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Existence and Uniqueness of Solutions and
Lyapunov-type Inequality for a Mixed Fractional
Boundary Value Problem*

Yani Liu! and Qiaoluan Libf

Abstract In this paper, a Lyapunov-type inequality for a linear differential
equation involving right Riemann-Liouville and left Caputo fractional deriva-
tives under Sturm-Liouville boundary conditions is established. Furthermore,
the existence of solutions for the corresponding nonlinear differential equation
is obtained by fixed point theorems.
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1. Introduction

Fractional calculus is the theory of differential and integral of any order, which is
the extension of integer order calculus. Since it can well describe the real world
phenomena, it has been gaining popularity among scientists working on different
subject. According to the actual needs, mathematicians give a variety of definitions
of fractional derivatives and integrals [13]. The most commonly used fractional cal-
culus operators are perhaps Riemann-Liouville and Caputo fractional integrals and
derivatives.

Recently, Lyapunov-type inequalities for fractional differential equations have
been widely used in various problems, including oscillation, disconjugacy and eigen-
value problems. This work was first done by Ferreira [4], who obtained a Lyapunov-
type inequality for the following differential equations with Riemann-Liouville frac-
tional derivative:

Dg u(t) +q(t)u(t) =0,a <t <bl<a<2,
u(a) = u(b) = 0.
In 2018, Ntouyas et al., [16] summarized the development of Lyapunov inequal-

ities in fractional differential equations. Moreover, many authors have obtained
Lyapunov-type inequalities for mixed fractional differential equations [5,6,8,11,12].
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For example, Khaldi [12] considered the equation:

{—CDng+u(t) +q(t)u(t) =0,a <t <b,
u(a) = u(b) =0,

where 0 < f<a<l,l<a+ <2

At the same time, more and more attention has been paid to the existence of so-
lutions for fractional boundary value problems [1-3,9,10,14,15,17,20]. In particular,
fixed theorems have been extensively used to study the solutions of equations. For
example, in [7], the authors investigated the existence of nonnegative solutions of
fractional Liouville equation by using Krasnoselskill’s fixed point theorem. In 2011,
Samet et al., [19] introduced a new concept of a — ¢)—contractive type mappings
and established fixed point theorems for such mappings in complete metric spaces.
Motivated by [3,12], in this paper, we consider the Lyapunov-type inequality for
the following fractional differential equation:

{CD§+Dg_u(t) +q(t)u(t) =0,a <t <b, 4

u(b) = 0,pu(a) = vDy*_u(a),

where 0 < a < <1, 1 <a+p<2 py<0andp #0, CDEJF denotes the
left Caputo derivative, Dj'  denotes the right Riemann-Liouville derivative,  is the
unknown function and g € C([a, ], R).

Furthermore, we obtain the existence of solutions for the corresponding nonlinear
problem:

{CDf;Dg_u(t) L u(), IT u(t), P u(t)) = 0,a < t < b, 12)

u(b) = 0,pu(a) = vDy_u(a),
where \, 7,8 > 0 and f € C([a,b] x R3 R).
This paper is organized as follows: In section 2, we introduce some basic concept-

s. In Section 3, we prove Lyapunov-type inequality and the existence of solutions.
Finally, we give two examples to illustrate the theoretical results.

2. Preliminaries

In this section, we recall the basic concepts related to our work.

Definition 2.1 ( [13,18]). The left and right Riemann-Liouville fractional integrals
I3, f and I* f of order o > 0 are defined respectively by

(12, ) () = F1 )/m( ft)dt

- I« x — )=’
b
060 = s | e

where I' is the gamma function.

Definition 2.2 ( [13,18]). The left and right Riemann-Liouville fractional deriva-
tives D, f and Dy* f of order a > 0 are defined respectively by

D300 = (1) e
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05 D) = (-1 ) @D
wheren — 1 < a < n.

Definition 2.3 ( [13,18]). The left and right Caputo fractional derivatives D,
and “ D¢ f of order a > 0 are defined respectively by

(“Day () = L7 D" f) (@),
(“Dpf)(@) = (=1)" (1= D" f) (@),

wheren — 1 < a <n.

Lemma 2.1 ( [13,18]). Let 0 < a < 1, then

I§+(CD3+ )(2)
I (“Dy_f)(x)

8

(“Dg, () = Dy (f(x) - f(a)),
(“D_f)(x) = Di_(f(z) = £(b)

Denote with ¥ the family of nondecreasing functions ¢ : [0,00) — [0, 00) such
that Y, 9" (t) < oo for each ¢ > 0, where ¢™ is the n—th iterate of 4.

Definition 2.4 ( [19]). Let (X, d) be a metric space and T : X — X be a given
mapping. We say that T is an a — @—contraction, if there exist two functions
a: X xX = [0,00) and ¢ € ¥ such that a(x,y)d(Tz, Ty) < ¥(d(x,y)) for all
z,y € X.

Definition 2.5 ( [19]). Let T : X — X and a : X x X — [0,00). T is called
a—admissible whenever «(z,y) > 1 implies that a(Tz, Ty) > 1.

Lemma 2.2 (Theorem 2.2, [19]). Let (X,d) be a complete metric space and T :
X — X be an a — Y—-contractive mapping satisfying the following conditions:
(A1) T is a—admissible;

(A2) There exists xg € X such that a(xg, Txg) > 1;

(A3) If {zn} is a sequence in X such that a(zp, Tpy1) > 1 foralln andx,, —» z € X
as n — 0o, then a(xy,x) > 1 for all n.

Then, T has a fixzed point.

3. Main results

In this section, we first transform the problem (1.1) to an equivalent integral equa-
tion.

Lemma 3.1. Assume that 0 < «,8 < 1. The function u is a solution to the
boundary value problem (1.1), if and only if u satisfies the integral equation

b
u(t):/ G(t,r)q(r)u(r)dr, (3.1)
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where the Green’s function of problem (3.1) is given by

b—1)* _
n(I‘(1+)oz)f (s —a)® r)P=1ds
Gltor) = — L _ﬁb(f_i)als_Tﬂlds asrstsh gy
’ D(@)L(B) | s 8ty [ (s — r)f~1ds
—Tb(s—t)als—r)/’) lds, a<t<r<hb,
with n = (b(li)a) %.

Proof. Firstly, we apply the left side fractional integral I” 24 to equation (1.1),
then the right side fractional integral I;* to the resulting equation and taking into
account the properties of Caputo and Riemann-Liouville fractional derivatives and
the fact that u(b) = 0, we get

Dy_u(a)

m(b )" — I Ia+Q() u(t). (3.3)

u(t) =

The boundary condition pu(a) = yDj_u(a) imply that

Y e (b — a)a a
-D =—""D I I —a-
D b—u(a) T(l+a) p-ula) — Iy~ a+Q() u(t)|t=a
Thus,
o 1
Dy u(a) = 5Ib 17 q(t)u(t)]i=a,
. b—a)®
with n = 1£(1+31) — %.
Substituting Dy w(a) into (3.3), it yields
(b—1)" 5
t)=—r——I IV, q(t)u(t)|t=a — 1" I, t
) =g s T s aOu(O)o ~ 15 1 a(tyu(t)

T T /< —a ([ ety ) as

_r(a)lr(ﬁ)/tb(s_t)al </:(s—r) dr) ds.

Exchanging the order of integration, we get

= (-1 ' bs—ao‘ls—rﬁls
O =T+ ar <><>/a<[( ) d)"

Thus,

b
u(t) :/ G(t,r)g(r)u(r)dr,
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where
e Jr (8 = @) s =) lds
1 — [P(s —t)*" (s —r)P1ds, a<r<t<hb,
G@t,r) = =t (bft)“ Ja—1( s-1
D(a)T(B) | 5 =) fr(s—a (s —r)f~lds
—f (s —t)2 (s —r)P~ds, a<t<r<b.

Conversely, we can verify that if u satisfies the integral equation (3.1). Then, w is
a solution to the boundary value problem (1.1). The proof is completed. O

Next, we introduce the properties of Green’s function.

Lemma 3.2. Assume that 0 < a < <1 and 1 < a+ 8 < 2, then the Green
function G(t,r) given in (3.2) satisfies the following property:

(Bl (1+a)*+51 ,
F@T @A Diatp)e AG-am e, (b= a)® > =3 f(e),

Gt )] <

(b—a)* 5~ (BT (140) — (ot B 1) (b-a)")
T@T ()T A @t p-Dn (b—a)* < —38l(a),

fort,r € [a,b] x [a,b].

Proof. Let us define two functions:

_ Na b b
qult,r) = (bt)) / (s —a)* (s —r)""ds — /t (s —t)* (s —r)""ds,

(1 4+«
a<r<t<hb,
(b=t ’ a—1 8—1 ’ a1 -1
gg(t,r)—m/r (s—a)* (s—7) ds—/r (s—t)*" (s —1r)""ds,
a<t<r<b

We start with the function go(t,r), which is easier to treat. We have go(t,7) < 0.
In fact, let r € [a, b] be fixed. Differentiating g2(¢,r) with respect to ¢, we obtain

dga(t,r) _ —alb—t)*"t r° a 1
ot al(l+a) /T(S*a) Yo = )7 s

b
+(a— 1)/ (s —t)* (s —r)?~lds <0,
which means
gg(T‘,T) Sgg(t,?") Sgg(a,r), a<t<r.

Moreover, by evaluating go(a, ), we get
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Thus, it yields
g2 (ta 71) <0.
In addition,

b e
gﬂ“ﬂ-—[(Sﬂalwrﬁwsgﬁlﬁa

(b—r)e it (p—r) [P - i
(b=r)**#1 (b= (=) (b—1)?

<

a+pB-1 a1+ a) 5
(b — r)a-i-,ﬁ—l B (b _ a)a—l(b _ T)a+5
ThuS7 we get
0 < —ga(t,r) < h(r),
where

_ (b—’r)a-i-ﬁ—l (b_ &)a_l(b—r)a+5
h(T)_ a+p-1 N Bl (1 + )

) /Tb(s —a)* (s —r)""ds

Now, we turn our attention to the function g¢;(t,7). Considering (b — 7«)6—1 >

b—t)?(b—a)* ! b—r)°
: 77)F((1+a§ and 77(1“(1.52&) <1, we have
’ (b _ t)oz b
_gl(tﬂ”) = /t\ (S — t)a_l(s — ’r)ﬁ—lds — m/r (5 — a)a—l(s _ T),B—lds

b — «

e e e e A et

atf-1 (1 + a) 3
(b—t)a+,3—l (b—a)o‘—l(b_t)a (b—t)ﬂ
atf-1  al(l+a) 3
(b=t (b= ) (b — )P
= a+ﬂ71 - ﬁnr(1+a) —h(t).

On the other hand,

b — «
) 2 /t (s—t)* ' (b—r)"""ds — 77(Fb(1i)04

=(b-r)P! (b-—t)*  (b-t)* (b—r)*tit

N mM(l+a) a+p-1
(b—t)P(b—a)*t(b—1t)~ (b—t) (b—r)oth-1

>

nF(1+OZ) « _a+ﬂ71 77F(1+a)
(Gl i Ul i Ul P
anl'(1 + «) atfB—1

b
) / (b—a)* (s —r)tds

b
) / (s =r)*"H(s = )7 ds
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(b_a)a—l(b_t)a-l-,@ (b_t)a-i-,@—l

anl(1 + «) a+p—1

Since a < 3, we get

—q1(t,r) > —h(t).
Therefore, we have

| —91(t,7)[ < h(t).
Finally, by differentiating the function h, it yields

i) = (o pyma 4 CEDO Oyt

Bnl(1 + «)
Moreover,
- +B8)(a+B-1)(b—a)*(b—r)*F2
h// — —9 b_ a+8 3_(Oé < 0.
(’I“) (a + B )( T) ﬂT]F(l + a) -
That is, h(r) is concave. We can see that h'(r) = 0 for r* = b — %.

If (b —a)* > —2p(a), then r* € (a,b). Hence, the function h(r) has a unique
maximum given by

—p () — (BnL(1 4 o)) tP 1
Jma hr) = M) = B =) a + ) B (b= a)e D@rp D"

If (b—a)* < —2pT(a), then

max. h(r) = h(a) = L= B A+ a) — (a4 F-1)(b—a))

r€la,b) (OZ + 5 — 1)577F(1 + a)
Thus, we obtain |G(t,7)| < m max, h(r), which finishes the proof. O
re|a,

Now, we are ready to prove the Lyapunov-type inequality for problem (1.1).
Theorem 3.1. Assume that 0 < a < <1 and 1 < a+ B < 2. If the fractional

boundary value problem (1.1) has a nontrivial continuous solution, then

o a+B-1)(« o+ (p—g)(>—D(at+6-1) @
b D@ ets- a1l (b-a) , (b—a)* > —2pT(a),
[ latlar =

DT (14a)P(146) (et o
G Tt a)-(atp-Do—am (TS gﬂf((a)->
3.4

Proof. From Lemma 3.1 and 3.2, if (b — a)* > —BI'(), we have

b
u®)] < [ 166 Dllatr) ) idr
b
< lull [ Gt la(r)ar
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(B (1 +a))*+7-! b
= T @)@+ 8 - Da + (- afe-aes-n 1l / la(r)ldr,

where |lu|| = sup u(t). Consequently,
t€la,b]

(BuD(1+ )+ b
Il < ST = 1 + Ay —ayee el | o

For the case (b —a)® < —BI'(a), we have a similar result. Thus, inequality (3.4)
follows. O

Remark 3.1. If (b — a)® > —%Bf(a) and v = 0 in Theorem 3.1, we get the
corresponding results in [12].

Next, we consider the existence of solutions to problem (1.2).

Theorem 3.2. Let f : [a,b] x R® — R be a function, and there exists a function
£ :R? = R. They satisfy the following conditions:
(H1) There exists ¢ € ¥ such that

1
|f(t, w1, uz,uz) — f(t,v1,v2,v3)] < 57/1(|U1 —v1| + |ug — vo| + [ug — v3])
for allt € [a,b] and u;,v; €R, i =1,2,3, where

(b—a)**P((b—a)* 4 (o + B)nl'())
(o + BT (a)T(1 + a)T(1 + B)

(H2) There exists ug € C([a,b],R) such that {(ug(t), Aug(t)) > 0 for all t €
[a,b], where the operator A : C([a,b],R) — C([a,b],R) is defined by

< Q.

(b=t
P14+ a)T(a)T(B)

X / (s a)et < / (s = )P M), I, u(r), Ig_u(r))dr) ds

Au(t)

i [ 60 ([ ), ), e ) s

(H3) Assume that for each t € [a,b] and u,v € C([a,b],R), &(u(t),v(t)) > 0
implies £(Au(t), Av(t)) > 0.

(H4) For each t € [a,b], if {un} is a sequence in C([a,b],R) such that u, — u
in C([a,b],R) and &(un(t), unt1(t)) >0 for all n € N. Then, {(un(t), u(t)) > 0.

Then, problem (1.2) has at least one solution whenever A + % % <1

Proof. Let E be the Banach space C([a, b], R) with the metric d(u,v) = sup |u(t)—
t€la,b]
v(t)].

By Lemma 3.1, u € E is a solution of (1.2), if and only if it satisfies the integral
equation

(b—1t)*

) =R )T ()T ()
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X /ab(s —a)*! (/:(8 — )P O (), I u(r), Igu(r))dr) ds
- p(a)lp(g)/tb(s—ﬂ“* (/:(s—r)" L Au(r), Ig u(r )Jf_u(r))dr> ds.

Then, problem (1.2) is equivalent to finding u* € E, which is a fixed point of A.
Let u,v € E, we have

|[Au(t) — Av(t)]
(b—t)a b _aa—l SS_Tﬂ_l vl . 5ur
Snf(l—ka)f‘(a)f‘(ﬂ)/a (s—a) (/ (s =) 1f (ry Au(r), L ulr), Iy_u(r))

- 120 I ), 1 o) ) ds

1

b S
[ — s — a—1 S_rﬁ—l r T ulr 6u7~
+ F(a)r(ﬁ)/; ( t) </a ( ) |f( ?/\ ( )vIa-l- ( )aIb_ ( ))
— f(r, (), IT,0(r), Igv(rde) ds

b-1) b87aa7157a58
<Cﬁ(ﬁﬂ+a)ﬂ+ﬁké( )* (s —a)’d

+ TS >/tb(8‘t>a_l<5‘“)ﬁds)

< S (0 Nt) (0, ) = 6 Mol0), T, (0), o (0)

(b—1t)* ’ _ ya48-1 (b—a)’ ’ el
: (nf(a)l“(1+a)1“(1+ﬁ)/a (o= st ey 0 d)
s sup |t Mu(t), I u(). J_u(®) — £t 2(®) T 0(8). I o(0)

t€la,b]
(b _ a)2a+ﬁ _ a+5
- (n(a+ﬁ)F(a)F(1+a) T+ 1+5)
s 0 N), 7l e >> (t Av( ) I o(t), I o(0))]

<8 sup (0 Xu(0). 7). T u(0) = 10 00(0). T70(0), (0
Thus, we get
d(Au, Av) :tZI[lpb] |Au(t) — Av(t)]

ﬁ“é?% |f (8, du(t), I u(t), Io_u(t)) — f(t, Ao(t), I o(t), I)_v(t)]

tela,b

<0 sup](éwm(t)Av<t>+|fg+u<> I o0] 4 1-utt) - 1-o(0)) )

<Y(A sup fu(t) —o(t)| + sup [[7 u(t) — I o(t)| + sup [I)_u(t) — I)_v(t)])
t€la,b] t€la,b] t€la,b]

1 t
<t <)\ sup |u(t) —v(t)| + sup / (t—s)""tds sup |u(t) —v(t)|
telab] (T) tefab) Ja tela.b]




216

Y. Liu & Q. Li

b

tela,b te(a,b]

—a)” —a)d
sw<<A+ (b-ay  (b=a) ) sup |u<t>—v(t>|>

FA+7)  TA+9)/ iefap
<Y(sup [u(t) = v(B)]).

t€la,b]

This implies that d(Au, Av) < 1(d(u,v)) for each u,v € E.
Now, we define o : E' x E — [0, 00) by

Hence, we deduce that a(u,v)d(Au, Av) < ¢¥(d(u,v)) for all u,v € E. Therefore,
A is a — ip—contraction. From condition (H2), there exists ug € E such that

a(ug, Aug) > 1. From condition (H3) and the definition of a, it

is easy to see that

A is a—admissible. Finally, by using condition (H4), condition (A3) of Lemma 2.2
is satisfied. By Lemma 2.2, we get that A has a fixed point, which is a solution for

the problem (1.2).

O

Theorem 3.3. Let f : [a,b] x R® — R be a continuous function satisfying the

condition:

(H5) |f(t,u1,u2,uz) — f(t,v1,v2,v3)| < L(lug — v1| + Jug — v2| + |ug — vs|) for

all t € [a,b], usj,v; €R,i=1,2,3 and L > 0.
Then, problem (1.2) has a unique solution on [a,b] if

LLi¢ < 1,

(b—a)” (b—a)®
T(T+r) T T(1+5)’

where L1 = X\ +

(Bl (1+0))* 71 o
@G- Diat A rap—a@e=o-1 (0—a)

(b—a)* TP (B (1+a)—(a+B—1)(b—a)*) (b—a)®
()T (A+a)T(1+B)(a+B—1)n )

Proof. Let E be the Banach space C([a,b],R) with norm |jul|

define sup |f(¢,0,0,0)] = M < oco.
t€la,b]

> 7%51—‘(0‘),

< —260(a).

= sup |u(t)| and
t€la,b]

By Lemma 3.1, u € E is a solution of (1.2), if and only if it satisfies the integral

equation

b
u(t):/ G(t,r)f(r, )\u(r)J;Jru(r),Igfu(r))dr.

Select p > % and define the operator T': E — E by

b
Tu(t):/ G(t,r)f(r, )\u(r)J;Jru(r),Igfu(r))dr.
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Forue B,={u € E: |Ju|| < p}, we get

[t Au(t), I ut), Io_u(®))| < [ f(t M), I ult), I_ult)) — f(£,0,0,0)] +|£(t,0,0,0)]
< L(Pu(®)] + 7 u®)] + 11 u(®)]) + M

b-a)  (b—a)
_L<)\+F(1+7)+ (1+5)) ul +M < LLip+ M.

Then,

[Tul| = sup
t€la,b]

/ Gt 1) fr. (v, 17, (), 1 u(r)dr

< sup / |G (t,r)||f(r, Au(r), I7 u(r )7Igfu(r))|d7"

< sup (LLip+ M) \G (t,r)|dr
t€la,b)

= (LLip+ M)¢ < p.

Thus, T'B, C B,. Next, we show that T" is a contraction mapping.
For any u,v € B, we have

[Tutt) ~ 7o) < [ 160Nl (), )i
= FN0(0), (), B o)
gLLl/ G (t, ) drllu — o
SLL1¢|(|LU—UH,

which in view of the given condition LLi¢ < 1, implies that T is a contraction
mapping. Thus, this completes the proof. O

4. Examples

Example 4.1. Consider the following fractional differential equations:

3 1 9 1
D¢, DE u(t) + f(t, f?u(t), Ig u(t), 5 u(t) = 0,0 <t <1, (4.1)
u(1) = 0,2u(0) = —=3D32_u(0),
where a =0, b= 1, af% B:%,)\:%,T:%,ézl—;,p:2 = —3, and
2 [t 1 1 Us
fltur,ug,us) = 3 (5 arctanuy + 1—081n2u2 — 001 1) 1LTL3|> .

We have |f(t ula“?au?)) f(t 'U1,’U2,U3)| < ( (|U’1 —U1|+"U/2—’U2|+IU3—’U3|))

24p(t) for all t € [0,1] and u;,v; € R, z—1,2,3 Here, Q = 2, () L e U, where

(=)™ (b—0)" +(a+ /)T (@) (b-a)” | (b-a)
sl et te)) 0 1.4386 < 3 and A+ {0k + S5 ~ 0.8128 < 1. Tn

addition, let £(u,v) = |u|, so conditions (H2) (H4) are satisfied. Then, problem
(4.1) has at least one solution by Theorem 3.2.
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Example 4.2. Consider the following fractional differential equations:

4 21 14 13
u(1) =0, $5u(0) = =11D° u(0),
Wherea:OJ)zl,a:%, :%,Azﬁm’z%,ézl—;,p:%,v:—ll, and
s 3, 6 2
f(t,U1,U27U3) = m — gCOS (e ml@ + g arctaHU3.

Let L =2 >0, forall t € [0,1] and u;,v; € R, i = 1,2,3. We have | f(t,uy,u2,us)—
f(t,v1,v2,03)| < E(Juy —v1| + |uz — v2| + |ug — vs|). By simple computation, we get

~ 2 ~ _ (=) (Bl (Ita)—(atf-1)(b=a))
Ly ~ 04887, —2fT(a) ~ 18571, ¢ = L=l Cabta) (oAb b)) o g 5994
and LL1¢ = 0.9338 < 1. Then, problem (4.2) has a unique solution by Theorem

3.3.
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