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Explicit Traveling Wave Solutions and Their
Dynamical Behaviors for the Coupled Higgs Field

Equation∗
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Abstract In this paper, we focus on the traveling wave solutions of the cou-
pled Higgs field equation from the perspective of dynamical systems. Through
the phase portraits, in addition to periodic wave solutions and solitary wave
solutions, we also obtain explicit periodic singular wave solutions, singular
wave solutions and kink wave solutions, which were not found in the previous
works. The dynamical behavior of these solutions and their internal relations
are revealed through asymptotic analysis. The results will help supplement
the study of field equation.
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1. Introduction

The classical Higgs equation [16]

utt − uxx − βu+ γ|u|2u = 0 (1.1)

has important applications in particle physics, field theory and electromagnetic
waves [4]. Equation (1.1) is attributed to the classical φ4 field theory in physics of
elementary particles and fields. As a generalized form of equation (1.1), the coupled
Higgs field equation utt − uxx − βu+ γ|u|2u− 2uv = 0,

vtt + vxx − γ(|u|2)xx = 0
(1.2)

has attracted considerate attention [1,4–8,13–15,18,24,25]. Equation (1.2) describes
a system of conserved scalar nucleons interacting with neutral scalar mesons in
particle physics. Here, the function v = v(x, t) indicates a real scalar meson field,
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and u = u(x, t) stands for a complex scalar nucleon field. The subscripts t, x of
u and v denote appropriate partial derivatives with respect to the time and space
variables.

There have been many works on the solutions of equation (1.2) from various
aspects. Tajiri [13] derived the N -soliton solution of equation (1.2) exploiting Hi-
rota bilinear method. Later, by Hirota bilinear method, Hu et al., [6] looked for
homoclinic solution of equation (1.2). The authors in [4,14,24] obtained the bright
soliton, periodic wave and doubly periodic wave solutions of equation (1.2). Zha et
al., [8, 25] studied the first-order rogue wave solution of equation (1.2). Hon and
Fan [5] used an algebraic method to construct solitary wave solutions, Jacobi peri-
odic wave solutions and a range of other solutions of physical interest. Wazwaz and
his co-author [15, 18] obtained a variety of exact periodic waves and solitary wave
solutions of equation (1.2). Jabbri et al., [7] combined He’s semi-inverse and (G’/G)-
expansion methods to construct the exact solutions of equation (1.2). Ali et al., [1]
found a variety of solitary wave solutions by using rational exp(−ϕ(η))-expansion
method.

Despite the success of these attempts in understanding solutions of equation
(1.2), we note that the above works did not find kink waves of equation (1.2),
and the dynamical behavior of the solutions and their internal relations are not so
clear. Therefore, we intend to study equation (1.2) from the viewpoint of geometry.
More precisely, we exploit qualitative theory of differential equations and bifurca-
tion method of dynamical systems [2, 3, 9–12, 17, 19–23, 26] to study the traveling
wave solutions of equation (1.2) and to reveal their dynamical behavior and inside
relations. Through analyzing the phase portrait, in addition to periodic wave so-
lutions and solitary wave solutions, we also obtain explicit periodic singular wave
solutions, singular wave solutions and kink wave solutions, which were not found
in the above works. The dynamical behavior of these solutions and their internal
relations are uncovered through asymptotic analysis.

2. Qualitative analysis and phase portraits

To study the traveling wave solutions of equation (1.2), assume

u(x, t) = eiηϕ(ξ), v(x, t) = φ(ξ), η = px+ rt, ξ = kx+ dt, (2.1)

where ϕ(ξ) and φ(ξ) are real functions, and p, r, k and d are real constants.
Substituting (2.1) into equation (1.2), we have

(d2 − k2)ϕ′′ − (r2 − p2 + β)ϕ+ γϕ3 − 2ϕφ = 0,

(d2 + k2)φ′′ − γk2(ϕ2)′′ = 0,

rd = kp.

(2.2)

Integrating the second equation of (2.2) twice and letting the first integral con-
stant be zero, we have

φ =
γk2ϕ2

d2 + k2
+ g, (2.3)

where g is an integral constant.
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Substituting (2.3) into the first equation of (2.2), we have

ϕ′′ − nϕ−mϕ3 = 0, (2.4)

where m = − γ
d2+k2 , and n = r2−p2+β+2g

d2−k2 with d2 6= k2.
Letting ϕ′ = y, we obtain the following planar system

dϕ
dξ = y,

dy
dξ = mϕ3 + nϕ.

(2.5)

Obviously, the above system (2.5) is a Hamiltonian system with Hamiltonian
function

H(ϕ, y) = y2 − 1

2
mϕ4 − nϕ2. (2.6)

To investigate phase portraits of (2.5), set

f(ϕ) = mϕ3 + nϕ. (2.7)

Obviously, when mn ≥ 0 (m 6= 0), f(ϕ) has only one zero ϕ0 = 0. When
mn < 0, f(ϕ) has three zeros,

ϕ− = −
√
− n
m
,ϕ0 = 0, and ϕ+ =

√
− n
m
. (2.8)

If (ϕ, 0) is one of the singular points of system (2.5), then the characteristic
values of the linearized system of system (2.5) at the singular point (ϕ, 0) are

λ± = ±
√
f ′(ϕ). (2.9)

According to the qualitative theory of dynamical systems, we obtain the phase
portraits of system (2.5) in Figure 1.

3. Traveling wave solutions of equation (1.2), and
their dynamical behavior and internal relations

To state conveniently, set

h∗ = |H(ϕ+, 0)| = |H(ϕ−, 0)| = n2

2|m|
. (3.1)

Then, we have the following results.

Proposition 1. For the cases when m > 0 and n < 0, we have

(i) when h = h∗, system (2.5) has a pair of kink (anti-kink) wave solutions

ϕ1(ξ) = ±
√
− n
m

tanh

√
−n

2
ξ (3.2)

and two singular wave solutions

ϕ2(ξ) = ±
√
− n
m

coth

√
−n

2
ξ; (3.3)
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Figure 1. The phase portraits of system (2.5) when (a) m > 0, n ≥ 0; (b) m < 0, n > 0; (c)
m < 0, n ≤ 0; (d) m > 0, n < 0

(ii) when h = 0, system (2.5) has four periodic singular wave solutions

ϕ3(ξ) = ±
√
−2n

m
csc
√
−nξ, (3.4)

ϕ4(ξ) = ±
√
−2n

m
sec
√
−nξ; (3.5)

(iii) when 0 < h < h∗, system (2.5) has a family of periodic singular wave solutions

ϕ5(ξ) = ± α2

sn(α2

√
m
2 ξ,

α1

α2
)

(3.6)

and a family of periodic wave solutions

ϕ6(ξ) = ±α1sn(α2

√
m

2
ξ,
α1

α2
), (3.7)

where α1 =

√
−n−

√
n2−2mh
m , α2 =

√
−n+

√
n2−2mh
m , and 0 < h < h∗.

Additionally, we have the limit forms,

(1) when h → h∗ − 0, the periodic wave solutions ϕ6(ξ) in (3.7) converge to the
pair of kink (antikink) wave solutions ϕ1(ξ) in (3.2), and the periodic singular
wave solutions ϕ5(ξ) in (3.6) converge to the singular wave solutions ϕ2(ξ) in
(3.3) respectively;
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(2) when h→ 0 + 0, the periodic singular wave solutions ϕ5(ξ) in (3.6) converge
to the singular wave solutions ϕ3(ξ) in (3.4) respectively.

Proof. When m > 0 and n < 0, we consider the following three types of orbits of
system (2.5) in Figure 1(d).

(i) Two heteroclinic orbits Γ1 and Γ2 connected at saddles (ϕ−, 0), and (ϕ+, 0)
can be expressed as

y = ±
√
m

2

√
(ϕ− ϕ−)2(ϕ− ϕ+)2. (3.8)

Substituting (3.8) into dϕ
dξ = y and integrating them along the heteroclinic

orbits Γ1 and Γ2, it follows that∫ ϕ

0

1

(s− ϕ−)(ϕ+ − s)
ds = ±

√
m

2

∫ ξ

0

ds, (3.9)

∫ +∞

ϕ

1

(s− ϕ−)(s− ϕ+)
ds = ±

√
m

2

∫ ξ

0

ds. (3.10)

Completing the above integrals, we obtain (3.2) and (3.3) respectively.

(ii) The two special orbits Γ3 and Γ4, which have the same Hamiltonian with that
of the center point (0, 0), can be expressed as

y = ±
√
m

2
ϕ

√√√√(ϕ−√−2n

m

)(
ϕ+

√
−2n

m

)
. (3.11)

Substituting (3.11) into dϕ
dξ = y and integrating them along the two orbits Γ3

and Γ4, it follows that∫ ∞
ϕ

1

s

√(
s−

√
− 2n
m

)(
s+

√
− 2n
m

)ds = ±
√
m

2

∫ ξ

0

ds. (3.12)

Completing the above integrals, we obtain (3.4).
Further, note that if ϕ = ϕ(ξ) is a solution of system (2.5), then ϕ = ϕ(ξ+γ)
is also a solution of system (2.5). Specially, taking γ = π

2 , we obtain another
two periodic singular solutions (3.5).

(iii) The three orbits Γ5, Γ6 and Γ7 passing the points (−α2, 0), (−α1, 0), (α1, 0)
and (α2, 0) can be expressed as

y = ±
√
m

2

√
(α2

1 − ϕ2)(α2
2 − ϕ2). (3.13)

Substituting (3.13) into dϕ
dξ = y and integrating them along Γ5, Γ6, and Γ7,

we have ∫ ∞
ϕ

1√
(α2

1 − s2)(α2
2 − s2)

ds = ±
√
m

2

∫ ξ

0

ds, (3.14)
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∫ ϕ

0

1√
(α2

1 − s2)(α2
2 − s2)

ds = ±
√
m

2

∫ ξ

0

ds. (3.15)

Completing the above integrals, we obtain (3.6) and (3.7).
Additionally, the limit forms follow easily.

Proposition 2. For the cases when m < 0 and n > 0, we have

(i) when h = 0, system (2.5) has two symmetric solitary wave solutions

ϕ7(ξ) = ±
√
−2n

m
sech
√
nξ; (3.16)

(ii) when 0 < h < h∗, system (2.5) has two families of periodic wave solutions

ϕ8(ξ) =
−α1(α1 + α2) + α(α1 − α2)(sn(ω

√
−m2 ξ, ρ))2

α1 + α2 + (α1 − α2)(sn(ω
√
−m2 ξ, ρ))2

, (3.17)

ϕ9(ξ) =
α1 + α2 + (α1 − α2)(sn(ω

√
−m2 ξ, ρ))2

α1(α1 + α2)− α1(α1 − α2)(sn(ω
√
−m2 ξ, ρ))2

, (3.18)

where ω = α1+α2

2 and ρ = α1−α2

α1+α2
.

(iii) when h < 0, system (2.5) has one family of periodic wave solutions

ϕ10(ξ) = −α1cn

(√√
n2 − 2mhξ, α1

√
− m

2
√
n2 − 2mh

)
. (3.19)

Additionally, we have the limit forms,

(1) when h→ 0− 0, the periodic wave solutions ϕ10(ξ) in (3.19) converge to the
symmetric solitary wave solutions ϕ7(ξ) in (3.16) respectively;

(2) when h→ 0+0, the periodic wave solutions ϕ8(ξ) in (3.17) and ϕ9(ξ) in (3.18)
converge to the symmetric solitary wave solutions ϕ7(ξ) in (3.16) respectively.

Proof. When m < 0 and n > 0, we consider the following two types of orbits of
system (2.5) in Figure 1(b).

(i) The two symmetric homoclinic orbits Γ8 and Γ9 connected at the saddle (0, 0)
can be expressed as

y = ±
√
−m

2
ϕ

√√√√(√−2n

m
− ϕ

)(
ϕ+

√
−2n

m

)
. (3.20)

Substituting (3.20) into dϕ
dξ = y and integrating them along the two homoclinic

orbits Γ8 and Γ9, it follows that∫ ϕ

−
√
− 2n
m

1

s

√(√
− 2n
m − s

)(
s+

√
− 2n
m

)ds = ±
√
−m

2

∫ ξ

0

ds, (3.21)
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∫ √− 2n
m

ϕ

1

s

√(√
− 2n
m − s

)(
s+

√
− 2n
m

)ds = ±
√
−m

2

∫ ξ

0

ds. (3.22)

Completing the above integrals, we obtain (3.16).

(ii) The two families of periodic orbits Γ10 and Γ11 can be expressed as

y = ±
√
−m

2

√
(ϕ2 − α2

1)(α2
2 − ϕ2). (3.23)

Substituting (3.23) into dϕ
dξ = y and integrating them along Γ10 and Γ11, we

have ∫ ϕ

−α2

1√
(s2 − α2

1)(α2
2 − s2)

ds = ±
√
−m

2

∫ ξ

0

ds, (3.24)

∫ α2

ϕ

1√
(s2 − α2

1)(α2
2 − s2)

ds = ±
√
−m

2

∫ ξ

0

ds. (3.25)

Completing the above integrals, we obtain (3.17) and (3.18).
The family of periodic orbit Γ12 can be expressed as

y = ±
√
−m

2

√
(α1 − ϕ)(ϕ+ α1)(ϕ− c1)(ϕ− c∗1), (3.26)

where c1 = i

√
n−
√
n2−2mh
m , c∗1 = −i

√
n−
√
n2−2mh
m and h > 0.

Substituting (3.26) into dϕ
dξ = y and integrating them along the orbit Γ12, we

have ∫ ϕ

−α1

1√
(α1 − s)(s+ α1)(s− c1)(s− c∗1)

ds = ±
√
−m

2

∫ ξ

0

ds, (3.27)

Completing the above integrals, we obtain (3.19).
Additionally, it is easy to obtain the limit forms.

To illustrate the limit forms, taking β = −18, γ = −10, p = 4, r = 2, k = 1, d =
2, g = 3, which indicate that m = 2, n = −8 and h∗ = 16, we present the process
of the periodic wave solution ϕ6(ξ) tending to the kink wave solution ϕ1(ξ), when
h → h∗ − 0 graphically in Figure 2. Additionally, the corresponding graphs of

v(ξ) = γk2

d2+k2ϕ
2(ξ) + g are given in Figure 3.

Remark 3.1. From v(ξ) = γk2

d2+k2ϕ
2(ξ) + g, note that if ϕ(ξ) is a periodic wave

solution with period T , then v(ξ) is a periodic wave solution with period T
2 . Besides,

if ϕ(ξ) is a kink (anti-kink) wave solution, then v(ξ) is a solitary wave solution.

Based on (2.1), (2.2), (2.3), Proposition 1 and Proposition 2, we immediately
have the following theorems for equation (1.2).

Theorem 3.1. When m > 0 and n < 0, equation (1.2) has the exact solutions

in the form of u(x, t) = ei(px+rt)ϕ(ξ) and v(x, t) = γk2

d2+k2ϕ
2(ξ) + g with rd = kp,

ξ = kx+ dt and ϕ(ξ) = ϕi(ξ), for i = 1, · · · , 6.
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Figure 2. The process of the periodic wave solution ϕ6(ξ) tending to kink wave solution ϕ1(ξ) as
h→ h∗ − 0 by taking (a) h = 15; (b) h = 15.9; (c) h = 15.999; (d) h = 15.99999; (e) h = 16
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Theorem 3.2. When m < 0 and n > 0, equation (1.2) has the exact solutions

in the form of u(x, t) = ei(px+rt)ϕ(ξ) and v(x, t) = γk2

d2+k2ϕ
2(ξ) + g with rd = kp,

ξ = kx+ dt and ϕ(ξ) = ϕi(ξ), for i = 7, · · · , 10.

4. Conclusion

In this paper, we study the traveling wave solutions of equation (1.2) from the per-
spective of dynamical systems. In addition to traditional periodic wave solutions
and solitary wave solutions, we also obtain explicit periodic singular wave solutions,
singular wave solutions and kink wave solutions, which were not found in the pre-
vious works. We reveal the dynamical behavior of these solutions and their inside
relations through asymptotic analysis.
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