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Hopf Bifurcation Analysis of a Host-generalist
Parasitoid Model with Diffusion Term and Time
Delay*

Zijun Liu' and Ruizhi Yang"f

Abstract In this paper, we studied a delayed host-generalist parasitoid model
with Holling IT functional response and diffusion term. The Turing instability
and local stability are studied. The existence of Hopf bifurcation is investigat-
ed, and some explicit formulas for determining the bifurcation direction and
the stability of the bifurcating periodic solution are derived by the theory of
center manifold and normal form method. Some numerical simulations are
carried out.
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1. Introduction

In many aspects, dynamics of population model has been studied [1,4,5,16]. Host-
generalist parasitoids systems have gotten great attention in recent years. Because
of the invasion of leafmicrolepidopteron attacking horse chestnut trees in Europe (in
particular in France) [8], Magal et al. [3] investigated the following host-parasitoid
model with Holling Type II functional response, that is

du(t 2
R »
dv(t) _ rop — rov? + yéuv '
at — 2 K1 1+€hu’

where u(t) and v(t) denote densities of the hosts(leafminers Cameraria orhidella)
and generalist parasitoids (Minotetrastichus frontalis) at time ¢ respectively. 7 is
the intrinsic growth rate of the hosts in absence of parasitoids. ry represents the
intrinsic growth rate of the parasitoids in absence of hosts. K7 denotes the carrying
capacity of the host population. K5 denotes the carrying capacity of the parasitoid
population. ¢ is the encounter rate of hosts and parasitoids. - is the conversion
rate of parasitoids. h describes the harvesting time. r;, K;(i = 1,2), v, &, h are
all positive constants. Magal et al. analyzed the number and stability of equilibria
in system (1.1) and found out that the model always predicts persistence of the
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parasitoid. Then, in [13], the author also considered bifurcation analysis of the
followmg system with Holling Type II functional response. For simplicity, taking
U=,V =%, and t = rit, then (1.1) can be rewritten in the following form
(still denote @, T, t as u, v, t respectively)

d—“:u(l—u— b”)

;“ atul’ (1.2)
diz = (5—U+ a+u)
where
a= 1 b= Kz c= e 0= T2
Ky éh T Kyroh' T k)

The sufficient conditions were obtained to ensure that the equilibria are locally and
globally asymptotically stable.

Time delay in population model with Holling II functional response may have
significant impact on the underlying dynamics and many researchers have studied
this effect [2,7,9,11,14,15,17,18]. Because of maturation time, capturing time, ges-
tation time or other reasons, many different types of delays have been incorporated
in population models. Considering the delay effect on the generalist parasitoid ,and
the host and generalist parasitoid are non-homogeneous in the space. We study the
following model

augi’t) =diAu+u—u? - e z € (0,im), t >0,
avgzt:,t) =doAv+v(d —v+ %), x € (0,lm), t >0, (13)

ug(0,t) = v5(0,t) = 0, ug(Im, t) = v, (Im, t) =0, ¢t > 0,

u(z,0) = uo(z,8) > 0,v(z,0) = vo(x,0) >0, z€][0,in],0 € [—7,0].
where d; and ds are the diffusion coefficients of prey and predator respectively. The
aim of this article is to study the local stability and Hopf bifurcation of the unique
positive equilibrium for the system (1.3) by using 7 as a parameter.

The rest of this paper is organized as follows: In Section 2, we study the local

stability, Turing instability and the occurrence of Hopf bifurcation. In Section 3,
we study the direction and stability of spatial Hopf bifurcation. In Section 4, we

present some numerical simulations to illustrate the established results. Finally, a
summarization is given in Section 5.

2. Analysis of the characteristic equations

By analyzing the associated characteristic equation at P = (ug, vp), we investigate
the stability and instability of P = (ug, vg) for system (1.3). Denote

up(t) = u(-t), us(t) =v(-t), U= (ui,uz)’,

X = C([0,lx],R?), and €, := C([-T,0],X).

Linearizing system (1.3) at P = (ug,vo), we have

U = DAU(t) + L(Uy), (2.1)
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where

di 0 T 2 2
D= , dom(DA) = {(u,v)" : u,v € C*(|0,Ir], R*), uy, v, = 0,2 = 0,7},
0 ds

and L : €, — X is defined by
L(¢t) = L19(0) + Lag(—7),
for ¢ = (¢1,¢2)" € €, with

AB 00
Ly = s 2 =

0D co

$(t) = (61(1), ¢2(1))", S(t)(-) = (dr(t + ), p2(t + )T
A::M, B::ﬂ<07 C’::ﬂ>0, D:=—vyy <0
(a+up) (a + ugp)?
(2.2)

From Wu [12], we obtain that the characteristic equation for liner system (2.1) is

a+ ug

Ny — dAy — L(e*y) =0, y € dom(dA), y#0. (2.3)
It is well-known that the eigenvalue problem

—¢" = pp, x€(0,im); ¢'(0)=¢'(In) =0

has eigenvalues y,, = n?/I1?> (n = 0,1,---) with corresponding eigenfunctions

Substituting

n=0 Yan

into the characteristic equation (2.3), it follows that

A-dnt g
2 . Yin -\ Yin n=0,1,---
Cei)\T D — d2lg Yon Yon

Therefore, the characteristic equation (2.3) is equivalent to

A, (\T) =N+ \A, + B, — BCe ™ =0, (2.4)
where
TL2 n4 n2

We make the following hypothesis,
(H) AD-BC >0, A+ D <0. (2.5)
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2.1. Non-delay model

When 7 = 0, the characteristic reduces to the following equation.
N T, A+D,=0, ncN, (2.6)
where

T, = A+D— (dy +do) "
Dy, = dyds" — (dp A+ d1 D)% + AD — BO

and the eigenvalues are given by

T, + /T2 — 4D,
A (r) = 3 . neN (2.7)

Define some parameters g = %, A = (dyA — dyD)? + 4d1d2 BC, and

(dyA + dy D) + /(daA + d1D)? — 4dydy(AD — BC)
2d1d;

pt = (2.8)

Theorem 2.1. Suppose dy = do = 0, 7 = 0, and (H) hold, then the equilibrium
(up, vo) is locally asymptotically stable.

Theorem 2.2. Suppose d; >0, dy >0, 7 =0, and (H) hold. For the model (1.3),
the following statements are true.

(i) If ¢ < 0, then the equilibrium (ug,vq) is locally asymptotically stable.
(i) If ¢ > 0, A <0, then the equilibrium (ug,vo) is locally asymptotically stable.

(111) If ¢ > 0, A > 0 and there is no k € N such that 7}—; € (p—,py), then the
equilibrium (ug,vo) is locally asymptotically stable.

(iv) If ¢ > 0, A > 0 and there is a k € N such that 7}—22 € (p—,p+), then the
equilibrium (ug,vo) is Turing unstable.

Proof. By direct calculation, we can obtain T,, < 0 and D,, > 0 for ¢ < 0. This

means that all eigenvalues have negative real parts. Then, the equilibrium (ug,vo)

is locally asymptotically stable (statement (i) is true). Similarly, statements (i)-

(iii) are also true. If conditions in statement (iv) hold, then there is at least one

eigenvalue root with positive real part. Then, the equilibrium (ug,vp) is Turing

unstable. O
Fix the following parameters

di =00l,dy=1,a=0.12, b=1.6, c=0.3, §=0.1. (2.9)

We choose P(ug,vg) =~ (0.014,0.13), and (H) is satisfied. If we choose a = 0.12,
then P(ug,vg) is Turing unstable (shown in Figure 1).

2.2. Delay model

If one of conditions (i-iii) in Theorem 2.2 and (H) hold, we can easily verify that
A,(0,7) = B, — BC = D,, > 0. Then, the following lemma holds.
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u(x,t)

Figure 1. The numerical simulations of system (1.3) with 7 = 0 and the initial condition at (0.014, 0.13).
Left: component u (Stable). Right: component v (Stable).

Lemma 2.1. Suppose one of conditions (i-iii) in Theorem 2.2 and (H) hold, then
A =0 is not a root of equation (2.4) for any n € Ny.

Lemma 2.2. Suppose one of conditions (i-iii) in Theorem 2.2 and (H) hold, if
S # 0, then (2.4) has a pair of purely imaginary roots +iw, (n €S) at

T£=73+23l7j=0,1,2,--~, (2.10)
where 0 . 4B,
T, = o arccos B0 (2.11)
Wp = \/;[—(Ai —2B,) +/(A2 - 2B,)? — 4(B2 — B2C?)). (2.12)
and

4

n
S = {nldidy 7 — (d1D + dy A) C L AD+BC <0, n € No}. (2.13)

l2
Proof. iw is a root of (2.4), if and only if w satisfies
—w? +iwA, + B, — BC(coswT — isinwr) = 0.
Then, we have
—w?+ B,, — BCcoswt =0,
wA, + BCsinwt =0,

which lead to
wh +w?(A%2 - 2B,) + B2 - B*C? =0. (2.14)

Let 2 = w?, then (2.14) can be rewritten into the following form
2?4+ 2(A%2 —2B,) + B - B*C* =0, (2.15)

and its roots are given by

Zy = 5[—(,4% —2B,,) + /(A2 —2B,,)? — 4(B2 — B2C?)].
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If one of conditions (i-iii) in Theorem 2.2 and (H) hold, we have
2 n? 2 n? 2
An—ZBn:(dll—z—A) +(d21—2—D) >0,

and
B,—-BC =D, >0.
By direct computation, we have

n* n?
T (diD+ dgA)l—2 + AD + BC.

For n € S, B, + BC < 0, then Eq (2.15) has a positive root z,. Based on the
discussion above, the statement hold, and w,, = /5.

B, + BC = dids

O

Let Ay (7) = an(7) + iwn(7) be the root of (2.4) satisfying a,(77) = 0 and

wn(79) = w, when 7 is close to 7J. Then, we have the following transversality
condition.

Lemma 2.3. Suppose one of conditions (i-iii) in Theorem 2.2 and (H) hold. Then,

: dA
al(tl)y=-=—"—| _, >0 for n€S and j € Ny.

dr ' T=h
Proof. Differentiating two sides of (2.4) with respect 7, we have

d 23+ A+ TBCe ™

G = ABCe=>7
Then,
d\._, A2 -2B,+20? /(A2 -2B,)?—4(B2 — B2C?)
RB(E)T:TZ, = 3202 = 3202 > 0.
Therefore, o/, (77) > 0. O

Notice that 7, = 7%, for some m # n may occur. In this paper, we do not
consider this case. In other words, we consider

reD:={rl: 7—7{1#7—7’:7 m#n, myn€S, jkeNg}.

Define 7. = min{r € D}. According to the above analysis, we have the following
theorem.

Theorem 2.3. For system (1.3), suppose one of conditions (i-iii) in Theorem 2.2
and (H) hold, then the following statements are true.

(i) If S = 0, then the equilibrium P(ug,vo) is locally asymptotically stable for
7> 0.

(i) If S # 0, 7 € [0,7x), then the equilibrium P(ug,vo) is locally asymptotically
stable, and unstable for T > T,.

(iti) T = Tg (j € No ) are Hopf bifurcation values of system (1.3),

and the bifurcating periodic solutions are spatially homogeneous, which coincide with
the periodic solutions of the corresponding FDE system; when T € D/{7§ : k € Np},
system (1.3) also undergoes a Hopf bifurcation and the bifurcating periodic solutions
are spatially non-homogeneous.
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3. Direction and stability of spatial Hopf bifurca-
tion

In this section, we shall study the direction of Hopf bifurcation and stability of the
bifurcating periodic solution by applying center manifold theorem and normal form
theorem of partial functional differential equations [6,10,12]. For fixed j € Ny and
n € S, we denote 7 = 7. Let u(z,t) = u(x, 7t) — ug and 9(x,t) = v(x, 7t) — vo. For
convenience, we drop the tilde. Then, the system (1.3) can be transformed into

ou — (u+up)? — b(u + uo)(v + vo)
ghf_T[d1Au+u+uo (u + o) cz+(t(u41-)u_?_) )(7 +v0) (3.1)
! clu(t — Up )V T Vo

Gp = TldaBv+3(u-+ ) = (v 4 v0) + = s

for € (0,!m), and ¢ > 0. Let
T=F4pu, u(t)=u(-t), us(t)=wv(-t) and U = (ug,us)’.
Then, (3.1) can be rewritten in an abstract form in the phase space €1 := C([—1,0], X)

dU (¢)
dt
where L,(¢) and F(¢, ) are defined by

= 7DAU(t) + Lz(Uy) + F(Uy, p), (3.2)

Lu(6) = A¢1(0) + Bo2(0) (3.3)

Co1(—1) + Dp2(0)

F(¢, 1) = uDAG + L, (¢) + f(¢, 1), (3.4)
with

F(o, 1) = (7 + ) (Fir($, 1), Fao, )",

Fy(611) = 61(0) + o — (1(0) + up)? — 22D T 10)(@(0) +vo)

a+ (¢1(0) + uo) — A¢1(0) — B (0),

c(¢1(=1) + uo)(42(0) + vo)
a+ (¢1(—1) +uo)?

Fa(¢, 1) = 8($2(0) + vo) — (¢2(0) + v0)* + = C¢1(=1) — Dg2(0).

respectively, for ¢ = (¢1, ¢2)T € €.
Consider the linear equation

dU(t
% =TDAU(t) + Lz (Uy). (3.5)
According to the results in Section 2, we know that A, := {iw,7, —iw,T} are
characteristic values of system (3.5) and the liner functional differential equation
dz(t _.n?
d(t ) = *TDl?Z(t) + Lz (z). (3.6)

By Riesz representation theorem, there exists a 2 x 2 matrix function ™ (o, 7) —1 <
o < 0, whose elements are of bounded variation functions such that

n2 0
~TD756(0) + Lz(9) = / di”*(0,7)¢(0)

-1
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for ¢ € C([-1,0],R?).

In fact, we can choose

TE o=0,
n"(o,7) =10 € (~1,0), (3.7)
—7F 0 =-1,
where
A—d"% B 00
E = 2 F == (3.8)
0 D —dy 75 Co

Let A(7) denote the infinitesimal generators of semigroup included by the solutions
of equation (3.6) and A* be the formal adjoint of A(7) under the bilinear paring

(1,6) = $(0 /) gow — 0)d (0, F)H(E)de

(3.9)

wmwm+%/‘w@+nFM@%.

-1

for ¢ € C([-1,0],R?), ¥ € C([-1,0],R?). A(7) has a pair of simple purely imagi-
nary eigenvalues +iw, 7, and they are also eigenvalues of A*. Let P and P* be the
center subspace, that is, the generalized eigenspace of A(7) and A* associated with
A, respectively. Then, P* is the adjoint space of P and dimP = dimP* = 2.

It can be verified that p(0) = (1,£)Te™»™ (o € [-1,0]), pa2(o) = pi(o) is
a basis of A(7) with A,, and ¢1(r) = (1,7)e"™“""" (r € [0,1]), ga(r) = qi(r) is a
basis of A* with A,,, where

1 din? . ) ce~1TwWn B —zwn — A+ dl”
A— —iwy | = N = =
§ B ( l iwn + d%ﬁ D n . dg% Cezrwn
Let ® = (@1, ®) and U* = (%, U%)T with
1 (o) = 2109 ;m(ff) _ [ Re(e™™) cos (wn o) 7
Re §e“’"”’ E (A—di % 12 CcoS oTwy + “’f" sin oTwn

_ pi(o) —p2(0)
Pal0) =75

- (Im gelw"TU
for 0 € [-1,0], and
@1(r) + g2(r)

-

Wi(r) =

7zw.,L7'r

sin (w, 7o)

2 . - I
——" COS OTWy — % (dl% — A) sin O"Twn)

cos (wn%r)
B cos (wn7r) (A —di1 ™ = ) — %wn sin r7wn, '
—sin (wp77)
(A di 7 )sm rTWn 7

)
)
")

Wn

COSTTWn +
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for r € [0,1]. Then, we can compute by (3.9)

DT = (\Irqu)l)a D; = (\I/T7q)2)’ D; = (\1137(1)1)7 DZ = (\P;aq)Q)

Dy D;
D3 Dj

Define (V*, @) = (U7, &) = and construct a new basis ¥ for P* by

U= (U, ¥y)7 = (0, @)~ 1o~

Then, (¥, ®) = I>. In addition, define f,, := (8}, %), where

We also define
cfn= (:1[3’,1I + 0262, for ¢ = (01,02)T € 6.

Thus, the center subspace of linear equation (3.5) is given by Pony% @ Ps%; and
Ps%, denotes the complement subspace of Poy%1 in %1,

I I
1 _ 1 _
< U,V >i= — wvide + — U Uadx
Z7T 0 l7T 0

for u = (u1,us), v = (v1,v2), u,v € X and < ¢, fo >= (< &, fd >,< ¢, f& >)T.
Let A7 denote the infinitesimal generator of an analytic semigroup induced by the
linear system (3.5), and equation (3.1) can be rewritten as the following abstract
form

AU (t)

—g = AU+ R(Us ), (3.10)
where
07 0 € [_170);
R(Uy, ) = (3.11)
F(Utnu)v 0 =0.

By the decomposition of 7, the solution above can be written as

T
U= "' | fu+hler,ao, ), (3.12)
T2
where
T
= (\II7< Ut7f7l >)7
T2
and

h(z1, 22, 1) € Ps€1, h(0,0,0) =0, Dh(0,0,0) =0.
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In particular, the solution of (3.2) on the center manifold is given by

1 (t)
Ut = fn+h(:v1,x270). (313)

i) (t)

Let z = 1 — ixo, and notice that p; = &1 4+ i®5. Then we have

x1 z—;—?
@ fn=(®1,22) | ° _ | fu= ( 12+ P12) fn,

i(z2—%2)
ZTo —5

and

z24+7%Z i(z—3%)
27 2

Hence, equation (3.13) can be transformed into

h(l‘l,l’Q,O) :h( ,O).

1 L z2+7z t(z—7Z
U= sz + g+ (22 1B 22 )
. (3.14)
=51z +piz) fu + W(z,2),
where o _
W2 = h(h, Z(Z;Z),O).
From [12], z satisfies
Z=iw,Tz + g(2, %), (3.15)
where
4(,2) = (11(0) — i5(0)) < F(U,,0), f > (3.16)
Let
. 22 . 72
W(Z7Z) =W205+W1122+W023+"' s (3'17)
= 22 = Z 3.18
Q(Z,Z)=g205+911zz+902?+“', (3.18)

from equation (3.14) and (3.17), we have

1 =2
ui(0) = (2 +2)cos () + W§3>(o) +WP(0)2z+ Wi (0)

4
2 b
=2
z
v (0) = (g+gz) cos (4 )+W§§>(0) + W)+ W 05+
L s i W2 D W, \E
u(—1) = 5(2’671“"74-26“”"7) cos( i )+W20 (-1)=— —|—VV1 (—1)zz+ Wy, (—1)5—&—-“
and
— 1 1 9 1 2
Fl(Utvo) = ;Fl = 7fuuut (0) + fuvut(o)vt(o) + ifvvvt (0)

¥ éfmux ) 5 FustF0)0e(0) + 3 st (0)2(0) + & fonatf(0) + O(8),
(3.19)
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_ 1 1 1
FQ(Uty 0) = ;FQ = *guuuf(_l) + guvut(_l)vt(o) + igvvth(O)

2
1 1 1 1
+ gguuuu?(_l) + 6guuuuf(—1)vt(0) + 6ngut(—l)yf(o) + ggwwf(o) (3.20)
+0(4),
with
2abvg ba 2cupvg cug
=24+ -0 - = =00 =9
6abuvg 2ba
= -0, = =, = —2
fvv = fuvv = fmjv = Guvv = Govv = 0.
Hence,
Fi(U, 0)*0052(E)(z—2 + 2Z —|—i7 )—1—22—2008E —&—gcos?’ﬂ
1(Ut,0) = ] 5 X20 X117+ 5 Xa0 5 o 5 o1 (3.21)
+ BRI
Fo(U, 0)*c052(@)(i + 2z +ii )Jrzz—zcosE +§c083%
2(Ut,0) = ] 5 020 ou + 5030 5 ] G21 ) ] G22 (3.22)
+ cee
< F(Ut,0), fu >=F(F1(Ut,0) fn + F2(Ur, 0) f7)
2 —2 2
AR IR DA Bl DAy () AR B
2 $20 S11 2 G20 K2
+ .
(3.23)
with l
1 4 nw
= —/ cos®(—==)dz,
l7T 0 l
1 1 .
X20 = 1 (fuu + 2€fﬂw) y X111 = Z(fuu + fuv(§ + 5))
1 _
S11 = 5(fuu(2W111(0) + Wa0(0)) + fuv (2EW11(0) 4+ 2WT5 (0) + €W (0) + Wip(0)))
1 _
12 = g(fuuu + fuuv(é‘ + 25))
_ 1 —2iTwn 1Twn, iTwWn _ 1 1 —iTwn ¢
020 = 46 (guu +e 529uu + gm)€6 ) , Q11 = 4guu + 46 Eguv‘f'
1 ITwn
1 EGuv

—iTwWn 1 ¢ ITWn
G21 = Wlll(_l) (guvg + Juu€ ) + §W210(_1) (Sgu'u + Juu€ )
2 —iTwWn 1 2 & iTWn
+ Wll(o) (gvvg + guve ) + 2W20(0) (ggvv + guve )

1 _ 1Tw 1Tw & ITw
G22 = ge 2 " (guuue "4+ é-guuv + 2guuv£e2 n) .

(3.24)

1 I 1 lm
K1 :gll—/ cosQ(E)da? + §12*/ cos‘l(@)dac7
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I I TLJZ
Ko —qgl—/ cos? dx+§22f/ cos? l —)dx

Denote
W1 (0) —i¥2(0) := (71 72)-

Notice that

1 I
— cosg(@)dxzo, n=123---,
Z7T 0 l

and we have
(V1(0) —iV2(0)) < F(Ut,0), fr >=
2 o o2 ~ i
5(71)(20 + 72520)I'T + 2Z(y1x11 + 72511)T7 + 3(’71)(20 + 72520)I'T (3.25)
2%z .

+ 77[71/'61 +y2ke] + 00,

Then, by (3.16), (3.18) and (3.25), we have goo = g11 = go2 =0, for n =1,2,3,---.

If n = 0, we have the following quantities:

920 = Y1TX20 + Y27 020, 911 = M1TX11 + 727011, o2 = 1T Xa0 + V27020,

and for n € Ny, go1 = 7(y161 + Y2K2). Now, a complete description for go; depends
on the algorithm for Wy (6) and Wi;1(0) for § € [—1,0] which we shall compute.
From [12], we have

W(Z,E) = Wgozé’ + Wllé’f—‘r W112§+ WQQZTLJ + -
2
A;—W(Z,Z) Ax W20 —|— Az W11ZZ + Az WQQ* ‘y
and W(z,z) satisfies _
W(z,z) = AsW + H(z,%),

where
22 z2
H(Z,z) = Hgof + Wuzf—i— Hogf +

:XO (Ut, ) (\If <X0 (Ut,o)yfn > fn)

(3.26)

Hence, we have

(Qan’TN' - A;—)WQO = HQ(), - A;—Wll = th (72lwn’7~' - A-,“—)WOQ == H027 (327)

that is
Wao = (2iwnT — A7) " Hao, Wii = —A;'Hyy, Wop = (—2iw,7 — Az)”"Hoo.
(3.28)
By (3.25), we have that for § € [-1,0),
H(z,2) = —®(0)¥(0) < F(Ut,0), fn > fn
_ (p1(9) +p2(6) p1(0) —p2(9)) 21(0) < F(U,0), fo > -fu
2 ) 22 @2(0) ) )
- %[pl(e)(@m) —i102(0)) + p2(0)(21(0) +i92(0))] < F(U,0), fn > fn
== %[(pl (0)g20 + p2 (‘9)%2)% + (p1(0)g11 + p2(0)g11)2Z + (p1(0)go2 + p2 (‘9)%0)%]
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Therefore, by (3.26), for 6 € [—1,0),
0 n €N,
Hy(0) = )
—5(P1(0)g20 + p2(0)gg2) - fo n =0,
0 n €N,
Hy1(0) = )
—5(P1(0)g11 +p2(0)g11) - fon =0,
0 n €N,
Hp2(0) = ) B
—3(P1(8)go2 + p2(0)7s) - fo n =0,
and
H(Z>E)( ) (Ut7 ) (\II < F(Ut, ) fn >)'fn7
where
P cos?(2E), n €N,
020
Hao(0) = (3.29)
- | X20 1
T — 5(P1(0)g20 + p2(0)Go2) - fo, n = 0.
020
7 cos®(2E), neN,
011
Hy1(0) = (3.30)
- X1t 1
T — 5(P1(0)g11 + p2(0)g14) - fo, n=0.
011
By the definition of Az and (3.27), we have
. o 1
Wao = Az Wag = 2iw, TWao + 5(?1(9)920 +p2(0)G02) - fn, —1<60<0.
That is,
t Jo2 Qi 70
Woo(0) = —— 0)+ =pa(0)) - frn + E nTv
20(0) 2iwn7~_(920p1( ) + 3 p2(0)) - fn + Ere
where
WQQ(O) n=1,2,3,~--,
I , _
Wa20(0) — 5755 (92001 (0) + 282p2(0)) - fo n = 0.
Using the definition of A7 and (3.27), we have that for —1 <6 <0
_ o ; _
— (920p1(0) + g%m(o)) - fo + 2iw, TEL — Az ( (92001 (0) + 223 (0)) - fo)

2w, T 3

t o2 Qiwn 70
CALE, - Li(—— Yoz f 4 By eRient
7Eq T(an%(g20pl(0) + 3 p2(0)) - fn + Ere )
~ | X20 1 B
=T - 5(]91(0)920 +p2(0)Jo2) - fo-

020
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As

Azp1(0) + Lz(p1 - fo) = iwop1(0) - fo,
and

Azp2(0) + Lz(p2 - fo) = —iwop2(0) - fo,
we have

iwnFy — ArEy — LaEye?n — 7 | X2 cos2(nl—x), n=001,2"-.
020
That is,
Ey=7F X20 COSQ(%)
020

where .

Qiwn 7+ di % — A -B

—Ce™ 2T D4 2w, 7+ doy

Similarly, from (3.28), we have

_Wll =

50 7 (P1(0)g11 +p2(0)F11) - fn, —1<60<0.
Wn T

That is,
W11(6)

= 21.%%(191(9)?11 —p1(0)g11) + E2.

Similar to the procedure of computing Wsg, we have

E, =7E* xn COSQ(nZ—x),
011

where L

a5 —A -B

E* = ,
~C  —D+d%

Thus, we can compute the following quantities which determine the direction and
stability of bifurcating periodic orbits:

. 2 e(c
c1(0) = 557 (920911 — 2lgu* — Igo:szl )+ 5921, 2 = 7%’ (3.31)
Ty = =2 [Im(c1(0)) + paIm(X (7)), P = 2Re(c1(0)).

Then, we have the following theorem.

Theorem 3.1. For any critical value 73, we have

(i) po determines the directions of the Hopf bifurcation: if us > 0 (respectively
<0), then the Hopf bifurcation is forward (respectively backward). That is, the
bifurcating periodic solutions exists for T > 7 (respectively T < 73 ) ;
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(i) Ba determines the stability of the bifurcating periodic solutions on the center
manifold: if o < 0 (respectively >0), then the bifurcating periodic solutions
are orbitally asymptotically stable (respectively unstable).

(11i) Ty determines the period of bifurcating periodic solutions: if To > 0 (respec-
tively Ty < 0), then the period increases (respectively decreases).

4. Numerical simulations

In this section, to illustrate the results found in the previous sections, some examples
and numerical results are presented. We use Matlab to simulate and plot numerical
graphs. For the system (1.3), we choose parameters:

di=2,d=2 a=02 b=16, c=03, §=0.1. (4.1)

By direct computation, we have uy ~ 0.03, vo = 0.14. Hence, (H) holds. From
(2.11) and (2.12), we have 7, = 7§ ~ 1.2769 and wy ~ 2.14. By Theorem 2.1 (i),
we know that if 7 € [0, 7,), then the equilibrium P(ug,vg) is locally asymptotically
stable. This is shown in Figure 2, where we choose 7 = 2 and the initial condition
at (0.03,0.14). By Theorem 2.1 (iii), we conclude that the equilibrium P(ug,vg)
loses its stability and Hopf bifurcation occurs when 7 crosses 73. By Theorem 3.2,

piz ~ 0.0219829 > 0, By~ —137.48 <0, and Ty ~ 47.0227 > 0.

Hence, the direction of the bifurcation is forward, and the bifurcating period so-
lutions are locally asymptotically stable. In addition, the period of bifurcating
periodic solutions increase. This is shown in Figure 3, where we choose 7 = 2 and
the initial condition at (0.03,0.14).

u(x,t) vix,t)

t 1000 o M

Figure 2. The numerical simulations of system (1.3) with 7 = 1, and the initial condition at (0.03 —
0.01sin(z), 0.14 — 0.05cos(x)). Left: component u (Locally asymptotically stable). Right: component v
(Locally asymptotically stable).

5. Conclusion

In this paper, we study a host-generalist parasitoid model with diffusion term and
time delay. We mainly analyze the diffusion induced Turing instability, and time
delay induced Hopf bifurcation. Under the theory of center manifold and normal
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u(x,t) v(x.t)

0.3
0.25

02

0.1

0.05
2000 ~

Figure 3. The numerical simulations of system (1.3) with 7 = 2, and the initial condition at (0.03 —
0.001sin(z), 0.1 — 0.001cos(x)). Left: component u (Stable). Right: component v (Stable).

form method, we give some parameters to determine the bifurcation direction and
the stability of the bifurcating periodic solution. Our results suggest that diffusion
and time delay are two important factors in the host-generalist parasitoid mod-
el. Diffusion may induce Turing instability and the non-homogeneous bifurcating
periodic solutions. The hosts and generalist parasitoid will coexist in the form of
periodic oscillations when time delay larger than the critical value.
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