Ann. of Appl. Math. **32**:1(2016), 69-78

CYCLES EMBEDDING ON FOLDED HYPERCUBES WITH FAULTY NODES^{*†}

Dan Yuan[‡], Hongmei Liu, Maozheng Tang

(College of Science, Three Gorges University, Hubei 443002, PR China)

Abstract

Let FF_v be the set of faulty nodes in an *n*-dimensional folded hypercube FQ_n with $|FF_v| \leq n-1$ and all faulty vertices are not adjacent to the same vertex. In this paper, we show that if $n \geq 4$, then every edge of $FQ_n - FF_v$ lies on a fault-free cycle of every even length from 6 to $2^n - 2|FF_v|$.

 ${\bf Keywords} \quad {\rm folded} \ {\rm hypercube}; \ {\rm interconnection} \ {\rm network}; \ {\rm fault-tolerant}; \\ {\rm path}$

2000 Mathematics Subject Classification 68M15; 68M10

1 Introduction

The *n*-dimensional hypercube Q_n (or *n*-cube) is one of the most important topology of networks due to its excellent properties such as regularity, recursive structure, small diameter, vertex and edge transitive and relatively short mean distance [1]. In order to improve the performance of hypercube, the folded hypercube FQ_n has been proposed [2].

Since a large-scale hypercube network fails in any component, it's desirable that the rest of the network continue to operate in spite of the failure. This leads to the graph-embedding problem with faulty edges and/or vertices. This problem has received much attention (see [3-10]).

The problem of embedding paths in an *n*-dimensional hypercube and folded hypercube has been well studied. Tsai [3] showed that for any subset F_v of $V(Q_n)$ with $|F_v| \leq n-2$, every edge of $Q_n - F_v$ lies on a cycle of every even length from 4 to $2^n - 2|F_v|$ inclusive. Tsai [4] also showed that for any subset F_v of $V(Q_n)$ with $|F_v| \leq n-1$ and all faulty vertices are not adjacent to the same vertex, every edge of $Q_n - F_v$ lies on a cycle of every even length from 6 to $2^n - 2|F_v|$ inclusive. Hsieh

^{*}This project was supported by NSFC (11371162) and NSFC(11171129) and HuBei (T201103).

[†]Manuscript received October 10, 2015

[‡]Corresponding author. E-mail: 1101358757@qq.com

Let FF_v and FF_e denote the set of faulty nodes and faulty edges of FQ_n respectively. Hsieh, Kuo and Huang [6] proved that if the folded hypercube FQ_n has just only one fault node, then FQ_n contains cycles of every even length from 4 to $2^n - 2$ if $n \ge 3$, and cycles of every odd length from n+1 to $2^n - 1$ when n is even, $n \ge 2$. Ma, Xu and Du [7] further demonstrated that $FQ_n - FF_e$ $(n \ge 3)$ with $|FF_e| \le 2n - 3$ contains a fault-free cycle passing through all nodes if each vertex is incident with at least two fault-free edges. Kuo and Hsieh [8] improved the conclusion of [7] and proved that $FQ_n - FF_e$ with $|FF_e| = 2n - 3$ contains a fault-free edges. Kuo and Hsieh [8] improved the conclusion of [7] and proved that $FQ_n - FF_e$ with $|FF_e| = 2n - 3$ contains a fault-free edge of $FQ_n - FF_e$ lies on a fault-free cycle of every even length from 4 to 2^n . Xu, Ma and Du [9] further showed that every fault-free edge of $FQ_n - FF_e$ lies on a fault-free cycle of every even length from 4 to 2^n and every odd length from n + 1 to $2^n - 1$ if n is even, where $|FF_e| \le n - 1$. Then Cheng, Hao and Feng [10] proved that every fault-free edge of $FQ_n - FF_v$ lies on a fault-free tree edge of $FQ_n - FF_v$ lies on a fault-free tree for $PF_v = 2|FF_v| - 1$ if n is even, where $|FF_v| \le n - 2$.

In this paper, under the conditional $|FF_v| \leq n-1$ and all faulty vertices are not adjacent to the same vertex, we show that if $n \geq 4$, then every edge of $FQ_n - FF_v$ lies on a fault-free cycle of every even length from 6 to $2^n - 2|FF_v|$.

2 Preliminaries

Please see [1] for graph-theoretical terminology and notation is not defined here. A network is usually modeled by a simple connected graph G = (V, E), where V = V(G) (or E = E(G)) is the set of vertices (or edges) of G. We define the vertex x to be a neighbor of y if $xy \in E(G)$. A graph G is bipartite if X, Y are two disjoint subsets of V(G) such that $E(G) = \{xy | x \in X, y \in Y\}$. A graph $P = (u_1, u_2, \dots, u_k)$ is called a path if the vertices u_1, u_2, \dots, u_k are distinct and any two consecutive vertices u_i and u_{i+1} are adjacent. u_1 and u_k are called the end-vertices of P. If $u_1 = u_k$, the path $P(u_1, u_k)$ is called a cycle (denoted by C). The length of a path P (a cycle C), denoted by l(P) (or l(C)), is the number of edges in P (or C). In general, the distance of two vertices x, y is the length of the shortest (x, y)-path.

The *n*-dimensional hypercube Q_n (or, *n*-cube) can be represented as an undirected graph with 2^n vertices. Every vertex $x \in Q_n$ is labeled as a binary string $x_1x_2\cdots x_n$ of length *n* from $00\cdots 0$ to $11\cdots 1$. Two vertices *u* and *v* are adjacent if their binary strings differ in exactly one bit. For convenience, we call $e \in E$ an edge of dimension *i* if its end-vertices strings differ in *i*th-bit. In the rest of this paper, we denote $x^i = x_1x_2\cdots \overline{x_i}\cdots x_n$, where $\overline{x_i} = 1 - x_i$, $x_i = 0, 1$. The Hamming distance of two vertices $x = x_1 x_2 \cdots x_n$ and $y = y_1 y_2 \cdots y_n$ is $H(x, y) = \sum_{i=1}^n |x_i - y_i|$, the number of different bits between them. Let $d_H(x, y)$ be the shortest distance of x and y. Note that Q_n is a bipartite graph, and for any two distinct vertices x, y of $Q_n, d_H(x, y) = H(x, y)$. N(x) denotes a set of the nodes which are neighbors of x.

As a variant of hypercube, the *n*-dimensional folded hypercube FQ_n is obtained by adding more edges between its vertices.

Definition 1 The *n*-dimensional folded hypercube FQ_n is a graph with $V(Q_n) = V(FQ_n)$. Two vertices $x = x_1x_2\cdots x_n$ and y are connected by an edge if and only if

(i) $y = x_1 x_2 \cdots \overline{x_i} \cdots x_n$ (denoted by x^i), or

(ii) $y = \overline{x_1 x_2} \cdots \overline{x_i} \cdots \overline{x_n}$ (denoted by \overline{x}).

Therefore, the hypercube Q_n is a spanning subgraph of the folded hypercube FQ_n obtained by removing the second type of edges $x\overline{x}$ ($x \in V(FQ_n)$), called complementary edges of FQ_n and denoted by $E_c = \{x\overline{x} | x \in V(FQ_n)\}$.

In general, the first type of edges are defined to be the hypercube edges, and denoted by $E_i = \{xx^i\}, i = 1, 2, \cdots, n$.

Lemma 1 An *i*-partition on FQ_n , where $1 \le i \le n$, is a partition of FQ_n along dimension *i* into two n-1-cubes, denoted by Q_{n-1}^0 and Q_{n-1}^1 .

The nodes in Q_{n-1}^0 (respectively, Q_{n-1}^1) can also be denoted by 0x (respectively, 1x) for brevity, where satisfying $0x = x_1x_2\cdots x_i\cdots x_n \in Q_{n-1}^0$ satisfying $x_i = 0$ (respectively, $1x = x_1x_2\cdots x_i\cdots x_n \in Q_{n-1}^1$ satisfying $x_i = 1$).

Lemma 2^[4] Let $f_e = 0$, $f_v = n - 1$, and every fault-free vertex is adjacent to at least two fault-free vertices in Q_n for $n \ge 4$. Then, every fault-free edge of Q_n lies on a fault-free cycle of every even length from 6 to $2^n - 2f_v$ inclusive.

Lemma 3^[3] Assume F_v is any subset of $V(Q_n)$. Every edge in $Q_n - F_v$ lies on a fault-free cycle of every even length from 4 to $2^n - 2f_v$ inclusive even if $|F_v| \le n-2$, where $n \ge 3$.

Lemma $\mathbf{4}^{[12]}$ Let $n \geq 2$ be an integer. For any two different fault-free vertices u and v in Q_n with $f_e + f_v \leq n-2$, there exists a fault-free uv-path of length l for each l satisfying $d_H(u,v) + 2 \leq l \leq 2^n - 2f_v - 1$ and $2|(l - d_H(u,v))|$. Moreover, there must exist a fault-free uv-path of length $d_H(u,v)$ if $d_H(u,v) \geq n-1$.

Lemma 5^[10] Assume that FQ_n is partitioned along dimension i $(1 \le i \le n)$ into two n-1-cubes, denoted by Q_{n-1}^0 and Q_{n-1}^1 , 0u and 0v (respectively, 1u and 1v) are two nodes in Q_{n-1}^0 (respectively, Q_{n-1}^1). If $d_H(0u, 0v) = n - 2$ (respectively, $d_H(1u, 1v) = n - 2$), then $d_H(1\overline{u}, 1v) = 1$ and $d_H(1u, 1\overline{v}) = 1$ (respectively, $d_H(0\overline{u}, 0v) = 1$ and $d_H(0u, 0\overline{v}) = 1$); if $d_H(0u, 0v) = 1$ (respectively, $d_H(1u, 1v) = n - 2$ and $d_H(1u, 1\overline{v}) = n - 2$ (respectively, $d_H(1u, 1v) = n - 2$ and $d_H(1u, 1\overline{v}) = n - 2$ (respectively, $d_H(1u, 1v) = n - 2$ and $d_H(1u, 1\overline{v}) = n - 2$ (respectively, $d_H(1u, 1v) = n - 2$ (respectively, $d_H(1u, 1v) = n - 2$).

 $d_H(0\overline{u}, 0v) = n-2$ and $d_H(0u, 0\overline{v}) = n-2$).

Lemma 6^[5] There exists a path of every odd length from 3 to $2^n - 2|F_v| - 1$ joining any two adjacent fault-free nodes in $Q_n - F_v$ even if $|F_e| = 0$ and $|F_v| \le n-2$, where $n \ge 3$.

Lemma 7^[10] Assume n is even and FF_v is any subset of $V(FQ_n)$. Every edge of $FQ_n - FF_v$ lies on a fault-free cycle of every odd length from n+1 to $2^n - 2|FF_v| - 1$ inclusive even if $|FF_v| \le n-2$, where $n \ge 2$.

Lemma 8 Assume that FQ_n is partitioned along dimension i $(1 \le i \le n)$ into two n-1-cubes, denoted by Q_{n-1}^0 and Q_{n-1}^1 , 0u and 0v (respectively, 1u and 1v) are two nodes in Q_{n-1}^0 (respectively, Q_{n-1}^1). If $d_H(0u, 0v) = n-3$ (respectively, $d_H(1u, 1v) = n-3$), then $d_H(1\overline{u}, 1v) = 2$ and $d_H(1u, 1\overline{v}) = 2$ (respectively, $d_H(0\overline{u}, 0v)$ = 2 and $d_H(0u, 0\overline{v}) = 2$); if $d_H(0u, 0v) = 2$ (respectively, $d_H(1u, 1v) = 2$), then $d_H(1\overline{u}, 1v) = n-3$ and $d_H(1u, 1\overline{v}) = n-3$ (respectively, $d_H(0\overline{u}, 0v) = n-3$ and $d_H(0u, 0\overline{v}) = n-3$).

Proof If $d_H(0u, 0v) = n - 3$, then $d_H(u, v) = n - 3$, which implies $d_H(\overline{u}, v) = 2$ and $d_H(u, \overline{v}) = 2$, thus $d_H(1\overline{u}, 1v) = 2$ and $d_H(1u, 1\overline{v}) = 2$. By the similar discussion, if $d_H(1u, 1v) = n - 3$, then $d_H(0\overline{u}, 0v) = 2$ and $d_H(0u, 0\overline{v}) = 2$.

If $d_H(0u, 0v) = 2$, then $d_H(u, v) = 2$, which implies $d_H(\overline{u}, v) = n - 3$ and $d_H(u, \overline{v}) = n - 3$, thus $d_H(1\overline{u}, 1v) = n - 3$ and $d_H(1u, 1\overline{v}) = n - 3$. By the similar discussion, if $d_H(1u, 1v) = 2$, then $d_H(0\overline{u}, 0v) = n - 3$ and $d_H(0u, 0\overline{v}) = n - 3$. The proof is completed.

Lemma 9^[2] For any two vertices $u, v \in Q_n$, if d(u, v) = k, then there are n internal disjoint paths from u and v such that there are k paths of length k and n-k paths of length k + 2.

Lemma 10^[10] Assume FF_v is any subset of $V(FQ_n)$. Every edge in $FQ_n - FF_v$ lies on a fault-free cycle of every even length from 4 to $2^n - 2|FF_v|$ inclusive even if $|FF_v| \leq n-2$, where $n \geq 3$.

Lemma 11^[9] There is an automorphism σ of FQ_n such that $\sigma(E_i) = E_j$ for any $i, j \in \{1, 2, \dots, n, c\}$.

3 Main Results

Before the proof, I give some symbols. FF_v is the set of faulty vertices in FQ_n and FF_v^i is the set of faulty vertices in Q_{n-1}^i , $i = \{0, 1\}$.

Lemma 12 Assume FF_v is any subset of $V(FQ_4)$. Every edge in $FQ_4 - FF_v$ lies on a fault-free cycle of every even length from 6 to $2^4 - 2|FF_v|$ inclusive even if $|FF_v| \leq 3$ and all faulty vertices are not adjacent to the same vertex.

Proof If $|FF_v| = f_v \leq 2$, by Lemma 10, the lemma holds. Therefore, we only need to consider the situation of $f_v = 3$, every edge in $FQ_4 - FF_v$ lies on a fault-

free cycle of every even length from 6 to 10 inclusive. By Lemma 1, FQ_4 can be partitioned along dimension *i* into two 3-cubes, denoted by Q_3^0 and Q_3^1 . There must exist an *i* such that $FF_v^0 \not\subseteq N(u)$, $u \in Q_3^0$ and $FF_v^1 \not\subseteq N(v)$, $v \in Q_3^1$ (We can simply divide one of the faulty vertex and the other faulty vertices into different parts (Q_3^0 or Q_3^1) along an *i*-dimension. The proof is the condition that all faulty vertices are not adjacent to the same vertex. We can consider extreme situation. If n-2 faulty vertices are adjacent to the same vertex x, we can choose one of n-2 faulty vertices, denoted by y, then x and y have one bit differently. So we can partition along this dimension. Therefore y is in a part, other faulty vertices is in another part and all faulty vertices are not adjacent to the same vertex in this part).

Let $f_v^i = |FF_v \cap Q_3^i|$, i = 0, 1, $f_v = f_v^0 + f_v^1 = 3$. Without loss of generality, let $FF_v = \{w_1, w_2, w_3\}$, $FF_v^0 = \{w_1, w_2\} \in Q_3^0$, $FF_v^1 = \{w_3\} \in Q_3^1$. $f_v^0 = 2$, $f_v^1 = 1$. e is a fault-free edge. $f_v^0 = 2$, $FF_v^0 \not\subseteq N(u)$, $u \in Q_3^0$, so $d_H(w_1, w_2) = 1$ or $d_H(w_1, w_2) = 3$.

(1) $e \in Q_3^0$.

<u>Case 1</u> $d_H(w_1, w_2) = 1.$

Then, $e \in C_4$, that is there exists a cycle C_0 of every even length l_0 containing e in Q_3^0 , where $l_0 = 4$. Let $(x, y) \neq e$ be a fault-free edge in cycle C_0 such that (x^i, y^i) (or $(\overline{x}, \overline{y})$) is fault-free in Q_3^1 . Let $C_0 = \langle x, P_0, y, x \rangle$, then $l'_0 = l(P_0) = 3$. Since $f_v^1 = 1$, by Lemma 4, there exists a path P_1 of every odd length l_1 joining x^i and y^i (or \overline{x} and \overline{y}) in Q_3^1 , where $3 \leq l_1 \leq 5$. (x^i, y^i) (or $(\overline{x}, \overline{y})$) is fault-free, there exists a path P'_1 of every odd length joining x^i and y^i (or \overline{x} and \overline{y}) in Q_3^1 , where $1 \leq l'_1 \leq 5$. Let $C = \langle x, P_0, y, y^i, P'_1, x^i, x \rangle$ or $C = \langle x, P_0, y, \overline{y}, P'_1, \overline{x}, x \rangle$ with even length $l = l'_0 + l'_1 + 2$. Since $l'_0 = 3$ and $1 \leq l'_1 \leq 5$, $6 \leq l \leq 10$.

 $\underline{\text{Case } 2} \quad d_H(w_1, w_2) = 3.$

Through observation, $e \in C_6$. Let $(x, y) \neq e$ be a fault-free edge in cycle C_0 such that (x^i, y^i) (or $(\overline{x}, \overline{y})$) is fault-free in Q_3^1 . Let $C_0 = \langle x, P_0, y, x \rangle$, then $l'_0 = l(P_0)$, $l'_0 = 5$. Since $f_v^1 = 1$, by Lemma 4, there exists a path P_1 of every odd length l_1 joining x^i and y^i (or \overline{x} and \overline{y}) in Q_3^1 , where $3 \leq l_1 \leq 5$. (x^i, y^i) (or $(\overline{x}, \overline{y})$) is fault-free, there exists a path P'_1 of every odd length joining x^i and y^i (or \overline{x} and \overline{y}) in Q_3^1 , where $1 \leq l'_1 \leq 5$. Let $C = \langle x, P_0, y, y^i, P'_1, x^i, x \rangle$ or $C = \langle x, P_0, y, \overline{y}, P'_1, \overline{x}, x \rangle$ with even length $l = l'_0 + l'_1 + 2$. Since $l'_0 = 5$ and $1 \leq l'_1 \leq 5$, $8 \leq l \leq 12$. We can obtain the desired even cycle of length 6 in C_0 , where $l_0 = 6$. So $6 \leq l \leq 12$.

(2) $e \in Q_3^1$.

 $\underline{\text{Case 1}} \quad d_H(w_1, w_2) = 1.$

Since $f_v^1 = 1$, by Lemma 3, there exists a cycle C_1 of every even length l_1 containing e in Q_3^1 , where $4 \le l_1 \le 6$. Let $(x, y) \ne e$ be a fault-free edge in cycle C_1 such that (x^i, y^i) (or $(\overline{x}, \overline{y})$) is fault-free in Q_3^0 . Hence, there exists a path P_1 of

every odd length l'_1 joining x and y in Q_3^1 , where $3 \le l'_1 \le 5$. We can choose (x^i, y^i) . Since $d_H(w_1, w_2) = 1$, $(x^i, y^i) \in C_4$. $(x^i, y^i) \in C_4$, (x^i, y^i) is fault-free, then there exists a path P_0 of every odd length l_0 joining x^i and y^i , where $1 \le l_0 \le 3$. Let $C = \langle x, P_1, y, y^i, P_0, x^i, x \rangle$ with even length $l = l_0 + l'_1 + 2$. Since $1 \le l_0 \le 3$ and $3 \le l'_1 \le 5, 6 \le l \le 10$.

 $\underline{\text{Case } 2} \quad d_H(w_1, w_2) = 3.$

Since $f_v^1 = 1$, by Lemma 3, there exists a cycle C_1 of every even length l_1 containing e in Q_3^1 , where $4 \leq l_1 \leq 6$. Let $(x, y) \neq e$ be a fault-free edge in cycle C_1 such that (x^i, y^i) (or $(\overline{x}, \overline{y})$) is fault-free in Q_3^0 . Hence, there exists a path P_1 of every odd length l'_1 joining x and y in Q_3^1 , where $3 \leq l'_1 \leq 5$. $d_H(w_1, w_2) = 3$, through observation, $(x^i, y^i) \in C_6$ (or $(\overline{x}, \overline{y}) \in C_6$). We can choose (x^i, y^i) , then, there exists a path P_0 of every odd length l_0 joining x^i and y^i in Q_3^0 , where $l_0 = 5$. Let $C = \langle x, P_1, y, y^i, P_0, x^i, x \rangle$ with even length $l = l_0 + l'_1 + 2$. Since $l_0 = 5$ and $3 \leq l'_1 \leq 5$, $10 \leq l \leq 12$. Let $C = \langle x, P_1, y, y^i, x^i, x \rangle$ with even length $l = 1 + l'_1 + 2$, where $3 \leq l'_1 \leq 5$. Then $6 \leq l \leq 8$. So $6 \leq l \leq 12$.

(3) $e \in E_i$.

<u>Case 1</u> $d_H(w_1, w_2) = 1$. Let $e = (x, x^i), x \in Q_3^0, x^i \in Q_3^1$.

Let (x, y) be a fault-free edge in such that (x^i, y^i) is fault-free in Q_3^1 .

 $(x, y) \in C_4$, (x, y) is a fault-free edge, there exists a path P_0 of every odd length l_0 joining x and y in Q_3^0 , where $1 \le l_0 \le 3$. Since $f_v^1 = 1$, by Lemma 4, there exists a path P_1 of every odd length l_1 joining x^i and y^i in Q_3^1 , where $3 \le l_1 \le 5$. Let $C = \langle x, P_0, y, y^i, P_1, x^i, x \rangle$ with even length $l = l_0 + l_1 + 2$. Since $1 \le l_0 \le 3$ and $3 \le l_1 \le 5, 6 \le l \le 10$.

<u>Case 2</u> $d_H(w_1, w_2) = 3$. Let $e = (x, x^i), x \in Q_3^0, x^i \in Q_3^1$.

Let (x, y) be a fault-free edge in such that (x^i, y^i) is fault-free in Q_3^1 . Through observation, $(x, y) \in C_6$, there exists a path P_0 of every odd length l_0 joining x and yin Q_3^0 , where $l_0 = 5$. Since $f_v^1 = 1$, by Lemma 4, there exists a path P_1 of every odd length l_1 joining x^i and y^i in Q_3^1 , where $3 \leq l_1 \leq 5$. Let $C = \langle x, P_0, y, y^i, P_1, x^i, x \rangle$ with even length $l = l_0 + l_1 + 2$. Since $l_0 = 5$ and $3 \leq l_1 \leq 5$, $10 \leq l \leq 12$. Let $C = \langle x, y, y^i, P_1, x^i, x \rangle$ with even length $l = 1 + l_1 + 2$. Since $3 \leq l_1 \leq 5$, $6 \leq l \leq 8$. Therefore, $6 \leq l \leq 12$.

(4) $e \in E_c$. Let $e = (x, \overline{x}), x \in Q_3^0, \overline{x} \in Q_3^1$.

Let $\{\overline{x}, \overline{y}\}$ replace $\{x^i, y^i\}$, the following proof is similar to (3) $e \in E_i$. The proof is completed.

Theorem 1 Assume FF_v is any subset of $V(FQ_n)$. Every edge in $FQ_n - FF_v$ lies on a fault-free cycle of every even length from 6 to $2^n - 2|FF_v|$ inclusive even if $|FF_v| \leq n-1$ and all faulty vertices are not adjacent to the same vertex, where $n \geq 4$. **Proof** If $|FF_v| = f_v \leq n-2$, by Lemma 10, the theorem holds. When n = 4, Lemma 12 holds. Therefore, we only need to consider the situation of $|FF_v| = f_v = n-1$, where $n \geq 5$. By Lemma 1, FQ_n can be partitioned along dimension i into two n-1-cubes, denoted by Q_{n-1}^0 and Q_{n-1}^1 . There must exist an i such that $FF_v^0 \not\subseteq N(u)$, $u \in Q_{n-1}^0$ and $FF_v^1 \not\subseteq N(v)$, $v \in Q_{n-1}^1$ (We can simply divide one of the faulty vertex and the other faulty vertices into different parts $(Q_{n-1}^0 \text{ or } Q_{n-1}^1)$ along an i-dimension. The proof is the condition that all faulty vertices are not adjacent to the same vertex. We can consider extreme situation. If n-2 faulty vertices are adjacent to the same vertex x, we can choose one of n-2 faulty vertices, denoted by y, then x and y have one bit differently. So we can partition along this dimension. Therefore y is in a part, other faulty vertices is in another part and all faulty vertices are not adjacent to the same vertex in this part).

Let $f_v^i = |FF_v \cap Q_{n-1}^i|, i = 0, 1, f_v = f_v^0 + f_v^1 = n - 1.$ *e* is a fault-free edge. <u>Case 1</u> If there exists an $i \in \{1, 2, \dots, n\}$ such that $f_v^0 = n - 2, f_v^1 = 1, FQ_n = Q_{n-1}^0 \cup Q_{n-1}^1, FF_v^0 \not\subseteq N(u), u \in Q_{n-1}^0.$

Case 1.1 $e \in Q_{n-1}^0$.

Since $f_v^0 = n - 2$, by Lemma 2, there exists a cycle C_0 of every even length l_0 containing e in Q_{n-1}^0 , where $6 \leq l_0 \leq 2^{n-1} - 2f_v^0$. Let $(x, y) \neq e$ be a fault-free edge in cycle C_0 such that (x^i, y^i) (or $(\overline{x}, \overline{y})$) is fault-free in Q_{n-1}^1 (Since $f_v^1 = 1$). Let $C_0 = \langle x, P_0, y, x \rangle$, then $l'_0 = l(P_0), 5 \leq l'_0 \leq 2^{n-1} - 2f_v^0 - 1$. Since $f_v^1 = 1$, by Lemma 3, there exists a cycle C_1 of even length l_1 containing edge (x^i, y^i) (or $(\overline{x}, \overline{y})$) in Q_{n-1}^1 , where $4 \leq l_1 \leq 2^{n-1} - 2f_v^1$. Hence, there exists a path P_1 of odd length l'_1 joining x^i and y^i (or \overline{x} and \overline{y}), where $3 \leq l'_1 \leq 2^{n-1} - 2f_v^1 - 1$. Let $C = \langle x, P_0, y, y^i, P_1, x^i, x \rangle$ or $C = \langle x, P_0, y, \overline{y}, P_1, \overline{x}, x \rangle$ with even length $l = l'_0 + l'_1 + 2$. Since $5 \leq l'_0 \leq 2^{n-1} - 2f_v^0 - 1$ and $3 \leq l'_1 \leq 2^{n-1} - 2f_v^1 - 1$, $10 \leq l \leq 2^n - 2(f_v^0 + f_v^1)$. We can obtain the desired even cycle of length from 6 to 8 in C_0 , where $6 \leq l_0 \leq 2^{n-1} - 2f_v^0$. So $6 \leq l \leq 2^n - 2(f_v^0 + f_v^1)$.

Case 1.2 $e \in Q_{n-1}^1$.

Since $f_v^1 = 1$, by Lemma 3, there exists a cycle C_1 of even length l_1 containing edge e in Q_{n-1}^1 , where $4 \leq l_1 \leq 2^{n-1} - 2f_v^1$. Let C_k be a fault-free k-cycle covering the edge e in Q_{n-1}^1 , where $k = 2^{n-1} - 2f_v^1$. Obviously, there are $2^{n-2} - f_v^1$ mutually disjoint edges excluding e in C_k . $2(2^{n-2} - f_v^1) \geq f_v^0$ is easy to be hold, where $f_v^0 = n - 2, f_v^1 = 1$. Thus, there exists an $(x, y) \neq e$ which is a fault-free edge in cycle C_1 such that (x^i, y^i) (or $(\overline{x}, \overline{y})$) is fault-free in Q_{n-1}^0 . Let $C_1 = \langle x, P_1, y, x \rangle$, then $l'_1 = l(P_1), 3 \leq l'_1 \leq 2^{n-1} - 2f_v^1 - 1$. Since $f_v^0 = n - 2$, and (x^i, y^i) (or $(\overline{x}, \overline{y})$) is fault-free edge, by Lemma 2, there exists a cycle C_0 of even length l_0 containing edge (x^i, y^i) (or $(\overline{x}, \overline{y})$) in Q_{n-1}^0 , where $6 \leq l_0 \leq 2^{n-1} - 2f_v^0$. Hence, there exists a path P_0 of odd length l'_0 joining x^i and y^i (or \overline{x} and \overline{y}), where $5 \leq l'_0 \leq 2^{n-1} - 2f_v^0 - 1$. Let
$$\begin{split} C &= \langle x, P_1, y, y^i, P_0, x^i, x \rangle \text{ or } C = \langle x, P_1, y, \overline{y}, P_0, \overline{x}, x \rangle \text{ with even length } l = l'_0 + l'_1 + 2.\\ \text{Since } 5 &\leq l'_0 \leq 2^{n-1} - 2f_v^0 - 1 \text{ and } 3 \leq l'_1 \leq 2^{n-1} - 2f_v^1 - 1, \ 10 \leq l \leq 2^n - 2(f_v^0 + f_v^1).\\ \text{We can obtain the desired even cycle of length from 6 to 8 in } C_1, \text{ where } 4 \leq l_1 \leq 2^{n-1} - 2f_v^1. \text{ So } 6 \leq l \leq 2^n - 2(f_v^0 + f_v^1). \end{split}$$

Case 1.3 $e \in E_i$.

Let $e = (x, x^i), x \in Q_{n-1}^0, x^i \in Q_{n-1}^1.$

Since $f_v^0 = n - 2$, $f_v^1 = 1$, $FF_v^0 \not\subseteq N(u)$, $u \in Q_{n-1}^0$, x has at least 2 fault-free neighbors y_1, y_2 in Q_{n-1}^0 . $f_v^1 = 1$, one of the y_1^i, y_2^i must be fault-free in Q_{n-1}^1 . Therefore, there must exist an edge (x, y) in Q_{n-1}^0 such that (x^i, y^i) is fault-free in Q_{n-1}^1 . Since $f_v^0 = n - 2$, by Lemma 2, there exists a cycle C_0 of every even length l_0 containing (x, y) in Q_{n-1}^0 , where $6 \leq l_0 \leq 2^{n-1} - 2f_v^0$. Let $C_0 = \langle x, P_0, y, x \rangle$, then $l'_0 = l(P_0), 5 \leq l'_0 \leq 2^{n-1} - 2f_v^0 - 1$. Since $f_v^1 = 1$, by Lemma 6, there exists a cycle P_1 of odd length l_1 joining x^i and y^i , where $3 \leq l_1 \leq 2^{n-1} - 2f_v^1 - 1$. Since (x^i, y^i) is fault-free, there exists a cycle P'_1 of odd length l_1 joining x^i and y^i , where $3 \leq l_1 \leq 2^{n-1} - 2f_v^1 - 1$. Since (x^i, y^i) is fault-free, there exists a cycle P'_1 of odd length l_1 joining x^i and y^i , where $3 \leq l_1 \leq 2^{n-1} - 2f_v^1 - 1$. Since (x^i, y^i) is fault-free, there exists a cycle P'_1 of odd length l'_1 joining x^i and y^i , where $1 \leq l'_1 \leq 2^{n-1} - 2f_v^1 - 1$. Let $C = \langle x, P_0, y, y^i, P'_1, x^i, x \rangle$ with even length $l = l'_0 + l'_1 + 2$. Since $5 \leq l'_0 \leq 2^{n-1} - 2f_v^0 - 1$ and $1 \leq l'_1 \leq 2^{n-1} - 2f_v^1 - 1$, $8 \leq l \leq 2^n - 2(f_v^0 + f_v^1)$. Let $C = \langle x, y, y^i, P_1, x^i, x \rangle$ with $l = 1 + l(P_1) + 2$, $l(P_1) = 3$, we can obtain the desired even cycle of length 6. So $6 \leq l \leq 2^n - 2(f_v^0 + f_v^1)$.

Case 1.4 $e \in E_c$.

The following proof is similar to Case 1.3.

<u>Case 2</u> If there exists an $i \in \{1, 2, \dots, n\}$ such that $f_v^0 \leq f_v^1 \leq n-3$. $FQ_n = Q_{n-1}^0 \cup Q_{n-1}^1$.

Case 2.1 $e \in Q_{n-1}^{0}$.

Since $f_v^0 \leq n-3$, by Lemma 3, there exists a cycle C_0 of every even length l_0 containing edge e in Q_{n-1}^0 , where $4 \leq l_0 \leq 2^{n-1} - 2f_v^0$. Let C_k be a fault-free k-cycle covering the edge e in Q_{n-1}^0 , where $k = 2^{n-1} - 2f_v^0$. Obviously, there are $2^{n-2} - f_v^0$ mutually disjoint edges excluding e in C_k . $2(2^{n-2} - f_v^0) > f_v^1$ is easy to be hold, where $f_v^0 \leq f_v^1 \leq n-3$. Thus, there exists an $(x, y) \neq e$ which is a fault-free edge in cycle C_k such that (x^i, y^i) (or $(\overline{x}, \overline{y})$) is fault-free in Q_{n-1}^1 . Then, there exists a path

 $\begin{array}{l} P_0 \text{ of every odd length } l'_0 \text{ joining } x \text{ and } y \text{ in } Q_{n-1}^0, \text{ where } 3 \leq l'_0 \leq 2^{n-1} - 2f_v^0 - 1.\\ \text{Since } f_v^1 \leq n-3, \text{ by Lemma } 3, \text{ there exists a cycle } C_1 \text{ of every even length } l_1 \\ \text{containing edge } (x^i, y^i) \text{ (or } (\overline{x}, \overline{y})) \text{ in } Q_{n-1}^1, \text{ where } 4 \leq l_1 \leq 2^{n-1} - 2f_v^1. \ (x^i, y^i) \text{ (or } (\overline{x}, \overline{y})) \text{ is fault-free edge, so there exists a path } P_1 \text{ of odd length } l'_1 \text{ joining } x^i \text{ and } y^i \text{ (or } \overline{x} \text{ and } \overline{y}), \text{ where } 1 \leq l'_1 \leq 2^{n-1} - 2f_v^1 - 1. \text{ Let } C = \langle x, P_0, y, y^i, P_1, x^i, x \rangle \text{ or } C = \langle x, P_0, y, \overline{y}, P_1, \overline{x}, x \rangle \text{ with even length } l = l'_0 + l'_1 + 2. \text{ Since } 3 \leq l'_0 \leq 2^{n-1} - 2f_v^0 - 1 \\ \text{ and } 1 \leq l'_1 \leq 2^{n-1} - 2f_v^1 - 1, \ 6 \leq l \leq 2^n - 2(f_v^0 + f_v^1). \end{array}$

Case 2.2 $e \in Q_{n-1}^1$. The following proof is similar to Case 2.1. Case 2.3 $e \in E_i$. By Lemma 11, the proof is completed. Case 2.4 $e \in E_c$. By Lemma 11, the proof is completed. The proof of Theorem 1 is finished.

4 Conclusion

The folded hypercube FQ_n is an important network topology for parallel processing computer systems. According to [4], we can prove the same conclusion in FQ_n . Under the condition $|FF_v| \leq n-1$ and all faulty vertices are not adjacent to the same vertex, we show that if $n \geq 4$, then every edge of $FQ_n - FF_v$ lies on a fault-free cycle of every even length from 6 to $2^n - 2|FF_v|$.

References

- J.M. Xu, Graph and Application of Graphs, Dordrecht/Boston/London: Kluwer Academic publishers, 2003.
- [2] Y. Saad and M.H. Schultz, Topological properties of hypercubes, *IEEE. Trans. on Comput.*, 37:7(1988),867-872.
- [3] C.-H. Tsai, Cycles embedding in hypercubes with node failures, *Information Processing Letters*, 102(2007),242-246.
- [4] C.-H. Tsai, C.-R.Yu, Embedding various even cycles in a hypercube with node failures, The 24th Workshop on Combinatorial Mathematics and Computation Theory, 2007, 237-243.
- [5] S.-Y. Hsieh, T.-H. Shen, Edge-bipancyclicity of a hypercube with faulty vertices and edges, *Discrete Applied Mathematics*, 156(2008),1802-1808.
- [6] S.-Y. Hsieh, C.-N. Kuo, H.-L. Huang, 1-vertex-fault-tolerant cycles embedding on folded hypercubes, *Discrete Applied Mathematics*, 15(2009),3094-3098.
- [7] M.J. Ma, J.M. Xu, Z.Z. Du, Edge-fault-tolerant hamiltonicity of folded hypercube, Journal of University of Science and Technology of China, 36:3(2006),244-248.

- [8] C.N. Kuo, S.Y. Hsieh, Pancyclicity and bipancyclicity of conditional faulty folded hypercubes, *Information Sciences*, 180(2010),2904-2914.
- [9] J.M. Xu, M.J. Ma, Z.Z. Du, Edge-fault-tolerant properties of hypercubes and folded hypercubes, *Australasian Journal of Combinatorics*, **35**(2006),7-16.
- [10] D.Q. Cheng, R.X. Hao, Y.Q. Feng, Cycles embedding on folded hypercubes with faulty nodes, *Discrete Applied Mathematics*, 161(2013),2894-2900.
- [11] S.-Y. Hsieh, C.-N. Kuo, Hamiltonian-connectivity and strongly Hamiltonian-laceability of folded hypercubes, *Computers and Mathematics with Applications*, 53(2007),1040-1044.
- [12] M. Ma, G. Liu, X. Pan, Path embedding in faulty hypercubes, Applied Mathematics and Computation, 192(2007),233-238.
- [13] D.Q. Cheng, R.X. Hao, Y.Q. Feng, Embedding even cycles on folded hypercubes with conditional faulty edges, *Information Processing Letters*, 115(2015),945-949.
- [14] Weiping Han, S.Y. Wang, The g-Extra Conditional Diagnosability of Folded Hypercubes, Applied Mathematical Sciences, 146:9(2015),7247-7254.
- [15] D.Q. Cheng, R.X. Hao, Y.Q. Feng, Odd cycles embedding on folded hypercubes with conditional faulty edges, *Information Sciences*, 282(2014),180-189.

(edited by Mengxin He)