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Abstract

In this paper, the modified extended tanh method is used to construct more
general exact solutions of a (2+1)-dimensional nonlinear Schrödinger equation.
With the aid of Maple and Matlab software, we obtain exact explicit kink wave
solutions, peakon wave solutions, periodic wave solutions and their 3D images.
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1 Introduction

It is well known that Schrödinger equation is one of the most basic equation of

quantum mechanics. It reflects the state of micro particle changing with time. As it

is a powerful tool for solving non relativistic problems in atomic physics, it has been

widely used in the field of atomic, molecular, solid state physics, nuclear physics,

chemistry and so on. Recently, searching and constructing exact solutions of nonlin-

ear partial differential (NLPD) equation is very meaningful for it can describe the

problems of mechanics, control process, ecological and economic system, chemical

recycling system and epidemiological.

In the past several decades, much efforts have been made on this aspect and

many useful methods have been proposed such as inverse scattering method, Jacobi

elliptic function method, F-expansion method, Darboux transform, the sine-cosine

method and the tanh method and so on [1-18]. Among them, the tanh method is
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widely used as it can find exact as well as approximate solutions in a systematic

way. Subsequently, Fan has proposed an extended tanh method and obtained the

travelling wave solutions that can not be obtained by the tanh method. Based on

this approach, we employ the modified extended tanh method to construct a series of

exact travelling wave solutions of a (2+1)-dimensional nonlinear Schrödinger (NLS)

equation as
iut + αuxx + βuyy + r|u2|u = 0. (1)

The rest of this paper is organized as follows. In Section 2, we shall introduce the

modified extended tanh method. In Section 3, we illustrate this method in detail

with the (2+1)-dimensional nonlinear Schrödinger (NLS) equation. In Section 4,

the image simulations of exact Travelling Wave Solutions of (1) are given. Finally,

a short conclusion is given in Section 4.

2 The Modified Extended Tanh Method

In this section, we review the modified extended tanh method.

The modified extended tanh method is developed by Malflied in [10,11], and

used in [12-14] among many others. Since all derivatives of a tanh can represented

by tanh itself, we consider the general NLPDE in two variables

H(u, ut, ux, uxx, utt, uxt, · · · ) = 0.

Now we consider its travelling u(x, t) = u(ξ), where ξ = x − ct or ξ = x + ct

and the equation becomes an ordinary differential equation. We apply the following

series expansion

u(ξ) =

N∑
i=0

aiϕ
i +

N∑
i=1

biϕ
−i, ϕ′ = b+ ϕ2,

where b is a parameter to be determined, ϕ = ϕ(ξ) and ϕ′ = dϕ
dξ .

To determine the parameter N, we usually balance the linear terms of highest-

order in the resulting equation with the highest-order nonlinear terms. Then we can

get all coefficients of different powers of ϕ and determine ai, bi, b, c by making them

equal to zeros.

The Riccati equation has the following general solutions:

(a) If b < 0, ϕ = −
√
−b tanh(

√
−bξ);

(b) if b > 0, ϕ =
√
b tan(

√
bξ);

(c) if b = 0, ϕ = −1/ξ.

3 Exact Travelling Wave Solutions of (1)

We consider the travelling wave solution u(x, y, t) = u(ξ), ξ = x+ ky− ct of (1),

and also
u(ξ) = P (ξ) + iQ(ξ). (2)
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According to (1) and (2), we can get

i(Pt + iQt) + α(Pxx + iQxx) + β(Pyy + iQyy) + r(P 2 +Q2)(P + iQ) = 0. (3)

From (3) we can obtain the following two equation

−Qt + αPxx + βPyy + rP 3 + rQ2P = 0, (4a)

Pt + αQxx + βQyy + rP 2Q+ rQ3 = 0. (4b)

For u(x, y, t) = u(ξ) and ξ = x + ky − ct, we can transform (4) into ordinary

differential equations

cQ′ + (α+ βk2)P ′′ + rP 3 + rQ2P = 0, (5a)

−cP ′ + (α+ βk2)Q′′ + rP 2Q+ rQ3 = 0. (5b)

The solution can be expressed as the following form

P (ξ) =

N∑
i=0

aiϕ
i +

N∑
i=1

biϕ
−i. (6a)

Q(ξ) =

N1∑
i=0

ciϕ
i +

N1∑
i=1

diϕ
−i. (6b)

Balancing the linear term of highest order with the nonlinear term in both equations,

we find
N − 2 + 4 = 2N +N1 = 3N,

N1 − 2 + 4 = 2N1 +N = 3N.

Thus, N = N1 = 1, and
P (ξ) = a0 + a1ϕ+ b1ϕ

−1, (7a)

Q(ξ) = c0 + c1ϕ+ d1ϕ
−1. (7b)

With ϕ′ = b+ ϕ2, we get

P ′(ξ) = (a1b− b1) + a1ϕ
2 − b1bϕ

−2, (8a)

P ′′(ξ) = 2a1ϕ
3 + 2ba1ϕ+ 2b2b1ϕ

−3 + 2bb1ϕ
−1, (8b)

Q′(ξ) = (c1b− d1) + c1ϕ
2 − d1bϕ

−2, (8c)

Q′′(ξ) = 2c1ϕ
3 + 2bc1ϕ+ 2b2d1ϕ

−3 + 2bd1ϕ
−1. (8d)

Substitute (7) and (8) into the ordinary differential equations (5a) and (5b), then

we obtain the coefficients of ϕ0, ϕ, ϕ2, ϕ3, ϕ−1, ϕ−2 and ϕ−3, respectively,

ϕ0: −c(a1b − b1) + r(a20 + 2a1b1)c0 + 2ra0b1c1 + 2ra0a1d1 + rc0(c
2
0 + 2c1d1) +

4rc0c1d1 = 0,

ϕ: 2(α + βk2)c1b + rc1(a0
2 + 2a1b1) + 2rc0a0a1 + ra21d1 + 2rc20c1 + rc1(c0

2 +

2c1d1) + rd1c
2
1 = 0,

ϕ2: −ca1 + rc0a
2
1 + 2ra0a1c1 + 3rc0c

2
1 = 0,

ϕ3: 2c1(α+ βk2) + rc1a
2
1 + rc31 = 0,
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ϕ−1: 2d1b(α+βk2)+2ra0c0b1+rc1b
2
1+rd1(a

2
0+2a1b1)+2rc20d1+rc1d

2
1+rd1(c

2
0+

2c1d1) = 0,

ϕ−2: cb1b+ rc0b
2
1 + 2ra0b1d1 + 3rc0d

2
1 = 0,

ϕ−3: 2d1b
2(α+ βk2) + rd1b

2
1 + rd31 = 0

and

ϕ0: c(c1b−d1)+ra0(a
2
0+2a1b1)+4ra0a1b1+ra0(c

2
0+2c1d1)+2ra1c0d1+2rc0c1b1 =

0,

ϕ: 2a1b(α+βk2)+2ra20a1+ra1(a
2
0+2a1b1)+ra21b1+2ra0c0c1+ra1(c

2
0+2c1d1)+

rb1c
2
1 = 0,

ϕ2: cc1 + ra21a0 + 2ra0a
2
1 + 2ra1c0c1 + ra0c

2
1 = 0,

ϕ3: 2a1(α+ βk2) + ra31 + ra1c
2
1 = 0,

ϕ−1: 2b1b(α+βk2)+2ra20b1+ra1b
2
1+rb1(a

2
0+2a1b1)+ra1d

2
1+2ra0c0d1+rb1(c

2
0+

2c1d1) = 0,

ϕ−2: −cbd1 + ra0b
2
1 + 2ra0b

2
1 + ra0d

2
1 + 2rc0b1d1 = 0,

ϕ−3: 2b1b
2(α+ βk2) + rb31 + rb1d

2
1 = 0.

With the aid of Maple, we obtain a0, a1, b1, c0, c1, d1, b, c, k as follows.

Case (1)

a0 = −c0c1

(
− 2α+ 2βk2 + rc21

r

)− 1
2
, a1 =

(
− 2α+ 2βk2 + rc21

r

) 1
2
,

b1 = −c20
4

(
− 2α+ 2βk2 + rc21

r

)− 1
2
, b = −1

4

c20r

2α+ 2βk2 + rc21
,

c = −2c0(α+ βk2)
(
− 2α+ 2βk2 + rc21

r

)− 1
2
, c0 = c0,

c1 = c1, d1 =
1

4

c20c1r

2α+ 2βk2 + rc21
, k = k,

where r, β, α, k, c0, c1 are arbitrary constants.

Case (2)

a0 = −d1

(
− 2α+ 2βk2

rd21 + rb21

) 1
4
, a1 = 0, b1 = b1, b =

(
− 2α+ 2βk2

rd21 + rb21

)− 1
4
,

c = −r(d21 + b21)
(
− 2α+ 2βk2

rd21 + rb21

) 3
4
, c0 = b1

(
− 2α+ 2βk2

rd21 + rb21

) 1
4
,

c1 = 0, d1 = d1, k = k,

where r, β, α, k, b1, d1 are arbitrary constants.

Case (3)

a0 =
(
− 2αd21 + 2d21βk

2

r

) 1
4
, a1 = 0, b1 = 0, b = d21

(
− 2αd21 + 2d21βk

2

r

)− 1
2
,
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c =
r

d1

(
− 2αd21 + 2d21βk

2

r

) 3
4
, c0 = 0, c1 = 0, d1 = d1, k = k,

where r, β, α, k, d1 are arbitrary constants.

Case (4)

a0 = a0, a1 = 0, b1 = 0, b = −1

2

ra20
α+ βk2

, c = −ra0

(
− 2α+ 2βk2

r

) 1
2
,

c0 = 0, c1 =
(
− 2α+ 2βk2

r

) 1
2
, d1 = 0, k = k,

where r, β, α, k, a0 are arbitrary constants.

Case (5)

a0 = a0, a1 = 0, b1 = 0, b = −1

8

ra20
α+ βk2

, c = −ra0

(
− 2α+ 2βk2

r

) 1
2
,

c = −ra0

(
− 4 + 2βk2

r

) 1
2
, c0 = 0, c1 =

(
− 2α+ 2βk2

r

) 1
2
,

d1 = −a20
4

(
− 2α+ 2βk2

r

)− 1
2
, k = k,

where r, β, α, k, a0 are arbitrary constants.

Case (6)

a0 = 0, a1 =
(
− 2α+ 2βk2

r

) 1
2
, b1 = 0, b = −1

2

rc20
α+ βk2

,

c = rc0

(
− 2α+ 2βk2

r

) 1
2
, c0 = c0, c1 = 0, d1 = 0, k = k,

where r, β, α, k, c0 are arbitrary constants.

Case (7)

a0 = −c0c1

(
− 2α+ 2βk2 + rc21

2

)− 1
2
, a1 =

(
− 2α+ 2βk2 + rc21

2

) 1
2
, b1 = 0,

b =
−c20r

2α+ 2βk2 + rc21
, c = −2(α+ βk2)c0

(
− 2α+ 2βk2 + rc21

2

)− 1
2
,

c0 = c0, c1 = c1, d1 = 0, k = k,

where r, β, α, k, c0, c1 are arbitrary constants.

Case (8)

a0 = 0, a1 =
(
− 2α+ 2βk2

r

) 1
2
, b1 =

1

8

rc20
α+ βk2

(
− 2α+ 2βk2

r

) 1
2
,

b = −1

8

rc20
α+ βk2

, c = rc0

(
− 2α+ 2βk2

r

) 1
2
, c0 = c0, c1 = 0, d1 = 0, k = 0,

where r, β, α, k, c0 are arbitrary constants.
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Case (9)

a0 = 0, a1 = 0, b1 = c20

√
− r

2α+ 2βk2
, b = −1

2

c20r

α+ βk2
,

c = − c0r√
− r

2α+2βk2

, k = k, c0 = c0, c1 = 0, d1 = 0,

where r, β, α, k, c0 are arbitrary constants.

If b > 0, we get

u = a0 + a1v(x, y, t) + b1v(x, y, t)
−1 + i(c0 + c1v(x, y, t) + d1v(x, y, t)

−1), (9a)

where v(x, y, t) =
√
b tan(

√
b(x+ ky − ct)).

If b = 0, we get

u = a0 + a1v(x, y, t) + b1v(x, y, t)
−1 + i(c0 + c1v(x, y, t) + d1v(x, y, t)

−1), (9b)

where v(x, y, t) = 1
x+ky−ct .

If b < 0, we get

u = a0 + a1v(x, y, t) + b1v(x, y, t)
−1 + i(c0 + c1v(x, y, t) + d1v(x, y, t)

−1), (9c)

where v(x, y, t) = −
√
−b tanh(

√
−b(x+ ky − ct)).

Substituting all those situation into (9) respectively, we can get all solutions of

the derivative nonlinear Schrödinger equation.

4 Image Simulation

In order to grasp these exact travelling solutions, we choose several exact so-

lutions and use the Matlab software to simulate images. In the process of image

simulation, the figures and values of parameters we selected are shown as follows.
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Figure 1: 3-dimensional wave of Case (1).
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Figure 2: 3-dimensional wave of Case (2).

In Figure 1, we take r = −1, β = 11, k = 0.1, c0 = −0.25, c1 = 0.1, α = −0.2,

t = 0.1. In Figure 2, we take r = −6, β = −3, k = 1, d1 = 1, α = 1, b1 = −1,

t = 0.1.
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Figure 3: 3-dimensional wave of Case (3).
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Figure 4: 3-dimensional wave of Case (3).

In Figure 3, we take r = 0.1, β = 0.3, k = 0.1, d1 = −2, α = 0.2, t = 0.1. In

Figure 4, we take r = −6, β = 2, k = 0.1, c0 = 6, α = −4, d1 = 2, t = 0.1.
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Figure 5: 3-dimensional wave of Case (4).

−10
−5

0
5

10

−10

−5

0

5

10
0

10

20

30

40

50

xy

u

Figure 6: 3-dimensional wave of Case (5).

In Figure 5, we take r = −1, β = 3, k = 3, a0 = 2, α = −0.7, t = 0.1. In Figure

6, we take r = −1, β = −0.3, k = 0.1, a0 = −0.25, α = −1, t = 0.1.
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Figure 7: 3-dimensional wave of Case (6).
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Figure 8: 3-dimensional wave of Case (7).

In Figure 7, we take r = −6, β = 3, k = 2.5, c0 = −0.5, α = −2, t = 0.1. In

Figure 8, we take r = −1, β = 3, k = 2.9, c0 = 6, α = −2, c1 = 2, t = 0.1.
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Figure 9: 3-dimensional wave of Case (8).
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Figure 10: 3-dimensional wave of Case (9).
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In Figure 9, we take r = −2, β = 2, k = 1.6, c0 = 2.5, α = 3.2, t = 0.1. In

Figure 10, we take r = −0.1, β = 1, k = 1, c0 = 2.5, α = −1, c1 = 1, t = 0.1.
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Figure 11: 3-dimensional wave of Case (9).
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Figure 12: 3-dimensional wave of Case (9).

In Figure 11, we take r = −6, β = 1, k = −6, c0 = 1, α = −1, t = 0.1. In Figure

12, we take r = 6, β = 1, k = −6, c0 = 1, α = −1, t = 0.01.

5 Conclusion

In this paper we study the nonlinear Schrödinger equation by finding its exact

travelling wave solutions through the modified extended tanh method. With the

aid of waveform graphs of the solutions, we can obtain the related properties of

the equation. In addition, we can also use other methods to obtain the bounded

solutions. However, the modified extended tanh method is more concise, more direct

and simpler than any other existing methods.
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