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Global Dynamics of a Diffusive Leslie-Gower
Predator-prey Model with Fear Effect∗

Zebin Fang1, Shanshan Chen1,† and Junjie Wei1,2

Abstract A diffusive Leslie-Gower predator-prey model with fear effect is
considered in this paper. For the kinetic system, we show that the unique
positive equilibrium is globally asymptotically stable. Moreover, we find that
high levels of fear could decrease the population densities of both prey and
predator in a long time. For the diffusive model, we obtain the similar results
under certain conditions.
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1. Introduction

There are extensive models to describe the interaction between predator and prey,
and one of the classical models takes the following form:

∂u

∂t
= d1∆u+ ru− αu2 − φ(u)v, x ∈ Ω, t > 0,

∂v

∂t
= d2∆v −mv + cφ(u)v, x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ (6≡)0, v(x, 0) = v0(x) ≥ ( 6≡)0, x ∈ Ω.

(1.1)

Here, u(x, t) and v(x, t) are the densities of the prey and predator at location x and
time t respectively; Ω is a bounded domain in RN with a smooth boundary ∂Ω; n
is the outward unit normal vector on ∂Ω; d1, d2 > 0 are the diffusion coefficients
of the prey and predator, respectively; r > 0 is the intrinsic growth rate of the
prey; α > 0 represents the intraspecific competition of the prey; m > 0 is the
death rate of the predator; c > 0 is the conversion rate; φ(u) denotes the predator
functional response to the prey density. The predator functional responses are
generally classified into four Holling types: I-IV [8]. For the Holling type II predator
functional response, there exist extensive results for the kinetic system of model
(1.1), such as the global stability of the positive equilibrium and the existence
and uniqueness of a limit cycle, see [3, 9, 11]. Yi et al. [32] considered the steady
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state and Hopf bifurcations for model (1.1) with Holling type II predator functional
response, and see also [22] for the nonexistence of nonconstant positive steady states.
Dynamics of model (1.1) with other Holling type predator functional responses could
be found in [1, 17,23–26,30,35] and references therein.

It has been found recently that the fear of the predator could reduce the birth
rate of the prey, see [6, 7, 12, 27, 28, 34] and references therein. To model this fear
effect, Wang et al. [28] first introduced a predator-dependent growth rate function
for the prey. Actually, they proposed the following predator-prey model:


du

dt
= rf(k, v)u− du− αu2 − φ(u)v, t > 0,

dv

dt
= −mv + cφ(u)v, t > 0,

u(0) = u0 > 0, v(0) = v0 > 0,

(1.2)

where f(k, v) represents the effect of fear, k > 0 reflects the level of fear, and f(k, v)
satisfies the following assumption:

(A) f(k, v) is smooth, f(0, v) = f(k, 0) = 1, limk→∞ f(k, v) = 0 and
∂f(k, v)

∂k
< 0

for v > 0, and limv→∞ f(k, v) = 0 and
∂f(k, v)

∂v
< 0 for k > 0.

It was showed in [28] that, for model (1.2) with the Holling type II predator function-
al response, high levels of fear can stabilize the positive steady state, and low levels
of fear can induce multiple limit cycles via subcritical Hopf bifurcations. Moreover,
the corresponding PDE model of (1.2) with the predator-taxis were investigated
in [29].

Another classical predator-prey model is the following Leslie-Gower predator-
prey model proposed by Leslie and Gower [14,15]:



∂u

∂t
= d1∆u+ ru− αu2 − βuv, x ∈ Ω, t > 0,

∂v

∂t
= d2∆v + λv

(
1− v

u

)
, x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ (6≡)0, x ∈ ∂Ω.

(1.3)

Here, the carry capacity of the predator depends on the density of the prey, and
parameters d1, d2, r, α, β and λ are all positive constants. For the kinetic system
of model (1.3), Hsu [10] obtained that the unique positive equilibrium is globally
asymptotically stable, which attracts all the positive solutions. For the diffusive
case, Du and Hsu [4] found that if α/β > s0, where s0 ∈ ( 1

5 ,
1
4 ). Then, the u-

nique positive constant equilibrium is globally asymptotically stable. Moreover,
the dynamics of delayed diffusive Leslie-Gower predator-prey models were analyzed
in [2,5,31,33] and references therein, see also [13,16] for the dynamics of the Leslie-
Gower predator-prey model with Allee effect.

In this paper, we revisit model (1.3) with fear effect as in model (1.2). Following



A Predator-prey Model with Fear Effect 131

[28], we see that model (1.3) with fear effect takes the following form:

∂u

∂t
= d1∆u+ ruf(k, v)− αu2 − βuv, x ∈ Ω, t > 0,

∂v

∂t
= d2∆v + λv

(
1− v

u

)
, x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ (6≡)0, x ∈ ∂Ω,

(1.4)

where u(x, t) and v(x, t) are the densities of the prey and predator respectively, Ω
is a bounded domain in RN with a smooth boundary ∂Ω, n is the outward unit
normal vector on ∂Ω, parameters d1, d2, r, α > 0 have the same meanings as that
in model (1.1), β > 0 denotes the ability of the predator to capture the prey, λ > 0
is the intrinsic growth rate of the predator, and f(k, v) and k > 0 have the same
meanings as that in model (1.2).

The rest of the paper is organized as follows: In Section 2, we show that the
unique positive equilibrium is globally asymptotically stable for the kinetic system
of model (1.4), and high levels of fear could decrease the densities of both prey and
predator. In Section 3, we consider the diffusive model (1.4), and obtain similar
results under certain conditions. Throughout the paper, we apply (a1, b1) < (a2, b2)
to denote a1 < a2 and b1 < b2.

2. The kinetic system

In this section, we consider the kinetic system of model (1.4). That is,
du

dt
= ruf(k, v)− αu2 − βuv, t > 0,

dv

dt
= λv

(
1− v

u

)
, t > 0,

u(0) = u0 > 0, v(0) = v0 > 0.

(2.1)

Clearly, model (2.1) has a unique positive equilibrium (u∗(k), v∗(k)), where

rf(k, v∗(k)) = (α+ β)v∗(k), u∗(k) = v∗(k). (2.2)

First, we show the monotonicity of u∗(k) and v∗(k) with respect to k.

Lemma 2.1. Assume that f(k, v) satisfies assumption (A). Then, u∗(k) and v∗(k)
are strictly decreasing with respect to k and limk→∞ u∗(k) = limk→∞ v∗(k) = 0.

Proof. Differentiating the first equation of (2.2) with respect to k, we have

r
∂f

∂k
(k, v∗(k)) + r

∂f

∂v
(k, v∗(k))

dv∗(k)

dk
= (α+ β)

dv∗(k)

dk
.

Note that
∂f

∂k
(k, v∗(k)) < 0,

∂f

∂v
(k, v∗(k)) < 0,

and u∗(k) = v∗(k). It follows that u∗(k) and v∗(k) are strictly decreasing, which
implies that limk→0 v∗(k) exists and is nonnegative. We claim that limk→0 v∗(k) =
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0. If it is not true, then there exist δ0, k0 > 0 such that v∗(k) > δ0 for k > k0. From
(2.2), we have

(α+ β)v∗(k) = rf(k, v∗(k)) ≤ rf(k, δ0). (2.3)

Taking the limit of (2.3) as k →∞, we see from assumption (A) that limk→∞ v∗(k) =
0, which is a contradiction. This completes the proof.

The characteristic equation with respect to the positive equilibrium (u∗(k), v∗(k))
of model (2.1) takes the following form:

µ2 + (αu∗(k) + λ)µ+ (α+ β)λu∗(k)− λru∗(k)
∂f(k, v∗(k))

∂v
= 0. (2.4)

Clearly, all the eigenvalues have negative real parts, and (u∗(k), v∗(k)) is locally
asymptotically stable. It follows from the comparison principle that

lim sup
t→∞

u(t) ≤ r

α
, lim sup

t→∞
v(t) ≤ r

α
.

Then, by virtue of the LaSalle’s invariance principle, we have the following result.

Theorem 2.1. Assume that f(k, v) satisfies assumption (A). Then, (u∗(k), v∗(k))
is globally asymptotically stable, which attracts all the positive solutions of model
(2.1).

Proof. Denote h(v) := r − rf(k, v) + βv. We construct the following Lyapunov
function:

V (u, v) = λ

∫ u

u∗

ξ − u∗
ξ2

dξ +

∫ v

v∗

h(η)− h(v∗)

η
dη, (2.5)

where we use (u∗, v∗) to denote (u∗(k), v∗(k)) for simplicity. Let (u(t), v(t)) be a
solution of system (2.1). Then, we have

dV (u(t), v(t))

dt
=
λ

u
(u− u∗)(αu∗ + h(v∗)− αu− h(v))

+
λ

u
(h(v)− h(v∗))(u− u∗ + v∗ − v)

=− λ

u

[
α(u− u∗)2 + (h(v)− h(v∗))(v − v∗)

]
.

(2.6)

Since f(k, v) satisfies assumption (A), we obtain that

h′(v) = β − r ∂f(k, v)

∂v
> 0 for v > 0.

This implies that V (u, v) > 0 for (u, v) 6= (u∗, v∗),

dV (u(t), v(t))

dt
≤ 0,

and the equality holds if and only if u(t) = u∗ and v(t) = v∗. Therefore, (u∗(k), v∗(k))
is globally asymptotically stable. This completes the proof.

It follows from Theorem 2.1 that model (2.1) has a positive equilibrium, denoted
by (u∗(k), v∗(k)), which is globally attractive. Note that u∗(k) and v∗(k) are strictly
decreasing with respect to k from Lemma 2.1. In the following, we show that, for a
Leslie-Gower predator-prey model, high levels of fear will decrease the densities of
both prey and predator in a long time.
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Proposition 2.1. Let (ui(t), vi(t)) be the solution of model (2.1) for k = ki, where
i = 1, 2. Assume that k1 > k2. Then, there exits t0 > 0 such that

(u1(t), v1(t)) < (u2(t), v2(t)) ,

for any t ≥ t0.

Proof. It follows from Theorem 2.1 that limt→∞ ui(t) = u∗(ki) and limt→∞ vi(t) =
v∗(ki) for i = 1, 2. Since u∗(k1) < u∗(k2) and v∗(k1) < v∗(k2) from Lemma 2.1, we
see that there exits t0 > 0 such that

(u1(t), v1(t)) < (u2(t), v2(t)) for any t ≥ t0.

This completes the proof.

3. The diffusive model

In this section, we show that, for the case of d1, d2 6= 0, the positive equilibrium
(u∗(k), v∗(k)) of model (1.4) is also globally asymptotically stable under certain
conditions. For simplicity, we assume that

f(k, v) =
1

1 + kv
(3.1)

throughout this section, and this function which describes the fear effect was also
used in [28]. That is, we consider the following model:

∂u

∂t
= d1∆u+

ru

1 + kv
− αu2 − βuv, x ∈ Ω, t > 0,

∂v

∂t
= d2∆v + λv

(
1− v

u

)
, x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ (6≡)0, x ∈ ∂Ω.

(3.2)

By virtue of the upper and lower solution method, we will give a sufficient condition
to guarantee the global stability of the unique positive equilibrium. First, we give
the following result on the upper and lower bounds of the solutions of model (3.2).

Lemma 3.1. Suppose that
kr

α+ kr
+
β

α
< 1. (3.3)

Then, there exist (u, v), (u, v) > (0, 0) such that

r

1 + kv
− αu− βv ≤ 0, 1− v

u
≤ 0,

r

1 + kv
− αu− βv ≥ 0, 1− v

u
≥ 0.

(3.4)

Furthermore, for any initial value φ = (u0(x), v0(x)), where u0(x) > 0, v0(x) ≥
(6≡)0, there exists a positive constant t(φ) such that the corresponding solution
(u(x, t), v(x, t)) of system (3.2) satisfies

(u, v) ≤ (u(x, t), v(x, t)) ≤ (u, v) (3.5)

for any t > t(φ).
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Proof. Let

u =
r

α
+ ε, v =

r

α
+ 2ε, u =

1

α

[
r − h

( r
α

+ 2ε
)]
− ε, v = u− ε, (3.6)

where

h(v) =
krv

1 + kv
+ βv. (3.7)

It follows from equation (3.3) that

lim
ε→0

u =
r

α

(
1− kr

α+ kr
− β

α

)
> 0.

Then, we can choose a sufficient small ε such that u, v > 0, and a direct computation
implies that u, u, v, v satisfy equation (3.4).

From the first equation of model (3.2), we see that u(x, t) satisfies

∂u

∂t
=d1∆u+ u

(
r

1 + kv
− αu− βv

)
≤d1∆u+ u(r − αu).

It follows from the comparison principle that, for any initial value φ, there exists
t1(φ) > 0 such that u(x, t) ≤ u for any t > t1(φ) and x ∈ Ω. Consequently, v(x, t)
satisfies

∂v

∂t
= d2∆v + λv

(
1− v

u

)
≤ d2∆v + λv

(
1− v

u

)
for t > t1(φ). Similarly, we obtain that, for any initial value φ, there exists t2(φ) >
t1(φ) such that v(x, t) ≤ v for any t > t2(φ) and x ∈ Ω. Then, u(x, t) satisfies

∂u

∂t
=d1∆u+ u (r − h(v)− αu)

≥d1∆u+ u(r − h(v)− αu)

for t > t2(φ), where h(v) is defined as in equation (3.7). This implies that, for any
initial value φ, there exists t3(φ) > t2(φ) such that u(x, t) ≥ u for any t > t3(φ) and
x ∈ Ω. Consequently, we have

∂v

∂t
≥ d2∆v + λv

(
1− v

u

)
, (3.8)

for t > t3(φ). Then, there exists t(φ) > t3(φ) such that v(x, t) ≥ v for any t > t(φ)
and x ∈ Ω. This completes the proof.

Then, by virtue of the upper and lower solution method [18–21], we show that
the unique positive equilibrium is globally attractive under certain conditions.

Theorem 3.1. Assume that equation (3.3) is satisfied. Then, for any initial value
φ = (u0(x), v0(x)), where u0(x) > 0, v0(x) ≥ (6≡)0, the corresponding solution of
system (3.2) converges uniformly to the positive constant equilibrium (u∗(k), v∗(k))
as t→∞.

Proof. It follows from lemma 3.1 that (u, v) and (u, v) defined in equation (3.6)
is a pair of coupled upper and lower solution of system (3.2) for a sufficiently small
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ε. A direct computation implies that there exists K > 0 such that, for any (u, v) ≤
(u1, v1), (u2, v2) ≤ (u, v),∣∣∣∣u1( r

1 + kv1
− αu1 − βv1

)
− u2

(
r

1 + kv2
− αu2 − βv2

)∣∣∣∣
≤K(|u1 − u2|+ |v1 − v2|),∣∣∣∣λv1(1− v1

u1

)
− λv2

(
1− v2

u2

)∣∣∣∣
≤K(|u1 − u2|+ |v1 − v2|).

Then, we define two iteration sequences (u(m), v(m)) and (v(m), v(m)) in the follow-
ing. For m ≥ 1,

u(m) =u(m−1) +
u(m−1)

K

[
r

1 + kv(m−1)
− αu(m−1) − βv(m−1)

]
,

u(m) =u(m−1) +
u(m−1)

K

[
r

1 + kv(m−1)
− αu(m−1) − βv(m−1)

]
,

v(m) =v(m−1) +
λv(m−1)

K

(
1− v(m−1)

u(m−1)

)
,

v(m) =v(m−1) +
λv(m−1)

K

(
1− v(m−1)

u(m−1)

)
,

and
(
u(0), v(0)

)
= (u, v) and

(
u(0), v(0)

)
= (u, v). It follows from [21] that, for

m ≥ 1,

(u, v) ≤ (u(m), v(m)) ≤ (u(m+1), v(m+1)) ≤ (u(m+1), v(m+1)) ≤ (u(m), v(m)) ≤ (u, v).

Consequently, there exist (ũ, ṽ) and (ǔ, v̌), where (u, v) ≤ (ǔ, v̌) ≤ (ũ, ṽ) ≤ (u, v),
such that limm→∞ u(m) = ũ, limm→∞ v(m) = ṽ, limm→∞ u(m) = ǔ, limm→∞ v(m) =
v̌ and

r

1 + kv̌
− αũ− βv̌ = 0, 1− ṽ

ũ
= 0,

r

1 + kṽ
− αǔ− βṽ = 0, 1− v̌

ǔ
= 0.

(3.9)

The above construction of {u(m)}∞m=0,{u(m)}∞m=0, {v(m)}∞m=0, {v(m)}∞m=0 and their
corresponding properties are standard for the upper and lower solution method [21],
and we only include here for the sake of completeness. It follows from equation (3.9)
that

r

1 + kv̌
− αṽ − βv̌ = 0,

r

1 + kṽ
− αv̌ − βṽ = 0.

(3.10)

Then,

ṽ =
1

α

(
r

1 + kv̌
− βv̌

)
, v̌ =

1

α

(
r

1 + kṽ
− βṽ

)
. (3.11)
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Subtracting the first equation of (3.10) from the second equation, we have

kr(ṽ − v̌)

(1 + kv̌)(1 + kṽ)
= (α− β)(ṽ − v̌). (3.12)

We claim that ṽ = v̌. If it is not true, then from equation (3.12), we have

(1 + kṽ)(1 + kv̌) =
kr

α− β
. (3.13)

Plugging equation (3.11) into equation (3.13), we see that ṽ and v̌ are the roots of
the following quadratic equation

k2β

α
x2 −

(
k − kβ

α

)
x+

kr

α− β
− 1− kr

α
= 0. (3.14)

Note that k, r, α and β satisfy equation (3.3), which yields

kr

α− β
− 1− kr

α
< 0.

Then, equation (3.14) cannot have two positive roots, which is a contradiction.
Therefore, ṽ = v̌, and consequently ũ = ǔ. It follows from the upper and lower
solution method [21] that the unique constant positive equilibrium (u∗(k), v∗(k)) is
globally attractive, if equation (3.3) is satisfied. This completes the proof.

The characteristic equations with respect to the positive equilibrium (u∗(k), v∗(k))
of model (3.2) are as follows:

µ2 + [αu∗(k) + λ+ (d1 + d2)γi]µ+ (αu∗(k) + d1γi) (λ+ d2γi)

+ βλu∗(k) +
λrku∗(k)

(1 + kv∗(k))2
= 0, i = 0, 1, 2, · · · ,

(3.15)

where {γi}∞i=1 satisfying

0 = γ0 < γ1 < · · · < γi < γi+1 < · · ·

are the eigenvalues of −∆. Clearly, all the roots of (3.15) have negative real parts,
and consequently, (u∗(k), v∗(k)) is locally asymptotically stable. This, combined
with Theorem 3.1, implies that (u∗(k), v∗(k)) is globally asymptotically stable.

Theorem 3.2. Assume that equation (3.3) is satisfied. Then, (u∗(k), v∗(k)) is
globally asymptotically stable, which attracts all the positive solutions of system
(3.2).

Similarly, we can also show that, under certain conditions, the high levels of fear
will decrease the densities of both prey and predator for the diffusive case, and we
omit the proof here.

Proposition 3.1. Assume that k1 > k2, and ki satisfies equation (3.3) for i = 1, 2.
Let (ui(x, t), vi(x, t)) be the solution of model (3.2) for k = ki, where i = 1, 2. Then,
there exits t0 > 0 such that

(u1(x, t), v1(x, t)) < (u2(x, t), v2(x, t)) ,

for any x ∈ Ω and t ≥ t0.
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Figure 1. High levels of fear will decrease the densities of both prey and predator for the
kinetic system. Here, α = 1, β = 0.5, λ = 1, r = 0.5, the initial values u(0) = 1.5,
and v(0) = 2, and (u1(x, t), v1(x, t)) is the corresponding solution with k = 0.5, and
(u2(x, t), v2(x, t)) is the corresponding solution with k = 2.

Figure 2. High levels of fear will decrease the densities of both prey and predator for the
diffusive system. Here, d1 = 0.1, d2 = 0.05, α = 1, β = 0.5, λ = 1, r = 0.5, Ω = (0, 1),
and the initial values u(x, t) = 0.3 + 0.01 cosπx, and v(x, t) = 0.2 + 0.01 cosπx. (Upper)
k = 0.5; (Lower) k = 1.5.



138 Z. Fang, S. Chen & J. Wei

4. Numerical simulation: the effect of fear

It follows from Propositions 2.1 and 3.1 that high levels of fear will decrease the
densities of both prey and predator. Moreover, in this section, we will numerically
show this phenomenon, see Figure 1 for the kinetic system of model (1.4) and Figure

2 for the diffusive case. Here, we also choose f(k, v) =
1

1 + kv
for simplicity.
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