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Abstract

Based on the primal mixed variational formulation, a stabilized nonconforming mixed

finite element method is proposed for the linear elasticity on rectangular and cubic meshes.

Two kinds of penalty terms are introduced in the stabilized mixed formulation, which are

the jump penalty term for the displacement and the divergence penalty term for the stress.

We use the classical nonconforming rectangular and cubic elements for the displacement

and the discontinuous piecewise polynomial space for the stress, where the discrete space

for stress are carefully chosen to guarantee the well-posedness of discrete formulation. The

stabilized mixed method is locking-free. The optimal convergence order is derived in the

L
2-norm for stress and in the broken H

1-norm and L
2-norm for displacement. A numerical

test is carried out to verify the optimal convergence of the stabilized method.

Mathematics subject classification: 65N15, 65N30.

Key words: Mixed finite element method, Nonconforming rectangular or cubic elements,

Elasticity, Locking-free, Stabilization.

1. Introduction

For the linear elasticity problem, the pure displacement formulation is a very common one.

However, the so-called locking phenomenon may appear when this formulation is numerically

solved in the nearly incompressible or incompressible case. Therefore, some locking-free finite

element methods (FEMs) for this pure displacement formulation have been developed, see

e.g. [7,12,19,25,28,40]. For example, Brenner and Sung developed a locking-free nonconforming

FEM in [7] by using the well-known Crouzeix-Raviart (CR) element [15]. Therein, the elasticity

operator was split into the gradient part and the divergence part with appropriate coefficients.

However, the CR element is not stable for the elasticity operator, since it does not fulfill the

discrete Korn’s inequality. To overcome this problem, Hansbo and Larson proposed a stabilized

method for the CR element in [19]. In other words, they added a jump penalty term for the

displacement to get a locking-free stabilized nonconforming FEM. The optimal convergence was
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proved in a mesh-dependent norm. Similar stabilization technique was also done in [18] for the

nonconforming quadrilateral element [33].

By contrast, the mixed formulation, where both the stress and displacement are simultane-

ously solved, is preferable to the pure displacement one, since the stress is usually a physical

quantity of primary interest. For the Hellinger-Reissner mixed formulation, there exist two

possibilities to apply the derivatives to the displacement or stress, that lead to the primal

mixed formulation and the dual mixed formulation. For the second one, it requires that the

stress tensor element is symmetric with continuous normal components and satisfies the dis-

crete inf-sup condition. it is very difficult to construct such elements, so most of these elements

are quite complicated, especially in three dimensions, see e.g. [1, 3–5, 24]. We also mention

the further development of stable conforming elements from the references [20–23], where a

new class of stable conforming elements called the Hu-Zhang element is proposed. In order

to use common elements, many stabilized methods are proposed for the dual mixed method,

see [9–11,27,35,38] and therein the references. For more discussions on other methods, such as

nonconforming mixed FEMs, mixed FEMs with weaker symmetry and discontinuous Galerkin

methods, we refer the readers to the related references mentioned above.

On the other hand, the primal mixed formulation is easy to discretize, because it does not

need the continuity of stress and the discrete inf-sup condition can be easily satisfied in this

case. However, this primal mixed formulation usually leads to the standard FEMs suffering

locking as the pure displacement formulation, unless special techniques are applied. Based on

the primal mixed formulation, Franca and Hughes proposed two classes of stabilized conforming

mixed FEMs for elasticity, called circumventing Babuška-Brezzi condition method (CBB) and

satisfying Babuška-Brezzi condition method (SBB), see [16]. For the CBB method, the discon-

tinuous or continuous piecewise polynomial space can be used for the stress approximation and

the continuous piecewise polynomial space for the displacement approximation. For the SBB

method, only the discontinuous piecewise polynomial space is used for the stress approxima-

tion. The CBB method is convergent, provided the method is employed in the compressible

case. The SBB method is uniformly convergent for the nearly incompressible or incompressible

case. Recently, a stabilized nonconforming mixed FEM was shown to be locking-free in [37]

where the displacement is approximated by the CR element and the stress by piecewise con-

stants. Therein, the jump penalty term is added for the displacement to get the stability of the

formulation. The uniform convergence was proved based on the fact that the discrete space for

the CR element contains the subspace of continuous piecewise linear functions. We mention

that for finite Lamé constant λ, the stabilized nonconforming mixed method in [37] is reduced

to the one in [19] for the pure displacement formulation.

We mention that the assumed stress hybrid FEM on quadrilateral or hexahedral meshes is

closely related to the stabilized methods proposed in [16, 37]. The pioneering work of assumed

stress hybrid FEM was presented in [30], where the assumed stress field is assumed to satisfy

the homogeneous equilibrium equations pointwisely. Then a hybrid stress quadrilateral element

was constructed in [32], where the isoparametric bilinear element is used for the displacement

approximation and a discontinuous piecewise polynomial space for the stress approximation. By

eliminating the stress parameters at the element level, the hybrid stress method [32] finally leads

to a symmetric and positive definite discrete system involving only displacement unknowns. The

uniform convergence analysis for the hybrid stress method can be found in [26, 36]. For more

works on hybrid FEMs for elasticity, please see [31, 39] and the references therein.

In this paper, we propose a stabilized nonconforming mixed FEM to discretize the primal
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mixed formulation on rectangular and cubic meshes. We use the nonconforming rectangular

and cubic elements from [2] for the displacement and the discontinuous piecewise polynomial

space for the stress, where the discrete space for stress needs to be carefully chosen to guarantee

the well-posedness of discrete formulation. We give the weaker Zh-ellipticity and weaker inf-sup

condition (see (3.3)–(3.4)) for an unstable formulation without stabilization terms obtained by

a direct discretization. Based on the weaker Zh-ellipticity and weaker inf-sup condition, we

introduce two kinds of penalty terms in the stabilized mixed formulation, which are the jump

penalty term for the displacement and the divergence penalty term for the stress. Further we

show the existence and uniqueness of the numerical solution to the stabilized method.

However, for the nonconforming rectangular and cubic elements from [2], the corresponding

discrete space does not contain the subspace of continuous piecewise bilinear functions, such

that the common technique used in [10, 37] is not applicable here. This brings a difficulty

for analyzing the convergence of the nonconforming mixed FEM presented in this paper. To

overcome this difficulty, by a direct way we first estimate the truncation error between the inter-

polation of the exact solution and the numerical solution, measured by some mesh-dependent

norms. Then we obtain the optimal convergence in the L2-norm for stress and in the broken

H1-norm and L2-norm for displacement. We remark that the proposed method is uniformly

convergent in the nearly incompressible or incompressible case, i.e., it is locking-free. We also

remark that, due to the discontinuous stress approximation, the proposed method here has the

local elimination property, i.e., the stress unknowns can be eliminated at the element level, as

well as the hybrid stress method and other stabilized FEMs for the primal mixed formulation.

This paper is organized as follows. The elasticity model is presented in Section 2. In Section

3, the stabilized mixed method is proposed by using the nonconforming rectangular and cubic

elements. The optimal convergence is shown to be uniform with respect to the Lamé constant

λ in Section 4. Finally, a numerical test is carried out to verify the uniform convergence of the

stabilized method in Section 5.

2. The Model Problem

Let Ω be a bounded domain in Rd with the dimension d = 2, 3. For any given open subset

S of Ω, (·, ·)S and ‖ · ‖S denote the usual integral inner product and the corresponding norm

of L2(S)d, respectively. For a positive integer m, we shall use the common notation for the

Sobolev spaces Hm(S) and Hm
0 (S) with the corresponding norms ‖ ·‖m,S and | · |m,S . If S = Ω,

the subscript will be omitted. We use H−1(Ω) to denote the dual space of H1
0 (Ω) with respect

to the duality product 〈·, ·〉. The dual norm in H−1(Ω) is defined by

‖v‖−1 = sup
φ∈H1

0
(Ω)\{0}

〈v, φ〉

‖φ‖1
, v ∈ H−1(Ω).

Let σ and u be the symmetric stress tensor and the displacement field. As in [37], the

corresponding spaces are defined as

Σ =

{
τ ∈ L2(Ω, S);

∫

Ω

trτds = 0

}
, V = H1

0 (Ω)
d,

where L2(Ω, S) stands for the space of symmetric tensors in L2(Ω)d×d.

Then the primal mixed variational formulation for the linear elasticity problem reads: find
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(σ, u) ∈ Σ× V satisfying

{
(Aσ, τ) − (τ, ε(u)) = 0, ∀τ ∈ Σ,

(σ, ε(v)) = (f, v), ∀v ∈ V,
(2.1)

which is equivalent to the standard H1-based variational formulation (pure displacement for-

mulation). Here (Aσ, τ) =
∫
Ω
Aσ : τdx and σ : τ =

∑d
i=1

∑d
j=1 σijτij denotes the Frobenius

inner product of matrices σ and τ , f is the body force, A is the compliance tensor, and

ε(u) =
(
εij(u)

)
d×d

is the linearized strain tensor defined by

εij(u) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

For an isotropic elastic material, the compliance tensor has the following expression

Aσ =
1

2µ

(
σ −

λ

dλ + 2µ
trσδ

)
.

Here δ = (δij)d×d is the identity tensor, λ and µ are the Lamé constants such that µ ∈ [µ1, µ2]

with 0 < µ1 < µ2 and λ ∈ (0,∞]. When λ is very large or infinite, materials are said to be

nearly incompressible or incompressible. If the domain Ω is convex or its boundary is enough

smooth, the regularity estimate

‖σ‖1 + ‖u‖2 ≤ C‖f‖ (2.2)

holds, cf. [4, 7, 14, 17, 29].

For convenience, the symbol C with or without subscripts is used to denote a generic positive

constant, possibly different at different occurrences, which is independent of the Lamé constant

λ and the mesh size. For clearness, we also use other symbols (e.g. α, β, γ) to denote such a

generic positive constant.

We conclude this section with showing the following stability conditions (see [37]) in order

to ensure the existence and uniqueness of the solution to (2.1).

Z-ellipticity There exists a positive constant α such that

α‖τ‖2 ≤ (Aτ, τ), ∀τ ∈ Z, (2.3)

where Z = {τ ∈ Σ; (τ, ε(v)) = 0, ∀v ∈ V }.

Inf-sup condition There exists a positive constant β such that, for any v ∈ V ,

sup
τ∈Σ\{0}

(τ, ε(v))

‖τ‖
≥ β|v|1. (2.4)

3. The Stabilized Method

First we introduce a family of shape-regular rectangular (or cubic) meshes {Th} of Ω. For

a given mesh Th, we denote the set of all the edges (faces) in Th by Eh and the set of interior

edges (faces) by E int
h , respectively. For an element K ∈ Th and an edge (or face) E ∈ Eh, let

hK be the diameter of K and hE the diameter of E. Especially, we set h = maxK∈Th
{hK}.

nK always denotes the exterior unit normal vector along the boundary of K. For each edge

(face), we define its unit normal vector denoted by n, whose orientation is chosen arbitrarily

but fixed for interior edges (faces) and coinciding with the exterior normal of Ω for boundary
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edges (faces). For a function v and an interior edge (face) E shared by the elements K and L

in Th such that n|E points from K to L, we define the jump operator [[·]] through E by

[[v]]|E = (v|K)|E − (v|L)|E .

For any boundary edge (face) E, set [[v]]|E = v|E . Similar notation is used for the jump of

vector-valued functions, where the jump is taken componentwisely.

For any given element K and nonnegative integer m, Pm(K) denotes the polynomial space

of order m or less. On Th, we introduce a pair of finite element spaces for d = 2

Σh =

{
τh ∈ Σ; τh|K ∈

(
P1(x1) P0(K)

P0(K) P1(x2)

)
, ∀K ∈ Th

}
,

Vh =

{
vh ∈ L2(Ω)d; vh|K ∈

(
P̃1(x1)

P̃1(x2)

)
, ∀K ∈ Th, and

∫

E

[[vh]]ds = 0, ∀E ∈ Eh

}
,

where P1(xi) = span{1, xi}, P̃1(xi) = P1(K)⊕ span{x2
i }, and for d = 3

Σh =




τh ∈ Σ; τh|K ∈



P2(x1) P0(K) P0(K)

P0(K) P2(x2) P0(K)

P0(K) P0(K) P2(x3)


 , ∀K ∈ Th




 ,

Vh =





vh ∈ L2(Ω)d; vh|K ∈



P̃2(x1)

P̃2(x2)

P̃2(x3)


 , ∀K ∈ Th, and

∫

E

[[vh]]ds = 0, ∀E ∈ Eh





,

where P2(xi) = span{1, xi, x
2
i }, P̃2(xi) = P1(K) ⊕ span{x2

i , x
3
i }. Here we remark that, for

any vh ∈ Vh, it yeilds εh(vh) ∈ Σh where εh(vh) is defined locally on each K ∈ Th, i.e.

εh(vh)|K = ε(vh|K).

We define the interpolation operator Πh for the space Σh by setting, for d = 2
∫

K

Πhτ : φdx =

∫

K

τ : φdx, ∀φ ∈

(
P1(x1) P0(K)

P0(K) P1(x2)

)
, ∀K ∈ Th,

and for d = 3

∫

K

Πhτ : φdx =

∫

K

τ : φdx, ∀φ ∈



P2(x1) P0(K) P0(K)

P0(K) P2(x2) P0(K)

P0(K) P0(K) P2(x3)


 , ∀K ∈ Th,

where τ ∈ L2(Ω, S).
The interpolation operator Ih for the space Vh is defined by

∫

E

Ihvds =

∫

E

vds, ∀E ∈ Eh,

where v ∈ H1(Ω)d. Here we remark that the interpolation operator Ih for Vh has been shown

to be well-posed in [2], and similar arguments can also show the well-posedness of Ih for the

three dimensional case.

For τ ∈ Σ and v ∈ V , it obviously holds that Πhτ ∈ Σh and Ihv ∈ Vh. Furthermore, by the

standard scaling arguments we have the following local interpolation error estimates:

|τ −Πhτ |m,K ≤ Chl−m
K |τ |l,K , m ≤ l, m = 0, 1, l = 0, 1, (3.1)

|v − Ihv|m,K ≤ Chl−m
K |v|l,K , m = 0, 1, l = 1, 2. (3.2)
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If we directly discretize the primal mixed variational problem (2.1) with the finite dimen-

sional spaces defined above, it leads to an unstable formulation:

{
(Aσh, τh)− (τh, εh(uh)) = 0, ∀τh ∈ Σh,

(σh, εh(vh)) = (f, vh), ∀vh ∈ Vh.

In fact, we can only verify the following two conditions:

Weaker Zh-ellipticity There exist two positive constants α (that is the same as the one in

(2.3)) and α1 such that

α‖τh‖
2 ≤ (Aτh, τh) + α1

(
∑

K∈Th

h2
K‖divτh‖

2
K

) 1

2

, ∀τh ∈ Zh, (3.3)

where Zh = {τh ∈ Σh; (τh, εh(vh)) = 0, ∀vh ∈ Vh}.

Weaker inf-sup condition There exist two positive constants β1 and β2 such that, for any

vh ∈ Vh,

sup
τh∈Σh\{0}

(τh, εh(vh))

‖τh‖
≥ β1‖vh‖1,h − β2

(
∑

E∈Eh

h−1
E ‖[[P 1

Evh]]‖
2
E

) 1

2

, (3.4)

where the operator P 1
E is the orthogonal projection from L2(E) onto P1(E) and ‖ · ‖1,h is the

piecewise H1-norm on the discrete space Vh defined by

‖vh‖1,h =

(
∑

K∈Th

|vh|
2
1,K

) 1

2

.

The proof of the weaker inf-sup condition is identical with that in [37], where it needs to

apply the Korn’s inequality on piecewise H1 vector space (cf. [6]) to the space Vh. Next we

verify the weaker Zh-ellipticity. To this end, we introduce a fundamental inequality

α‖τ‖2 ≤ (Aτ, τ) + ‖divτ‖2−1, ∀τ ∈ Σ, (3.5)

see the references [4, 8, 37] for the details. For any given τh ∈ Zh and v ∈ H1
0 (Ω)

d, we have

(τh, ε(v)) = (τh, εh(v − Ihv))

=
∑

K∈Th

(∫

∂K

τhnK · (v − Ihv)ds− (divτh, v − Ihv)K

)

= −
∑

K∈Th

(divτh, v − Ihv)K ,

where we have used the fact that τhnK is constant on each edge (face) of element K and the

property of interpolation operator Ih. Then the interpolation error estimates (3.2) imply

(τh, ε(v)) ≤ α1

(
∑

K∈Th

h2
K‖divτh‖

2
K

) 1

2

‖v‖1,

which, together with the inequality (3.5) and definition of the dual norm ‖ · ‖−1, leads to the

weaker Zh-ellipticity.
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Based on the weaker Zh-ellipticity (3.3) and weaker inf-sup condition (3.4), we propose a

stabilized mixed finite element method: find (σh, uh) ∈ Σh × Vh satisfying

Q((σh, uh), (τh, vh)) = F (τh, vh), ∀(τh, vh) ∈ Σh × Vh, (3.6)

where the bilinear form is defined by

Q((σh, uh), (τh, vh)) = (Aσh, τh) + γ1
∑

K∈Th

h2
K(divσh, divτh)K − (τh, εh(uh))

+ (σh, εh(vh)) + γ2
∑

E∈Eh

h−1
E

∫

E

[[uh]] · [[vh]]ds,

F (τh, vh) = −γ1
∑

K

h2
K(f, divτh)K + (f, vh),

and γ1, γ2 are positive constants to be properly chosen. Since Vh * H1
0 (Ω)

d, the mixed method

(3.6) is nonconforming.

We conclude this section by showing the existence and uniqueness of the solution to (3.6).

To this end, we assume f = 0, then it is sufficient to show that the system of homogeneous

equations has only zero solution. By setting τh = σh and vh = uh, we have

Q((σh, uh), (σh, uh)) = (Aσh, σh) + γ1
∑

K∈Th

h2
K‖divσh‖

2
K + γ2

∑

E∈Eh

h−1
E ‖[[uh]]‖

2
E = 0,

which leads to

(Aσh, σh) = 0, ‖divσh‖K = 0, ∀K ∈ Th and [[uh]]|E = 0, ∀E ∈ Eh.

Due to the fact that (σh, εh(vh)) = 0 for all vh ∈ Vh, i.e., σh ∈ Zh, the weaker Zh-ellipticity

(3.3) implies σh = 0. Thus, setting vh = 0 in (3.6) leads to

(τh, εh(uh)) = 0, ∀τh ∈ Σh,

which, together with the weaker inf-sup condition (3.4) and the fact that the jump of P 1
Euh on

each edge E vanishes, yields uh = 0.

4. Error Analysis

Let (σ, u) be the exact solution to problem (2.1) and (σh, uh) the approximate solution

satisfying (3.6). We first present the estimates on the truncation error Πhσ− σh and Ihu− uh,

where Πhσ and Ihu are the interpolation functions of σ and u. In the proofs of the following

lemmas, we will frequently use the trace inequality [13]

‖v‖2E ≤ C(h−1
K ‖v‖2K + hK |v|21,K), ∀E ⊂ ∂K, ∀K ∈ Th. (4.1)

Lemma 4.1. Under the condition of the regularity estimate (2.2), it holds

(A(Πhσ − σh),Πhσ − σh) + γ1
∑

K∈Th

h2
K‖div(Πhσ − σh)‖

2
K + γ2

∑

E∈Eh

h−1
E ‖[[Ihu− uh]]‖

2
E

≤Ch2‖f‖2.

Proof. Let (τh, vh) ∈ Σh × Vh be arbitrary. The equation (2.1) implies

Aσ = ε(u), −divσ = f.



872 B. ZHANG, J.K. ZHAO, M.H. LI AND H.R. CHEN

Thus by integration by parts, we get

(Aσ, τh)− (τh, ε(u)) + (σ, εh(vh)) = (f, vh) +
∑

E∈Eh

∫

E

σn · [[vh]]ds.

Then by using the definition of Πh and the fact that εh(vh) ∈ Σh, we get

(A(Πhσ), τh)− (τh, ε(u)) + (Πhσ, εh(vh)) = (f, vh) +
∑

E∈Eh

∫

E

σn · [[vh]]ds. (4.2)

Subtracting (3.6) from (4.2) leads to the error equation

(A(Πhσ − σh), τh)− γ1
∑

K∈Th

h2
K(divσh, divτh)K − (τh, εh(u− uh)) + (Πhσ − σh, εh(vh))

− γ2
∑

E∈Eh

h−1
E

∫

E

[[uh]] · [[vh]]ds = γ1
∑

K∈Th

h2
K(f, divτh)K +

∑

E∈Eh

∫

E

σn · [[vh]]ds. (4.3)

Then we obtain

Q((Πhσ − σh, Ihu− uh), (τh, vh))

=(τh, εh(u − Ihu)) + γ1
∑

K∈Th

h2
K(div(Πhσ − σ), divτh)K

+ γ2
∑

E∈Eh

h−1
E

∫

E

[[Ihu]] · [[vh]]ds+
∑

E∈Eh

∫

E

σn · [[vh]]ds. (4.4)

Next we start to estimate each term on the right-hand side of (4.4). For the first one, we

recall the fact that τhnK is constant on each edge (or face) of element K and the property of

interpolation operator Ih and obtain

(τh, εh(u− Ihu)) =
∑

K∈Th

(divτh, u− Ihu)K ,

which, together with the interpolation estimate (3.2) and the regularity estimate (2.2), leads to

|(τh, εh(u − Ihu))| ≤ Ch‖f‖
( ∑

K∈Th

h2
K‖divτh‖

2
K

)1/2
. (4.5)

By using the interpolation estimates (3.1)-(3.2), regularity estimate (2.2) and trace inequality

(4.1), the second and third terms on the right-hand side of (4.4) can be estimated as follows

γ1

∣∣∣
∑

K∈Th

h2
K(div(Πhσ − σ), divτh)K

∣∣∣ ≤ Ch‖f‖
( ∑

K∈Th

h2
K‖divτh‖

2
K

)1/2
, (4.6)

γ2

∣∣∣
∑

E∈Eh

h−1
E

∫

E

[[Ihu]] · [[vh]]ds
∣∣∣ = γ2

∣∣∣
∑

E∈Eh

h−1
E

∫

E

[[u− Ihu]] · [[vh]]ds
∣∣∣

≤ γ2
∑

E∈Eh

h−1
E ‖[[u− Ihu]]‖E‖[[vh]]‖E ≤ Ch‖f‖

( ∑

E∈Eh

h−1
E ‖[[vh]]‖

2
E

)1/2
. (4.7)

For the last term, we observe that the jump average of vh on each edge (or face) vanishes and

obtain

∑

E∈Eh

∫

E

σn · [[vh]]ds =
∑

E∈Eh

∫

E

(σ − P 0
Eσ)n · [[vh]]ds ≤

∑

E∈Eh

‖σ − P 0
Eσ‖E‖[[vh]]‖E ,
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where the operator P 0
E is the orthogonal projection from L2(E) onto P0(E). Then we use the

trace inequality (4.1), Poincaré/Friedrichs inequality [34] and regularity estimate (2.2) to obtain

∣∣∣
∑

E∈Eh

∫

E

σn · [[vh]]ds
∣∣∣ ≤ Ch‖f‖

( ∑

E∈Eh

h−1
E ‖[[vh]]‖

2
E

)1/2
. (4.8)

Since (τh, vh) is arbitrary, we set (τh, vh) = (Πhσ−σh, Ihu−uh) and substitute (4.5)-(4.8) into

(4.4), which yields the desired result. �

Lemma 4.2. Under the condition of the regularity estimate (2.2), it holds

‖Πhσ − σh‖ ≤ Ch‖f‖. (4.9)

Proof. The fundamental inequality (3.5) implies

α‖Πhσ − σh‖
2 ≤ (A(Πhσ − σh),Πhσ − σh) + ‖div(Πhσ − σh)‖

2
−1. (4.10)

For any v ∈ H1
0 (Ω), we have

〈div(Πhσ − σh), v〉 = −(Πhσ − σh, ε(v))

= −(Πhσ − σh, εh(v − Ihv)) − (Πhσ − σh, εh(Ihv))

=
∑

K∈Th

(div(Πhσ − σh), v − Ihv)K − (Πhσ − σh, εh(Ihv))

≤
∑

K∈Th

‖div(Πhσ − σh)‖K‖v − Ihv‖K − (Πhσ − σh, εh(Ihv)), (4.11)

where we have used the fact that (Πhσ − σh)nK is constant on each edge (or face) of element

K and the property of interpolation operator Ih. By using the interpolation estimate (3.2) and

Lemma 4.1, we get
∑

K∈Th

‖div(Πhσ − σh)‖K‖v − Ihv‖K

≤C
( ∑

K∈Th

h2
K‖div(Πhσ − σh)‖

2
K

)1/2
|v|1 ≤ Ch‖f‖|v|1. (4.12)

In order to estimate the second term in (4.11), we let τh = 0 and vh = Ihv in equation (4.4)

and obtain

(Πhσ − σh, εh(Ihv)) (4.13)

=γ2
∑

E∈Eh

h−1
E

∫

E

[[Ihu]] · [[Ihv]]ds− γ2
∑

E∈Eh

h−1
E

∫

E

[[Ihu− uh]] · [[Ihv]]ds+
∑

E∈Eh

∫

E

σn · [[Ihv]]ds.

We use the trace inequality (4.1), interpolation estimate (3.2) and regularity estimate (2.2) to

obtain
∑

E∈Eh

h−1
E

∫

E

[[Ihu]] · [[Ihv]]ds

=
∑

E∈Eh

h−1
E

∫

E

[[u− Ihu]] · [[v − Ihv]]ds ≤ Ch|u|2|v|1 ≤ Ch‖f‖|v|1. (4.14)



874 B. ZHANG, J.K. ZHAO, M.H. LI AND H.R. CHEN

By Lemma 4.1, the trace inequality (4.1) and interpolation estimate (3.2), we estimate the

second term in (4.13)

∑

E∈Eh

h−1
E

∫

E

[[Ihu− uh]] · [[Ihv]]ds =
∑

E∈Eh

h−1
E

∫

E

[[Ihu− uh]] · [[Ihv − v]]ds

≤
( ∑

E∈Eh

h−1
E ‖[[Ihu− uh]]‖

2
E

)1/2( ∑

E∈Eh

h−1
E ‖[[v − Ihv]]‖

2
E

)1/2
≤ Ch‖f‖|v|1. (4.15)

For the last term in (4.13), we use the estimate (4.8), trace inequality (4.1) and interpolation

estimate (3.2) to obtain

∑

E∈Eh

∫

E

σn · [[Ihv]]ds ≤ Ch‖f‖
( ∑

E∈Eh

h−1
E ‖[[Ihv]]‖

2
E

)1/2

= Ch‖f‖
( ∑

E∈Eh

h−1
E ‖[[v − Ihv]]‖

2
E

)1/2
≤ Ch‖f‖|v|1. (4.16)

Combining (4.13)-(4.16), we obtain

|(Πhσ − σh, εh(Ihv))| ≤ Ch‖f‖|v|1. (4.17)

Substituting estimates (4.12) and (4.17) into (4.11), we get

〈div(Πhσ − σh), v〉 ≤ Ch‖f‖|v|1.

Due to the arbitrariness of v, we get

‖div(Πhσ − σh)‖−1 ≤ Ch‖f‖,

which, together with inequality (4.10) and Lemma 4.1, concludes the proof. �

Lemma 4.3. Under the condition of the regularity estimate (2.2), it holds

‖Ihu− uh‖1,h ≤ Ch‖f‖. (4.18)

Proof. The weaker inf-sup condition (3.4) implies

β1‖Ihu− uh‖1,h

≤ sup
τh∈Σh\{0}

(τh, εh(Ihu− uh))

‖τh‖
+ β2

( ∑

E∈Eh

h−1
E ‖[[Ihu− uh]]‖

2
E

)1/2
. (4.19)

Next we estimate the first term in the above inequality. To this end, we let vh = 0 in equation

(4.4) and obtain

(τh, εh(Ihu− uh)) =(A(Πhσ − σh), τh)− (τh, εh(u − Ihu)) (4.20)

+ γ1
∑

K∈Th

h2
K

(
(div(Πhσ − σh), divτh)K + (div(σ −Πhσ), divτh)K

)
.

Recalling the interpolation estimates (3.1)-(3.2), regularity estimate (2.2), Lemma 4.1 and the

inverse inequality, we obtain

|(A(Πhσ − σh), τh)| ≤ ‖A
1

2 (Πhσ − σh)‖‖A
1

2 τh‖ ≤ Ch‖f‖‖τh‖, (4.21)

|(τh, εh(u− Ihu))| ≤ ‖u− Ihu‖1,h‖τh‖ ≤ Ch‖f‖‖τh‖, (4.22)
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and

∑

K∈Th

h2
K

(
(div(Πhσ − σh), divτh)K + (div(σ −Πhσ), divτh)K

)

≤ C1

( ∑

K∈Th

h2
K‖div(Πhσ − σh)‖

2
K

)1/2
‖τh‖+ C2

( ∑

K∈Th

h2
K‖div(σ −Πhσ)‖

2
K

)1/2
‖τh‖

≤ Ch‖f‖‖τh‖. (4.23)

Combining (4.20)-(4.23), we obtain

sup
τh∈Σh\{0}

(τh, εh(Ihu− uh))

‖τh‖
≤ Ch‖f‖,

which, together with inequality (4.19) and Lemma 4.1, concludes the proof. �

With the above preparations, we start to estimate the approximation errors ‖σ − σh‖ and

‖u − uh‖1,h. By Lemmas 4.2-4.3 and interpolation estimates (3.1)-(3.2), it is easy to see the

following convergence result.

Theorem 4.1. Under the condition of the regularity estimate (2.2), it holds

‖σ − σh‖+ ‖u− uh‖1,h ≤ Ch‖f‖.

With the help of Theorem 4.1, we further derive the error estimate for u− uh in L2-norm.

Theorem 4.2. Under the condition of the regularity estimate (2.2), it holds

‖u− uh‖ ≤ Ch2‖f‖.

Proof. The proof relies on the usual duality argument. Let (σ∗, u∗) be the solution to the

auxiliary problem





Aσ∗ − ε(u∗) = 0, in Ω,

−divσ∗ = u− uh, in Ω,

u∗ = 0, on ∂Ω.

(4.24)

From the regularity estimate (2.2), it immediately follows that

‖σ∗‖1 + ‖u∗‖2 ≤ C‖u− uh‖. (4.25)

On both sides of the second equation of (4.24), we take an L2-inner product with respect

to u− uh and obtain

‖u− uh‖
2 = −(divσ∗, u− uh)

= (σ∗, εh(u − uh)) +
∑

E∈Eh

∫

E

σ∗n · [[uh]]ds

= (σ∗ −Πhσ
∗, εh(u− uh)) + (Πhσ

∗, εh(u − uh))

+
∑

E∈Eh

∫

E

(σ∗ − P 0
Eσ

∗)n · [[(uh − u)− P 0
E(uh − u)]]ds. (4.26)
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For the second term above, the equations (2.1), (3.6) and (4.24) imply that

(Πhσ
∗, εh(u− uh))

= (A(σ − σh),Πhσ
∗ − σ∗) + (A(σ − σh), σ

∗)− γ1
∑

K∈Th

h2
K(f + divσh, divΠhσ

∗)K

= (A(σ − σh),Πhσ
∗ − σ∗) + (σ − σh, ε(u

∗))− γ1
∑

K∈Th

h2
K(f + divσh, divΠhσ

∗)K

= (A(σ − σh),Πhσ
∗ − σ∗) + (σ − σh, εh(u

∗ − Ihu
∗)) + (σ − σh, εh(Ihu

∗))

−γ1
∑

K∈Th

h2
K(f + divσh, divΠhσ

∗)K . (4.27)

Combining (4.26) and (4.27), it yields

‖u− uh‖
2

= (σ∗ −Πhσ
∗, εh(u− uh)) + (A(σ − σh),Πhσ

∗ − σ∗) + (σ − σh, εh(u
∗ − Ihu

∗))

+(σ − σh, εh(Ihu
∗))− γ1

∑

K∈Th

h2
K(f + divσh, divΠhσ

∗)K

+
∑

E∈Eh

∫

E

(σ∗ − P 0
Eσ

∗)n · [[(uh − u)− P 0
E(uh − u)]]ds.

Next, we start to bound each term on the right side of the above equation. For the first three

terms, we use the interpolation error estimates (3.1) and (3.2) to obtain

(σ∗ −Πhσ
∗, εh(u − uh)) ≤ Ch‖u− uh‖1,h|σ

∗|1,

(A(σ − σh),Πhσ
∗ − σ∗) ≤ Ch‖σ − σh‖|σ

∗|1,

(σ − σh, εh(u
∗ − Ihu

∗)) ≤ Ch‖σ − σh‖|u
∗|2.

In order to estimate the fourth term, we use the trace inequality (4.1), Poincaré/Friedrichs

inequality [34] to obtain

‖(u− uh)− P 0
E(u− uh)‖E ≤ Ch

1

2

K |u− uh|1,K , E ⊂ ∂K.

In error equation (4.3), we set τh = 0 and vh = Ihu
∗ to obtain

(σ − σh, εh(Ihu
∗))

=
∑

E∈Eh

∫

E

σn · [[Ihu
∗]]ds+ γ2

∑

E∈Eh

h−1
E

∫

E

[[uh]] · [[Ihu
∗]]ds

=
∑

E∈Eh

∫

E

(σ − P 0
Eσ)n · [[Ihu

∗]]ds+ γ2
∑

E∈Eh

h−1
E

∫

E

[[(uh − u)− P 0
E(uh − u)]] · [[Ihu

∗]]ds

=
∑

E∈Eh

∫

E

(σ − P 0
Eσ)n · [[Ihu

∗ − u∗]]ds+ γ2
∑

E∈Eh

h−1
E

∫

E

[[(uh − u)− P 0
E(uh − u)]] · [[Ihu

∗ − u∗]]ds.

Thus by using the trace inequality (4.1), Poincaré/Friedrichs inequality [34] and interpolation

estimate (3.2), the fourth term can be estimated as follows

(σ − σh, εh(Ihu
∗)) ≤ C(h2|σ|1 + h‖u− uh‖1,h)|u

∗|2.
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For the fifth term, we use the interpolation error estimate (3.1) and inverse inequality to obtain

‖f + divσh‖K ≤ ‖div(σ −Πhσ)‖K + ‖div(Πhσ − σh)‖K

≤ ‖div(σ −Πhσ)‖K + Ch−1
K ‖Πhσ − σh‖K

≤ ‖div(σ −Πhσ)‖K + Ch−1
K (‖Πhσ − σ‖K + ‖σ − σh‖K)

≤ C(|σ|1,K + h−1
K ‖σ − σh‖K).

Thus the fifth term can be bounded by

γ1
∑

K∈Th

h2
K(f + divσh, divΠhσ

∗)K ≤ C(h2|σ|1 + h‖σ − σh‖)|σ
∗|1.

For the last term, we use the trace inequality (4.1) and Poincaré/Friedrichs inequality [34] to

obtain
∑

E∈Eh

∫

E

(σ∗ − P 0
Eσ

∗)n · [[(uh − u)− P 0
E(uh − u)]]ds ≤ Ch‖u− uh‖1,h|σ

∗|1.

Collecting all the above results, we obtain

‖u− uh‖
2 ≤ Ch(h|σ|1 + ‖σ − σh‖+ ‖u− uh‖1,h)(|σ

∗|1 + |u∗|2).

Combining Theorem 4.1 and the regularity estimates (2.2) and (4.25) concludes the proof. �

5. Numerical Results

In this section, we verify the uniform convergence of the stabilized nonconforming mixed

FEM by an example. In this example, we set Ω = (−1, 1) × (−1, 1) and µ = 1, and take the

right-hand side as

f(x1, x2) =

(
−8(x1 + x2)

(
(3x1x2 − 2)(x2

1 + x2
2) + 5(x1x2 − 1)2 − 2x2

1x
2
2

)

−8(x1 − x2)
(
(3x1x2 + 2)(x2

1 + x2
2)− 5(x1x2 + 1)2 + 2x2

1x
2
2

)

)
.

Fig. 5.1. The uniform mesh with h = 2−3.
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Table 5.1: The errors for λ = 1 and different h.

h ‖u− uh‖ ‖u− uh‖1,h ‖σ − σh‖

20 6.722403E-01 2.171532E+00 2.395017E+00

2−1 2.952428E-01 1.777865E+00 8.198931E-01

2−2 6.870318E-02 8.111081E-01 2.772765E-01

2−3 1.685703E-02 4.138433E-01 8.622177E-02

2−4 4.194904E-03 2.116063E-01 3.188727E-02

2−5 1.046885E-03 1.071030E-01 1.444655E-02

Rate 2.00 0.98 1.14

Table 5.2: The errors for λ = 10 and different h.

h ‖u− uh‖ ‖u− uh‖1,h ‖σ − σh‖

20 1.001529E+00 3.235462E+00 3.464014E+00

2−1 2.994347E-01 1.845460E+00 9.852803E-01

2−2 6.482320E-02 7.914514E-01 2.936679E-01

2−3 1.539517E-02 3.884958E-01 8.764870E-02

2−4 3.791173E-03 1.960038E-01 3.140186E-02

2−5 9.431509E-04 9.877749E-02 1.394900E-02

Rate 2.01 0.99 1.17

Table 5.3: The errors for λ = 109 and different h.

h ‖u− uh‖ ‖u− uh‖1,h ‖σ − σh‖

20 1.122275E+00 3.625587E+00 3.848302E+00

2−1 3.173446E-01 1.991295E+00 1.185754E+00

2−2 6.980646E-02 8.787252E-01 3.769842E-01

2−3 1.677049E-02 4.342520E-01 1.126229E-01

2−4 4.151051E-03 2.190600E-01 3.684028E-02

2−5 1.034788E-03 1.102995E-01 1.484875E-02

Rate 2.00 0.99 1.31

It can be checked that the corresponding exact solution of (2.1) is

u(x1, x2) =

(
−4x2(1 − x2

2)(1 − x2
1)

2

4x1(1 − x2
1)(1 − x2

2)
2

)
+

1

2 + λ

(
−4x1(1− x2

1)(1 − x2
2)

2

−4x2(1− x2
2)(1 − x2

1)
2

)
.

The stress σ can be obtained by σ = Cε(u).

We use the stabilized mixed formulation (3.6) with γ1 = 0.05, γ2 = 1 to simultaneously

approximate the stress and the displacement on a sequence of uniform n × n meshes with

h = 1/n, as shown in Fig. 5.1.

We first let the Lamé constant λ be taken to be 1, 10 and 109, respectively, in order to present

the optimal convergence of the stabilized mixed method. The corresponding numerical results

for different values of λ are given in Tables 5.1-5.3, where the convergence rate is computed

by using the numerical results over the last two meshes. From Tables 5.1-5.3, we see that the

convergence rate of ‖u− uh‖, ‖u− uh‖1,h and ‖σ− σh‖ is O(h2), O(h) and O(h), respectively.

We notice that the optimal convergence rate is still maintained even in the nearly incompressible

case (λ = 109). These numerical results confirm the theoretical results in Theorems 4.1-4.2.
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Table 5.4: The errors for h = 2−5 and different λ.

λ ‖u− uh‖ ‖u− uh‖1,h ‖σ − σh‖

100 1.046885E-03 1.071030E-01 1.444655E-02

101 9.431509E-04 9.877749E-02 1.394900E-02

102 1.020211E-03 1.086649E-01 1.466796E-02

103 1.033254E-03 1.101301E-01 1.482908E-02

104 1.034634E-03 1.102825E-01 1.484676E-02

105 1.034773E-03 1.102978E-01 1.484854E-02

106 1.034787E-03 1.102993E-01 1.484872E-02

107 1.034788E-03 1.102995E-01 1.484874E-02

108 1.034788E-03 1.102995E-01 1.484874E-02

109 1.034788E-03 1.102995E-01 1.484875E-02

Next we test the robustness of the stabilized mixed method with respect to λ whose value is

changed from 1 to 109 on a fixed mesh with h = 2−5. The corresponding numerical results for

different values of λ are given in Table 5.4. From that, we observe that the errors are hardly

affected by the choice of λ, which confirms that the stabilized mixed method is robust with

respect to λ, i.e. it is locking-free.
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[34] M. Vohraĺık, On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations

of the Sobolev space H
1, Numer. Func. Anal. Opt., 26 (2005), 925–952.

[35] S. Wu, S. Gong and J. Xu, Interior penalty mixed finite element methods of any order in any

dimension for linear elasticity with strongly symmetric stress tensor, Math. Models Methods Appl.

Sci., 27 (2017), 2711–2743.

[36] G. Yu, X. Xie and C. Carstensen, Uniform convergence and a posteriori error estimation for

assumed stress hybrid finite element methods, Comput. Methods Appl. Mech. Engrg., 200 (2011),

2421–2433.



Stabilized Nonconforming Mixed Finite Element Method for Linear Elasticity 881

[37] B. Zhang and J. Zhao, A mixed formulation of stabilized nonconforming finite element method

for linear elasticity, Adv. Appl. Math. Mech., 12 (2020), 278–300.

[38] B. Zhang, J. Zhao, S. Chen and Y. Yang, A locking-free stabilized mixed finite element method

for linear elasticity: the high order case, Calcolo, 55 (2018), Article number: 12.

[39] S. Zhang and X. Xie, Accurate 8-node hybrid hexahedral elements with energy-compatible stress

modes, Adv. Appl. Math. Mech., 2 (2010), 333–354.

[40] Z. Zhang, Analysis of some quadrilateral nonconforming elements for incompressible elasticity,

SIAM J. Numer. Anal., 34 (1997), 640–663.


