1,y,z),
then I} =I(P1),3 <1} <271 —2fL — 1. Since f0 =n—2, and (z%,9") (or (7,7)) is
fault-free edge, by Lemma 2, there exists a cycle Cy of even length [y containing edge
(z',9%) (or (7,7)) in Q_;, where 6 < [y < 2"~ 1 —2fY. Hence, there exists a path P

of odd length Ij; joining 2 and y* (or Z and ¥), where 5 < [[j <271 —2f9 — 1. Let
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C = (z,P1,y,y', Py,z',z) or C = (v, P1,y,7, Py, T, v) with even length | = I{,+1] +2.
Since 5 <) <2" 1 —2f0 —1and3 <) <2vt-2fl -1, 10 <1 <2 —2(f0+ fL).
We can obtain the desired even cycle of length from 6 to 8 in 'y, where 4 < [} <
2n=L —2fl So6 <l <2 —2(f0 + fL).

Case 1.3 e€ E;.

Let e = (z,2%), 2 € Q%_,, 2* € QL _.

Since f0 =n -2, fl =1, FF) ¢ N(u), u € Q%_,, = has at least 2 fault-free
neighbors y1,y2 in Q% ;. fl = 1, one of the yi, 45 must be fault-free in QL ;.
Therefore, there must exist an edge (x,y) in Q¥ _; such that (z%,%) is fault-free in

L . Since f) = n — 2, by Lemma 2, there exists a cycle Cy of every even length
lp containing (z,y) in Q0_,, where 6 <l < 2" ! —2fY. Let Cy = (z, Py,y,z), then
Iy =UPy), 5 <1y <27t —2f9 — 1. Since f! = 1, by Lemma 6, there exists a
cycle Py of odd length Iy joining z° and y*, where 3 < I; < 2" 1 —2fl — 1. Since
(2%, y") is fault-free, there exists a cycle P] of odd length [} joining z* and y, where
1<l <2vt-2fl—1. Let C = (x, Py, y,y", P{, 2", z) with even length [ = [{+1]+2.
Since 5 <If <2n 1 —2f0 —1and 1 <) <277 t—2fl —1,8 <1 <2" —2(f0+ fh).
Let C = (z,y,y", P1,2",z) with | = 1+ [(P;) + 2, [(P;) = 3, we can obtain the
desired even cycle of length 6. So 6 <1< 2" —2(f0 + fl).

1 1 1
o), Q. oy, Q. o, Q.

T o) (7 7

casel.1 casel.2 casel.3

Case 14 ec E,.

The following proof is similar to Case 1.3.

Case 2 If there exists an i € {1,2,---,n} such that f0 < fl <n—-3. FQ, =
Q1 UQ_;.

Case 2.1 e€ Q_,.

Since f0 < n — 3, by Lemma 3, there exists a cycle Cy of every even length lg
containing edge e in Q¥ _,, where 4 <y <271 —2f9. Let C} be a fault-free k-cycle

n—1
covering the edge e in Q°_;, where k = 2"~ — 2f9. Obviously, there are 22 — fJ
mutually disjoint edges excluding e in Cj. 2(2""2 — f9) > fl is easy to be hold,
where f) < f} < n—3. Thus, there exists an (z,y) # e which is a fault-free edge in

cycle Cy such that (z¢,y*) (or (Z,7)) is fault-free in QL _;. Then, there exists a path
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Py of every odd length [ joining = and y in Q¥_,, where 3 < <2771 —2f0 — 1.
Since f! < m — 3, by Lemma 3, there exists a cycle C; of every even length [;
containing edge (z¢,y") (or (7,%)) in QL_;, where 4 <3 <27t —2fL (2%, 4%) (or
(7,7)) is fault-free edge, so there exists a path Py of odd length I} joining z* and
y* (or T and %), where 1 < I} < 2" 1 —2fl — 1. Let C = (z, Po,y, v, P1,2°,x) or
C = (z, Py,y,7, P, 7, z) with even length [ = [{,+1] +2. Since 3 <} < 2" 1-2f0—1
and 1 <lp<2nt—2fl 1, 6<i<2" —2(f0 + fL).

Case 2.2 e€ QL ;.

The following proof is similar to Case 2.1.

Case 2.3 ec€ E;.

By Lemma 11, the proof is completed.

Case 2.4 ec FE..

By Lemma 11, the proof is completed.

The proof of Theorem 1 is finished.

4 Conclusion

The folded hypercube F@Q, is an important network topology for parallel pro-
cessing computer systems. According to [4], we can prove the same conclusion in
FQ,. Under the condition |F'F,| < n — 1 and all faulty vertices are not adjacent
to the same vertex, we show that if n > 4, then every edge of F'Q, — FF, lies on a
fault-free cycle of every even length from 6 to 2" — 2|F'F,|.
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