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Abstract

In this paper, we study a few challenging theoretical and numerical issues on the well

known trust region policy optimization for deep reinforcement learning. The goal is to find

a policy that maximizes the total expected reward when the agent acts according to the

policy. The trust region subproblem is constructed with a surrogate function coherent to

the total expected reward and a general distance constraint around the latest policy. We

solve the subproblem using a preconditioned stochastic gradient method with a line search

scheme to ensure that each step promotes the model function and stays in the trust region.

To overcome the bias caused by sampling to the function estimations under the random

settings, we add the empirical standard deviation of the total expected reward to the

predicted increase in a ratio in order to update the trust region radius and decide whether

the trial point is accepted. Moreover, for a Gaussian policy which is commonly used for

continuous action space, the maximization with respect to the mean and covariance is

performed separately to control the entropy loss. Our theoretical analysis shows that the

deterministic version of the proposed algorithm tends to generate a monotonic improvement

of the total expected reward and the global convergence is guaranteed under moderate

assumptions. Comparisons with the state-of-the–art methods demonstrate the effectiveness

and robustness of our method over robotic controls and game playings from OpenAI Gym.

Mathematics subject classification: 49L20, 90C15, 90C26, 90C40, 93E20.
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1. Introduction

In reinforcement learning, the agent starts from an initial state and interacts with the

environment by executing an action from some policy iteratively. At each time step, the en-

vironment transforms the current state into the next state with respect to the action selected

by the agent and gives back a reward to the agent to evaluate how good the action is, then

the agent makes a new action for the next interaction based on the feedback. Repeating the

above transition dynamics generates a trajectory where stores the visited states, actions and

rewards. During the interactions, the transition probability and the reward function are totally

determined by the environment, but the intrinsic mechanism may be mysterious. The policy

characterizes the distribution of actions at each possible state. The problem is how to design

a policy for the agent to maximize the total expected reward along a trajectory induced by

the policy. The state-of-the-art model-free methods for reinforcement learning [28, 33] can be
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divided into policy-based and value-based methods. Policy-based methods directly learn or try

to approximate the optimal policy by policy improvement and policy evaluation alternative-

ly. They generate a map, i.e., a distribution from states to actions, which can be stochastic

or deterministic. That is, they can be applied to both continuous and discrete action spaces.

While in value-based methods, the goal is approximating the solution of the optimal Bellman

equation based upon the temporal difference learning [33]. They learn a value function defined

on the state-action pairs to estimate the maximal expected return of the action taken in the

state. Then at each sate, the optimal policy based on the value function predicts a single action

by maximizing the values.

The recent progress of deep neural networks [23] provides many scalable and reliable learning

based approaches [8, 11, 24, 29, 31] for solving large and complex real-world problems in rein-

forcement learning. The curse of dimensionality is conquered by expressing the value and/or

policy function with a deep neural network from high-dimensional or limited sensory inputs.

The deepening expedites the evolution of end-to-end reinforcement learning, also referred as

deep reinforcement learning. As a representative and illuminative algorithm in deep value-based

methods, deep Q-learning (DQN) [25] has succeeded in many discrete domains such as playing

Atari games. The learned agent arrives at a comparable level to that of a professional human

games player. They construct a Q-network to receive the raw pictures as inputs, and optimize

the weights by minimizing the Bellman residual. DQN can be viewed as a deep value iteration

method directly, and some independent improvements including their combinations have been

summarized in [14]. The success of DQN and its variants has a restriction on the type of the

problem, specifically, the maximal operator in the objective function makes the optimization

to be less reliable in continuous and/or large action space. By representing the greedy action

selection with a policy network, the deep deterministic policy gradient (DDPG) method [24]

successfully extends the algorithmic idea of DQN into the continuous action space. The val-

ue network imitates the training in DQN and the policy network is updated by maximizing

the estimated values. The two delayed deep deterministic (TD3) policy gradient algorithm [9]

substantially improves DDPG by building double deep Q-networks to avoid overestimation in

value estimates and delaying the policy updates to reduce the per-update error in DDPG.

Different from the optimization models based on value functions, policy-based algorithms

also concentrate on optimizing the policy iteratively. In the policy improvement step, the

actor updates the policy by optimizing an appropriate objective function using gradient-based

methods. Policy evaluation creates a critic, i.e., a value function, to assess the policy by

minimizing the Bellman error associated with the policy, which provides a basis for policy

improvement. Thus the policy-based methods are usually classified as actor-critic methods. As

the optimization is practically based on the observations, the generalized advantage estimators

(GAE) [30] are mostly considered for the bias-variance tradeoff and numerical stability. The

discrepancy among the state-of-the-art policy-based methods mainly locates in the actor part,

specifically, the surrogate function used for improving the policy. The trust region policy

optimization (TRPO) [29] generalizes the proof the policy improvement bound in [16] into

general stochastic policies and proposes a trust region model for policy update. The model

function is a local approximation of the total expected reward and the Kullback-Leibler (KL)

divergence between two policies is considered as a distance constraint. The subproblem under

parameterization is highly nonlinear and nonconvex rather than a typical quadratic model

as in [3, 6, 37] because the policy is parameterized by a neural network and the trust region

constraint is replaced by a distance function of two policies. In order to develop a practical
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algorithm, the subproblem is approximately solved in one step by a linearization of the model

function and a second-order approximation of the constraint. The proximal policy optimization

(PPO) algorithm [31] constructs a surrogate function by modifying the model function in TRPO

with a clipped probability ratio, which controls the policy update from one iteration to the next

one as the KL divergence constraint does. The surrogate function is maximized by the stochastic

gradient methods. Some related developments can be found in [2, 5, 20].

In this paper, we use a similar model as in TRPO and develop a model-free on-policy

algorithm within the stochastic trust region framework for policy optimization. In TRPO, the

subproblem is solved essentially by only one natural gradient step and the size of the trust

region radius is always fixed. However, in our method, the subproblem is approximately solved

by a sequence of increasing and feasible directions, and the solving process is terminated until

the model function has a sufficient increase and the constraint is satisfied. Additionally, we

update the trust region radius adaptively by linearly dependent on the gradient of the model

and the adjustment is guided by the coherence between the surrogate function and the total

expected reward. We add the empirical standard deviation of the total expected reward to the

predicted increase in a ratio to alleviate the bias caused by sampling in function estimations.

This revision can be interpreted as releasing the coherence into a related confidence interval.

For problems with continuous action spaces, where the Gaussian policy is commonly used, the

mean of the policy tends to be sharply updated toward the best observation accompanied with

an unexpected drop in variance. To avoid from the premature convergence, we separate the

optimization with respect to the mean and variance into two independent parts. This alternating

strategy slows down the decline of the entropy to encourage exploration which is crucial in deep

reinforcement learning. In the convergence analysis, we provide a theoretical foundation for the

trust region framework on policy optimization. With respect to the unparameterized policies,

we show that the proposed trust region algorithm generates a sequence of monotonically rising

policies. Moreover, specifying the total variation (TV) distance in trust region constraint,

we can construct a feasible solution for the subproblem such that the model function has a

sufficient improvement. We prove that the ratio can be bounded from below and it goes to

one as the trust region radius goes to zero. Therefore, the total expected reward converges

to the optimal value under some mild assumptions. Then we extend the results with policy

parameterization. Specifically, we consider the Gaussian polices and the KL divergence in

continuous action space. The alternating strategy in mean and covariance updates ensures a

sufficient improvement in the model function, and the ratio is bounded below. Furthermore,

under some continuous assumptions of the objective function, the mean of the policy is proved to

converge to a stationary point where the covariance is also assumed to converge. The numerical

performance of our stochastic trust region algorithm which is motivated from the theoretical

analysis can be significantly better than that of the state-of-the-art methods including TRPO

and PPO under certain typical environments.

In Section 2, we introduce basic preliminaries in deep reinforcement learning, and review

some related algorithms. The trust region framework for policy optimization is proposed in

Section 3.1. In Section 3.2, we give a convergence analysis of our algorithmic framework for

problems with parameterized and unparameterized policies, respectively. The alternating strat-

egy for the Gaussian policies is included in the proof. To handle practical problems, we present

a stochastic trust region algorithm for policy optimization named STRO in Section 4. Finally,

extensive numerical experiments are presented in Section 5 to demonstrate the effectiveness and

robustness of our algorithm in MuJoCo [35] and Atari games [4].
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2. Preliminaries

2.1. Notations

We consider the reinforcement learning problem defined by an infinite-horizon discounted

Markov decision process (MDP). The MDP is denoted as a tuple (S,A, P, r, ρ0, γ), where S and

A are known as the state and action spaces, respectively. P : S ×A× S → R is the transition

probability distribution, r : S × A → R is the bounded reward function, ρ0 : S → R is the

distribution of the initial state s0, and γ ∈ (0, 1) is the discount factor.

In this paper, we consider the stochastic policy, which maps the state into a distribution

over action space:

π(a|s) : S ×A → [0, 1],
∑
a∈A

π(a|s) = 1, ∀s ∈ S.

The total expected reward is the expectation of the cumulative discounted reward of a trajectory

induced by the policy π:

η(π) = Eπ

[ ∞∑
t=0

γtr(st, at)

]
, (2.1)

where s0 ∼ ρ0, at ∼ π(·|st), st+1 ∼ P (·|st, at). Moreover, we introduce the unnormalized

discounted visitation frequency with respect to π as:

ρπ(s) =

∞∑
t=0

γtP(st = s|π).

We take the following standard definitions of the action value function Qπ and the state value

function Vπ:

Qπ(s, a) = Eπ

[ ∞∑
l=0

γlr(st+l, at+l)
∣∣∣s0 = s, a0 = a

]
,

Vπ(s) = Eπ

[ ∞∑
l=0

γlr(st+l, at+l)
∣∣∣s0 = s

]
.

They satisfy the recursive relationships:

Qπ(s, a) = r(s, a) + γEP (·|s,a) [Vπ(s′)] , Vπ(s) = Eπ(·|s) [Qπ(s, a)] .

The advantage of an action a over a given state s is defined as

Aπ(s, a) = Qπ(s, a)− Vπ(s).

2.2. The optimization model

Generally, we consider the optimization

max
π∈Π

η(π), (2.2)

where Π = {π|
∑
a∈A π(a|s) = 1, π(a|s) ≥ 0,∀a ∈ A, s ∈ S}. For any fixed policy π, the total

expected reward of another policy π̃ can be expressed in terms of the expectation of advantage

function Aπ(s, a) over policy π̃:

η(π̃) = η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a). (2.3)
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The derivation can be referred in [16, 29]. The complex dependency of ρπ̃ on π̃ motivates a

popular surrogate function [29] by approximating ρπ̃ with ρπ:

Lπ(π̃) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(a|s)Aπ(s, a)

= η(π) + Eρπ,π
[
π̃(a|s)
π(a|s)

Aπ(s, a)

]
. (2.4)

The second equality follows from importance sampling, where the sampling distribution is π.

Apparently, Lπ is a linear function in the policy space and intersects η at π. The maximizer

of Lπ over π̃ is exactly the greedy policy update at π in policy iteration, since for each state s,

the action with the maximal advantage value is assigned with probability one:

π̃∗ = arg max
π̃∈Π

Lπ(π̃), π̃∗(a|s) =

1, a = arg max
a′

Aπ(s, a′),

0, otherwise.

Besides, the evaluation of Lπ at any policy π̃ only requires the expectation over π, which is

much cheaper than that of η.

In deep reinforcement learning, to address the high dimensionality and complexity in real-

world tasks, the policy π is usually parameterized by a set of variables, for example, a differen-

tiable neural network weighted by θ. The constraint on the policy, i.e., π ∈ Π, is guaranteed by

the parameterization. For simplicity, we can overload our previous notations to associate with θ

rather than π, e.g., η(θ) := η(πθ), Qθ(st, at) := Qπθ (st, at), Lθ(θ̃) := Lπ(π̃) and ρθ(s) := ρπθ (s).

The goal is maximizing the total expected reward (2.1) in the parameterized policy space:

max
θ

η(θ). (2.5)

The optimal solution θ∗ corresponds to the so-called optimal policy πθ∗ , which equivalently

implies that for any s ∈ S, a ∈ A:

Qθ∗(s, a) ≥ Qθ(s, a), Vθ∗(s) ≥ Vθ(s), ∀θ.

In general, for any MDP with a differentiable policy πθ, the policy gradient [34] is formulated

as

∇η(θ) =
∑
s

ρθ(s)
∑
a

∇πθ(a|s)Aθ(s, a) = Eρθ,πθ
[
∇ log πθ(a|s)Aθ(s, a)

]
. (2.6)

Intuitively, Lθ(θ̃) matches η(θ̃) up to the first-order accuracy at θ in the parameterized policy

space:

Lθ(θ) = η(θ), ∇Lθ(θ) = ∇η(θ). (2.7)

2.3. Related algorithms

Policy gradient type methods [17,33,34] directly take a stochastic gradient version of (2.6)

to update the policy in an incremental manner:

θk+1 = θk + αM(θk)∇η(θk), (2.8)

where α > 0 is the step size, and M(θk) is a preconditioning matrix that may associate with θk.

The policy gradient type algorithms distinguish from each other with the choice of the precon-

ditioning matrix M(θk) [10]. The vanilla policy gradient (VPG) [34] method using M(θk) = I
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often suffers poor-scaled issues. The natural policy gradient (NPG) algorithm [17] brings the

natural gradient techniques originated from the neural networks and takes M(θk) as the inverse

of the Fisher information matrix (FIM) of the policy πθk , that is,

M(θk)−1 = Eρθk ,πθk
[
∇ log πθk(s, a)∇ log πθk(s, a)T

]
. (2.9)

It can be showed as defining a matrix norm on the parameterized policy space. Generally, a

well-tuned update rule for the step size α in (2.8) is crucial for the numerical stability in both

VPG and NPG.

In TRPO, they propose to optimize a surrogate function coherent to the total expected

reward with a constraint on the KL divergence of two policies, which controls how far the

policy is allowed to update. At each iteration, they construct a trust region subproblem

max
θ

Lθk(θ), s.t. Es∼ρθk [DKL(πθk(·|s)||πθ(·|s))] ≤ δ, (2.10)

where δ is a fixed constant and the KL divergence DKL(p||q) =
∑
x
p(x) log p(x)

q(s) . To develop a

practical algorithm for solving the subproblem, they take a linear approximation of the model

function and a second-order approximation of the constraint. Essentially, TRPO solves the

quadratic constrained optimization:

max
θ

∇Lθk(θk)T (θ − θk), s.t.
1

2
(θ − θk)TH(θk)(θ − θk) ≤ δ, (2.11)

where H(θk) is the FIM of the policy πθk as well as the second-order approximation of the

KL divergence at θk. Then the solution of (2.11) obtained by the conjugate gradient method

[27,32] is taken as an approximate solution of (2.10). Obviously, the induced update direction

is collinear with that of NPG, therefore TRPO can be viewed as a natural policy gradient

algorithm with self-adaptive step size.

PPO optimizes the model function in (2.10) with point-wise value clipping to penalize a

large policy update. They construct a clipped surrogate function at each iteration:

Lclipk (θ) = Eρθk ,πθk [min(rk(s, a)Aθk(s, a), clip(rk(s, a), 1− ε, 1 + ε)Aθk(s, a))] ,

where rk(s, a) = πθ(a|s)
πθk (a|s) is the probability ratio, clip(x, r1, r2) = min(max(x, r1), r2), and ε is

a hyper-parameter. It is also a local estimate of the total expected reward, and has stringent

control of the policy update. The maximization of Lclipk (θ) is approximately solved by multiple

epochs of the stochastic gradient methods.

Some recent works focus on applying mirror descent update in solving (2.5). A stochastic

mirror descent with a new policy gradient estimator that merges historical gradient information

is proposed in [38]. An objective function in a mirror descent style is considered in [36]. At

each iteration, multiple SGD updates are performed to approximately solve the optimization

problem. Moreover, the mirror descent update in regularized RL is considered in [21].

3. A Trust Region Method for Policy Optimization

As we showed in the last section, the function Lθk(θ) gives a good local approximation to

η(θ) around πθk as in (2.7) and it has much lower costs than η in evaluation and derivation.
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These advantages motivate an underlying exploration of Lθk to extract potential information

for policy improvement. At the k-th iteration, we construct the trust region model as:

max
θ

Lθk(θ), s.t. Es∼ρθk [D(πθk(·|s), πθ(·|s))] ≤ δk, (3.1)

where D is a general metric function of two distributions, such as the KL divergence and TV

distance. The subproblem (2.10) in TRPO can be viewed as a special case of ours by taking the

KL divergence as the distance metric function. We embed the subproblem (3.1) into a general

trust region method, so as to monitor the acceptance of the trial point and to adjust the trust

region radius δk.

3.1. Algorithmic Framework

We now state the trust region framework for policy improvement with a random initializa-

tion. At the k-th iteration, the algorithm approximately solves the subproblem (3.1) to obtain

a trial point θ̃k+1, then we resolve two issues: 1) whether to accept θ̃k+1 as θk+1; 2) how to

update the trust region radius δk adaptively. The canonical trust region framework leads us to

compute a ratio to evaluate the agreement between the objective function and the surrogate

function at θ̃k+1:

rk =
η(θ̃k+1)− η(θk)

Lθk(θ̃k+1)− Lθk(θk)
. (3.2)

The trial point θ̃k+1 is accepted if rk is greater than some positive constant β0 and it is called

a successful iteration, i.e., θk+1 = θ̃k+1, otherwise, the iteration is unsuccessful and θk+1 = θk:

θk+1 =

{
θ̃k+1, rk ≥ β0,

θk, otherwise.
(3.3)

The adjustment of the trust region radius δk is based on the ratio as:

δk+1 =


γ1δk, rk ≥ β1,

γ2δk, rk ∈ [β0, β1),

γ3δk, otherwise,

(3.4)

where 0 < β0 < β1, and 0 < γ3 < γ2 ≤ 1 < γ1. These tuning parameters control the accuracy of

the model by determining how aggressively the trust region radius is updated when an iteration

is successful or not. The training process is summarized in Algorithm 3.1.

Algorithm 3.1. A Trust Region Optimization Framework

Require: Set θ0, δ0, k = 0

1: while stopping criterion not met do

2: solve (3.1) to obtain a trail point θ̃k+1;

3: compute the ratio rk via (3.2);

4: update θk+1 using (3.3);

5: update δk+1 using (3.4);

6: k = k + 1;

7: end while
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3.2. Theoretical Analysis

We next construct the convergence of the trust region framework for policy optimization.

The analysis starts from the unparameterized case, then moves to the case that the policy is

parameterized as Gaussian distributions. During the discussion, the states set S is supposed to

be finite and the initial state distribution ρ0 is assumed that

ρ0(s) > 0, ∀s ∈ S.

Consequently, for any policy π, it holds

ρπ(s) ≥ ρ0(s) > 0, ∀s ∈ S, (3.5)

where ρπ(·) is not a distribution, i.e.,
∑
s
ρπ(s) = 1

1−γ .

For general policy gradient methods, some theoretical properties conditioned on appropri-

ate value estimation refer to [19, 34, 39]. For mirror descent methods and the KL-divergence

regularized methods, the convergence analysis can be found in [21,26,38]. As the optimization

model in our trust region method is quite different from these works, the analysis technique

below are different.

3.2.1. Unparameterized Policy

In this part, we consider a MDP with a finite set of actions A, and focus on the policy π itself,

i.e., considering the case that θ = {π(a|s) : ∀s ∈ S, a ∈ A}, which means πθ = π. Note that

our analysis can be similarly extended to continuous action spaces (Eucliean space). Typically,

we consider the following subproblem

max
π

Lπk(π), s.t. Es∼ρπk [DTV (πk(·|s)||π(·|s))] ≤ δk, (3.6)

where DTV (p||q) = 1
2

∑
x |p(x)− q(x)| is the total variation distance between two distributions

p and q. Usually, a close-form solution of (3.6) is unknown. We next define the so-called policy

advantage to introduce the theoretical results that follow.

Definition 3.1 (Policy Advantage). The policy advantage Aπ(π′) of a policy π′ with respect

to a policy π is defined by

Aπ(π′) = Es∼ρπ
[
Ea∼π′(·|s) [Aπ(s, a)]

]
.

From the definition, it is straightforward to obtain Lπk(π) = η(πk) + Aπk(π). In the next

lemma, we give an optimality condition of the RL problem (2.2).

Lemma 3.1. The policy π is an optimal solution for (2.2) if and only if

A∗π
4
= max

π′
Aπ(π′) =

∑
s

ρπ(s) max
π′(·|s)

∑
a

π′(a|s)Aπ(s, a) = 0, (3.7)

i.e., π ∈ argmaxπ′ Aπ(π′).

Proof. Since
∑
a
π(a|s)Aπ(s, a) = 0 for any s and (3.5) holds for π, it is obviously that the

condition (3.7) is equivalent to, for any policy π′,∑
a

π′(a|s)Aπ(s, a) ≤ 0, ∀s. (3.8)
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We first prove the sufficiency part. Combining the conditions (3.5) and (3.8) for any policy

π′, we have that

η(π′) = η(π) +
∑
s

ρπ′(s)
∑
a

π′(a|s)Aπ(s, a) ≤ η(π).

Hence, π is an optimal solution of (2.2).

We then prove the necessary part by contradiction. Suppose that (3.8) is not satisfied. Then

there exists a state s and policy π′ such that∑
a

π′(a|s′)Aπ(s, a) > 0.

Define a new policy π̃ as

π̃(a|s) =

{
π′(a|s), s = s′,

π(a|s), s 6= s′.

Since (3.5) holds for π̃, we obtain

η(π̃) = η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a)

= η(π) + ρπ̃(s′)
∑
a

π′(a|s′)Aπ(s′, a) > η(π),

i.e., π is not an optimal solution of (2.2), which completes the proof. �

We next show a lower bound of improvement for the function L in each step.

Lemma 3.2. Suppose {πk} is the sequence generated by the trust region method, then we have

Lπk(πk+1)− Lπk(πk) ≥ min(1, (1− γ)δk)A∗πk .

Proof. If the optimal solution of subproblem (3.6) lies in the trust region, i.e.,

Es∼ρπk [DTV (πk(·|s)||πk+1(·|s))] < δk,

we obtain

πk+1 = argmaxπ Lπk(π) = argmaxπ Aπk(π).

In other words, Lπk(πk+1)− Lπk(πk) = A∗πk .

If the optimal solution of subproblem (3.6) reaches the boundary, it means that π∗k+1 =

argmaxπ Aπk(π) is outside the trust region. Take π̂k+1 as a feasible convex combination of πk
and π∗k+1, that is, set β = (1− γ)δk and

π̂k+1 = (1− β)πk + βπ∗k+1.

Consequently, we have

Es∼ρπk [DTV (πk(·|s)||π̂k+1(·|s))] =
∑
s

ρπk(s)DTV (πk(·|s)||π̂k+1(·|s))

=β
∑
s

ρπk(s)DTV (πk(·|s)||π∗k+1(·|s)) ≤ β

1− γ
= δk,
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where the inequality is based on the facts that the total variation distance is uniformly bounded

by one and
∑
s
ρπk(s) = 1

1−γ . Then, it follows that

Lπk(πk+1)− Lπk(πk) ≥ Lπk(π̂k+1)− Lπk(πk)

=
∑
s

ρπk(s)
∑
a

(π̂k+1(a|s)− πk(a|s))Aπk(s, a)

=β
∑
s

ρπk(s)
∑
a

π∗k+1(a|s)Aπk(s, a) = (1− γ)δkA∗πk ,

which completes the proof. �

The next lemma shows a lower bound of the trust region ratio rk. If the advantage function

A∗π is lower bounded, then as the trust region radius goes to zero, we have the ratio goes to

one.

Lemma 3.3. The ratio rk defined in (3.2) satisfies that

rk ≥ min

(
1− 4Āγδ2

k

p2
0(1− γ)2A∗πk

, 1− 4Āγδk
p2

0(1− γ)3A∗πk

)
,

where p0 = min
s
ρ0(s) and Ā = max

s,a,π
|Aπ(s, a)|.

Proof. It follows from [29, Theorem 1] that

η(πk+1) ≥ Lπk(πk+1)− 4Āγα2

(1− γ)2
, (3.9)

where α = max
s
DTV (πk(·|s)||πk+1(·|s)). Thus,

rk =
η(πk+1)− η(πk)

Lπk(πk+1)− Lπk(πk)

≥ 1− 4Āγα2

(1− γ)2(Lπk(πk+1)− Lπk(πk))

≥ 1− 4Āγα2

(1− γ)2 min(1, (1− γ)δk)A∗πk
.

Since the relationship

δk ≥ Es∼ρπk [DTV (πk(·|s)||πk+1(·|s))] ≥ p0 max
s

[DTV (πk(·|s)||πk+1(·|s))]

holds, i.e., α ≤ δk
p0

, then we have that

rk ≥ 1− 4Āγδ2
k

p2
0(1− γ)2 min(1, (1− γ)δk)A∗πk

.

This completes the proof of the lemma. �

In particular, the inequality (3.9) only provides some descent properties of the objective

function η, but it cannot guarantee the convergence directly. Finally, we show our main theorem.

Theorem 3.1 (Convergence). Suppose that {πk} is a sequence generated by our trust region

method, then we have the following conclusions.
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1. lim inf
k→∞

A∗πk = 0.

2. lim
k→∞

η(πk) = η(π∗), where π∗ is an optimal solution of (2.2).

Proof. We prove the first statement by contradiction. Suppose that ∃ ε > 0 and K ∈ N
such that

A∗πk ≥ ε, ∀k > K.

Without loss of generality, we can assume (1− γ)δk < 1 holds for any k > K. Then the results

in Lemma 3.2 and 3.3 reduce to

Lπk(πk+1)− Lπk(πk) ≥ (1− γ)δkε and rk ≥ 1− 4Āγδk
p2

0(1− γ)3ε
,

respectively. Take δ̄ =
p20(1−γ)3ε(1−β1)

4Āγ
. Once δk ≤ δ̄, then

rk ≥ β1 and δk+1 ≥ δk.

Hence, we obtain

δk ≥ min(δK , γ2δ̄), ∀k > K. (3.10)

We next claim that rk ≥ β1 occurs infinite many times. If not, then there exists K1 > K such

that rk < β1 and δk+1 < δk, ∀k > K1, which conflicts with (3.10). Therefore, we have

η(πk+1)− η(πk) = rk (L(πk+1)− L(πk)) ≥ (1− γ)δkεβ0, ∀k > K.

Since η(πk) is monotone and bounded, we have δk → 0 which is a contradiction.

Denote a subsequence {kn} such that lim
n→∞

A∗πkn = 0. Then the continuity of A∗π with

respect to π indicates that lim
n→∞

πkn = π∗. Consequently, the subsequence {η(πkn)} converges

since η is continuous with respect to π. Therefore, the full sequence {η(πk)} converges since

{η(πk)} is monotone and bounded. �

3.2.2. Parameterized Policy

We consider the parameterization of the policy in this part. We mainly focus on the continuous

action space and restrict the policy into the Gaussian distribution.

Assumption 3.1. The policy is assumed to be a Gaussian distribution with state-dependent

mean vector µ(s) ∈ Rn and a state-independent covariance matrix Σ = diag(σ2), where σ ∈ Rn

is the standard deviation vector and is assumed to be bounded below, i.e. σ(i) ≥ σ > 0, i =

1, · · · , n.

The parameterization is θ = {µ(s), σ}s∈S and the policy πθk(·|s) obeys the Gaussian distri-

bution N (µk(s), σ2
k). For simplicity, in the following discussion, we often use µ to represent the

notation µ(s) by ignoring s. The discussion is based on the model (3.1) with the KL divergence:

max
µ,σ

Lµk,σk(µ, σ), s.t. Es∼ρµk,σkDKL(πµk,σk(·|s)||πµ,σ(·|s)) ≤ δk. (3.11)

Since an exact maximizer of (3.11) may be hard to compute, we use an alternative strategy to

get an approximate solution. Firstly, by fixing σk, we update µk by solving the subproblem

max
µ

Lµk,σk(µ, σk), s.t. Es∼ρµk,σkDKL(πµk,σk(·|s)||πµ,σk(·|s)) ≤ δk. (3.12)



A Stochastic Trust-region Framework for Policy Optimization 1015

The KL divergence between two Gaussian policies with the same standard deviation can be

written as

DKL(πµk,σk(·|s)||πµ,σk(·|s)) =
1

2
(µ− µk)TΣ−1

k (µ− µk).

Then, we update σk from

max
σ

Lµk,σk(µk+1, σ), s.t. Es∼ρµk,σkDKL(πµk,σk(·|s)||πµk+1,σ(·|s)) ≤ δk. (3.13)

We also make some assumptions on the smoothness of the function L.

Assumption 3.2. The Hessian matrix ∇2
µLµk,σk(µ, σk) is uniformly bounded within the trust

region, i.e., hk = max
µ∈Bk

‖∇2
µLµk,σk(µ, σk)‖+ 1 ≤ h for ∀k, where Bk = {µ|Es∼ρµk,σkDKL(πµk,σk

(·|s)||πµ,σk(·|s)) ≤ δk}.

According to the definitions of the model function and the Gaussian density function, the

Hessian matrix is

∇2
µLµk,σk(µ, σk) =

∑
s

ρµk,σk(s)
∑
a

πµ,σk(a|s) 1

σ2
k

[
1

σ2
k

(a− µ)(a− µ)T − I
]
Aµk,σk(s, a).

Note that the advantage function |Aµ,σ(s, a)| ≤ Ā for any s, a, µ and σ. In consideration of

Assumption 3.1, the triangle inequality and the consistency of the matrix norm, we have

‖∇2
µLµk,σk(µ, σk)‖

≤
∑
s

ρµk,σk(s)
∑
a

πµ,σk(a|s) 1

σ2
k

[
1

σ2
k

(a− µ)T (a− µ) + ‖I‖
]
|Aµk,σk(s, a)|

≤
∑
s

ρµk,σk(s)
Ā

σ4
Eµ,σk [(a− E(a))T (a− E(a))] +

∑
s

ρµk,σk(s)
Ā

σ2
‖I‖

=
1

1− γ
Ā

σ2
(dim(A) + ‖I‖).

The last equality follows from the fact that, for the multi-dimensional Gaussian distribution

with diagonal and scalar variance matrix, the expectation

Eµ,σ[(a− E(a))T (a− E(a))] = σ2dim(A),

where A is the action space.

The next lemma shows that the solution of the subproblem (3.12) provides a lower bounded

model improvement.

Lemma 3.4. Suppose that Assumptions 3.1− 3.2 hold. The maximizer of (3.12) satisfies that

Lµk,σk(µk+1, σk)− Lµk,σk(µk, σk) ≥ ‖gk‖2 min

(
1

2hk
,
σ
√
δk

2‖gk‖

)
, (3.14)

where gk = ∇µLµk,σk(µk, σk).

Proof. Take µck+1 := µk+τgk, where τ ∈ (0, σ
√
δk

‖gk‖ ]. Then we have µck+1 ∈ Bk and the Taylor

expansion of Lµk,σk with Lagrange’s form of the remainder indicates that

Lµk,σk(µck+1, σk) =Lµk,σk(µk, σk) + τ‖gk‖2 +
1

2
τ2
〈
gk,∇2Lµk,σk(µ̂k+1)gk

〉
≥Lµk,σk(µk, σk) + (τ − 1

2
τ2hk)‖gk‖2, (3.15)
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where µ̂k+1 ∈ Bk lies between µk and µck+1. If 1
hk
≤ σ

√
δk

‖gk‖ , by taking τ = 1
hk

, we can obtain

Lµk,σk(µck+1, σk)− Lµk,σk(µk, σk) ≥ ‖gk‖
2

2hk
. (3.16)

Otherwise 1
hk

> σ
√
δk

‖gk‖ , we set τ = σ
√
δk

‖gk‖ and get

Lµk,σk(µck+1, σk)− Lµk,σk(µk, σk) ≥ σ
√
δk‖gk‖ −

1

2
σ2δkhk ≥

1

2
σ
√
δk‖gk‖. (3.17)

It follows from (3.16) and (3.17) that at the point µck+1,

Lµk,σk(µck+1, σk)− Lµk,σk(µk, σk) ≥ ‖gk‖2 min

(
1

2hk
,
σ
√
δk

2‖gk‖

)
, (3.18)

which completes the proof. �

Then we show a lower bound of the trust region ratio.

Lemma 3.5. Suppose that Assumptions 3.1 and 3.2 hold. The ratio defined in (3.2) satisfies

that

rk ≥ 1−
8Āγδ2

k max( ‖gk‖
σ
√
δk
, hk)

p2
0(1− γ)2‖gk‖2

, (3.19)

where p0 = min
s
ρ0(s) and Ā = max

s,a,µ,σ
|Aµ,σ(s, a)|.

Proof. The explicit formulation of the ratio yields

rk =
η(µk+1, σk+1)− η(µk, σk)

Lµk,σk(µk+1, σk+1)− Lµk,σk(µk, σk)

=
η(µk+1, σk+1)− Lµk,σk(µk+1, σk+1) + Lµk,σk(µk+1, σk+1)− η(µk, σk)

Lµk,σk(µk+1, σk+1)− Lµk,σk(µk, σk)

≥
− 4Āγδ2k
p20(1−γ)2

+ Lµk,σk(µk+1, σk+1)− Lµk,σk(µk, σk)

Lµk,σk(µk+1, σk+1)− Lµk,σk(µk, σk)

≥1− 4Āγδ2
k

p2
0(1− γ)2‖gk‖2 min

(
1

2hk
, σ
√
δk

2‖gk‖

)
≥1−

8Āγδ2
k max( ‖gk‖

σ
√
δk
, hk)

p2
0(1− γ)2‖gk‖2

, (3.20)

where the first inequality follows from [29, Theorem 1] and η(µk, σk) = Lµk,σk(µk, σk), and the

second inequality is derived from Lemma 3.4 and Assumption 3.1. �

Finally, we establish our main convergence result. Ideally, the optimal policy is deterministic,

as well as the optimal Gaussian policy, i.e., the mean vector is the optimal action at each state

and the standard deviation is zero. It implies that the best action is usually grasped by the mean

parameter and the standard deviation plays a role in exploration. Meanwhile, zero variance

also induces unbounded values in both numerical experiment and theoretical analysis. Hence,

in practice, we only care the learn of the mean vector and make the final standard deviation

small enough. Therefore, we concentrate on the behavior of ‖∇µη(µ, σ)‖.
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Theorem 3.2. Suppose that Assumptions 3.1 and 3.2 hold and {(µk, σk)} is the sequence gen-

erated by the trust region method. Then we have the following conclusions.

1. The limit inferior of the norm of gradient with respect to µ goes to zero, i.e.,

lim inf
k→∞

‖∇µη(µk, σk)‖ = 0.

2. Suppose that the gradient ∇µη(µ, σ) is Lipschitz continuous with respect to µ and σ,

respectively. If the standard deviation vector σk converges to σ∗, i.e. lim
k→∞

σk = σ∗, then

we have

lim
k→∞

‖∇µη(µk, σ
∗)‖ = 0.

Remark 3.1. The second conclusion indicates that supposing the standard deviation converges

to σ∗, then the mean vector converges to the optimal mean with respect to σ∗. In other words,

the algorithm converges in the space of the Gaussian policy and the converged mean vector is

close to the optimal action if σ∗ is small enough.

Proof. We prove the first statement by contradiction. Suppose that we can find ε > 0 and

K ∈ N such that

‖∇µη(µk, σk)‖ = ‖gk‖ ≥ ε, ∀k > K. (3.21)

Combining (3.21) with the result in Lemma 3.5, we have

rk ≥ 1−
8Ākγδ

2
k max( ‖gk‖

σ
√
δk
, hk)

p2
0(1− γ)2‖gk‖2

≥ min

(
1−

8Āγδ
3
2

k

p2
0(1− γ)2‖gk‖σ

, 1− 8Āγδ2
kh

p2
0(1− γ)2‖gk‖2

)

≥ min

(
1−

8Āγδ
3
2

k

p2
0(1− γ)2εσ

, 1− 8Āγδ2
kh

p2
0(1− γ)2ε2

)

Take

δ̄ = min

((
p2

0(1− β1)(1− γ)2σ̄ε

8Āγ

) 2
3

,

(
p2

0(1− β1)(1− γ)2ε2

8Āγh

) 1
2

)
.

It follows that for each δk ≤ δ̄, the ratio rk ≥ β1. According to the update rule (3.4), we have

δk ≥ min(δK , γ2δ̄), ∀k > K. (3.22)

Now, we claim that rk ≥ β1 occurs infinite many time. Otherwise, we can find K1 > K such

that for any k > K1, rk < β1 and δk > δk+1, which conflicts with (3.22). Therefore, we can

obtain for ∀k > K and rk ≥ β0,

η(µk+1, σk+1)− η(µk, σk) = rk (Lµk,σk(µk+1, σk+1)− Lµk,σk(µk, σk))

≥ rk (Lµk,σk(µk+1, σk)− Lµk,σk(µk, σk))

≥ β0‖gk‖2 min

(
1

2h
,
σ
√
δk

2‖gk‖

)
≥ β0 min

(
ε2

2h
,
σε
√
δk

2

)
,
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where the first inequality is due to the definition of the trust region ratio, the second inequality

comes from the update rule of σ (3.13) and the third inequality is from Lemma (3.4). Since η

is continuous and upper bounded, we have δk → 0 as k →∞ which contradicts to (3.22).

In order to construct a contradiction for the second statement, we assume that there exists

some ε > 0 such that ‖gki‖ ≥ 2ε, where {ki} is a subsequence of successful iterates. Denote the

indices of all successful iterates by M. From the first statement and its proof, we can obtain

another subsequence of M, denoted by {ti}, where ti is the first successful iterate such that

ti > ki and ‖gti‖ ≤ ε. Let Q = {q ∈ M|ki ≤ q < ti, for some i = 1, 2, ...}. Then for any q ∈ Q
we have

η(µq+1, σq+1)− η(µq, σq) ≥ β0 min

(
ε2

2h
,
σε
√
δq

2

)
.

Obviously, the sequence {η(µk, σk)}k∈M is monotonically increasing and upper bounded. Hence,

we obtain

lim
q∈Q
q→∞

δq = 0, lim
q∈Q
q→∞

η(µq, σq) = η∗.

Without loss of generality, we can assume
σ
√
δq

2 ≤ ε
2h for all q ∈ Q. Then for each i, we have

η∗ − η(µki , σki) ≥ η(µti , σti)− η(µki , σki)

≥
∑
q∈Q,

ki≤q<ti

β0

σε
√
δq

2
≥ β0σε

2σ̄

∑
q∈Q,

ki≤q<ti

‖µq+1 − µq‖ ≥
β0σε

2σ̄
‖µti − µki‖,

where σ̄ is a upper bound of each element in σk which exists due to the convergence of σk.

Thus, we derive ‖µti−µki‖ → 0, and consequently ‖gti−gki‖ → 0, which yields a contradiction

to ‖gti − gki‖ ≥ ε because of the definitions of {ki} and {ti}. It concludes that

lim
k→∞

‖∇µη(µk, σk)‖ = 0.

Then we have

‖∇µη(µk, σ
∗)‖ ≤ ‖∇µη(µk, σ

∗)−∇µη(µk, σk)‖+ ‖∇µη(µk, σk)‖ → 0,

where the first term goes to zero due to the convergence of σk and the Lipschitz continuity of

∇η. �

In conclusion, we establish the global convergence for trust region method in unparameter-

ized case, and prove that the Gaussian policy class for continuous environments converges to

the stationary point. Although the optimal Gaussian policy is supposed to be deterministic,

we make an assumption on the lower bound of the variance of the policy due to the analytical

and numerical issues. If the the limit of the variance is small enough, then Theorem 3.2 implies

that the trust region method converges. In [22], a linear expected regret is proved in TRPO.

Actually, this is consistent with our conclusions. The automatic adjustment of the trust region

radius, rather than fixed radius in TRPO, is the basis of the convergence of the trust region

method.

4. A Stochastic Trust Region Algorithm

The functions discussed before are constructed with expectations and they have to be esti-

mated using sample averages in practice. To be consistent with the notations above, we add a
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hat to represent the corresponding estimated value, such as η̂, L̂θk and so on. Essentially, the

optimization in Algorithm 4.1 is constructed with these estimated functions. In consideration

of the uncertainty and fluctuations caused by the samples, we develop a stochastic version of

Algorithm 4.1 in the following discussion.

4.1. Sample Collection and Advantage Estimation

The original objective function η(θ) denotes the expectation of the cumulative discounted

rewards over a trajectory generated by the policy πθ. Practically, we simulate N interactions

with the environment from policy πθk to generate τ complete trajectories whose total rewards are

denoted as {Ri}τi=1, using Algorithm 4.1. All visited states and actions during the interactions

are gathered into a set of sample pairs Bθk = {(si, ai)}Ni=1 for estimation. The averaged total

reward of these trajectories:

η̂(θk) =
1

τ

τ∑
i=1

Ri (4.1)

is called as an empirical estimation of η(θk). The sample standard deviation

σ̂η(θk) =

√√√√ 1

τ − 1

τ∑
i=1

(Ri − η̂(θk))2 (4.2)

characterizes the sample fluctuation near the mean value. The expectations can be approxi-

mated with respect to the samples as follows:

L̂θk(θ,Bθk) =η̂(θk) +
1

|Bθk |
∑

(s,a)∈Bθk

πθ(a|s)
πθk(a|s)

Âθk(s, a), (4.3a)

ĝk(θ,Bθk) =
1

|Bθk |
∑

(s,a)∈Bθk

∇πθ(a|s)
πθk(a|s)

Âθk(s, a), (4.3b)

D̂k(θ,Bθk) =
1

|Bθk |
∑

(s,a)∈Bθk

D(πθk(·|s), πθ(·|s)), (4.3c)

where the advantage estimator Âθk is constructed using the empirical reward and the value

network. We take a version of GAE as:

Âθk(s, a) = r(s, a) + γVφk(s′)− Vφk(s) + γλÂθk(s′, a′), (4.4)

where Vφ is the state value function parameterized by φ and s′ is the state after the transfer

from s and a. The hyper-parameter λ controls the trade-off between bias and variance. The

value network is trained by minimizing the error between the target value and the predicted

value:

φk+1 = arg min
φ

1

|Bθk |
∑

(s,a)∈Bθk

‖Vφk(s) + Âθk(s, a)− Vφ(s)‖2. (4.5)

Fitting such a value network as the baseline function is the same as the other policy-based

methods in deep reinforcement learning [15].
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Algorithm 4.1. SAMPLE(θ,N)

1: Bθ = ∅; τ = 0, Rτ = 0, t = 0; randomly initiate the state s0;

2: for i = 1, · · · , N do

3: if st is a terminal state then

4: τ = τ + 1; Rτ = 0, t = 0; randomly initiate the state s0;

5: else

6: perform one step at st using πθ(·|st) and obtain reward rt := r(st, at, st+1);

7: Rτ = Rτ + γtrt;

8: t = t+ 1;

9: Bθ ← Bθ ∪ (st, at);

10: end if

11: end for

12: η̂(θ) = 1
τ

∑τ
j=1Rj ;

13: return Bθ

4.2. Solving the Trust Region Subproblem

Empirically, the trust region model for policy optimization at the k-th iteration is

max
θ
L̂θk(θ,Bθk), s.t. D̂k(θ,Bθk) ≤ δk. (4.6)

It is worth noting that the policy distance function in (4.6) can be approximately treated as

a re-weighted matrix norm on parameters. In other words, it holds for any metric function D

and sample set B:

D̂k(θ,B) ≈ 1

2
(θ − θk)T∇2D̂k(θk, B)(θ − θk),

since D̂k(θ,B) ≥ 0, ∇2D̂k(θk, B) is semi-positive definite, and the first-order Taylor expansion

at θ = θk is equal to zero.

We now present a feasible stochastic method for solving (4.6) by sequentially generating

increasing directions using the CG algorithm. The process starts from θk,1 = θk. At the l-

th inner iteration, we randomly sample a subset bl ⊆ Bθk to obtain ĝk(θk,l, bl) and Ĥk(bl) =

∇2D̂k(θk, bl), and compute the direction

dl = Ĥ−1
k (bl)ĝk(θk,l, bl).

Then we update the parameter as

θk,l+1 = θk,l + αdl (4.7)

such that the following two conditions are satisfied:

L̂θk(θk,l+1, bl) ≥ L̂θk(θk,l, bl) + τdTl ĝk(θk,l, bl), and D̂k(θk,l+1, Bθk) ≤ δk, (4.8)

where τ ∈ (0, 1). The conditions in (4.8) ensure an improvement of L̂θk on bl and the constraint

in (4.6) holds at each step.

The theoretical analysis in Lemma 3.2 suggests that the improvement of Lθk is supposed to

be larger than (1− γ)δkA
∗
θk

. However, it is unaccessible in practice. Empirically, we terminate
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the iteration and denote the trial point θ̃k+1 := θk,l+1 once the following conditions hold:

|L̂θk(θk,l+1, Bθk)− L̂θk(θk,l, Bθk)|
1 + |L̂θk(θk,l, Bθk)|

≤ ε or
|Ent(θk,l+1, Bθk)− Ent(θk, Bθk)|

1 + |Ent(θk, Bθk)|
≥ ε, (4.9)

where ε > 0 is a small constant and Ent(θk, Bθk) is the sample-averaged entropy of the policy

πθk , i.e.,

Ent(θk, Bθk) =
1

|Bθk |
∑
s∈Bθk

H(πθk(·|s)) and H(p) = −
∫
p(x) log p(x)dx.

The entropy characterizes the randomness and the exploration ability of the policy. Under

the random circumstances, the policy inadvertently collapses on the best observed action with

respect to the estimated advantage value which may be significantly wrong. Although the

distance constraint recedes this effect to some extent, the policy is driven to favor the best

actions it has visited, albeit slowly [1]. Based on these concerns, we take the second condition

in (4.9) to prevent excessively dependency on the advantage estimators and limited observations.

The pseudocode for solving (4.6) is outlined in Algorithm 4.2.

Algorithm 4.2. InnerSolu(θk,δk,Bθk ,ξ,τ)

1: θk,1 = θk;

2: for l = 1, 2, ... do

3: randomly sample data bl ⊆ Bθk ;

4: compute ĝk(θk,l, bl) and Ĥk(bl) by (4.3);

5: compute dl = Ĥ−1
k (bl)ĝk(θk,l, bl) using the CG algorithm;

6: set θk,l+1 = θk,l + αdl such that (4.8) holds;

7: if l % l0 = 0 then

8: If (4.9) holds, break;

9: end if

10: end for

11: return θ̃k+1 = θk,l+1

4.3. Alternating Strategy For Gaussian Policy

For continuous action spaces, the multivariate Gaussian distribution is adopted in many

cases. The neural network whose weight is denoted as θµ maps from state to the mean of the

Gaussian distribution, µ(s; θµ). The covariance matrix is assumed to be a diagonal matrix.

Namely, we take a state-independent vector θσ to represent the log-standard deviations in-

stead of the standard deviations, since the log-standard deviations are free to take values from

(−∞,∞). Therefore, the policy is characterized by the Gaussian distribution

πθ(·|s) ∼ N(µ(s; θµ),diag(exp(2θσ))), ∀s ∈ S,

where θ = (θµ, θσ). It can be verified that the action can be characterized as:

a = µ(s; θµ) + exp(θσ)� ε, ε ∼ N(0, I), (4.10)

where � is the element-wise product of two vectors. Ideally, the optimal Gaussian policy is

supposed to be deterministic, that is, the mean is the optimal action and the covariance is zero.
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As shown in (4.10), the covariance term affects the exploration of the samples as well as

the quality of the optimization. An optimistic situation is that the log-standard deviations

gradually decreases with the iterative process and is finally controlled by a lower bound, since

extremely small covariance is undesirable for numerical stability in practice. In order to reduce

the interactions between the mean and log-standard deviations in optimization and regulate the

decay of the log-standard deviations more precisely, we can approximately solve the trust region

problem (4.6) by alternating the update with respect to the mean and log-standard deviations

independently. For the mean parameter, we formulate the trust region model as follows:

max
θµ

L̂θk (θ = (θµ, θσk ), Bθk) , s.t. D̂k(θ,Bθk) ≤ δk, (4.11)

As we assumed in the theoretical analysis, the update of the log-standard deviations is supposed

to monotonically improve Lθk and ensure that the new policy is close to the current policy. For

simplicity, we can update θσ by approximately solving

max
θσ

L̂θk

(
θ = (θ̃µk+1, θ

σ), Bθk

)
, s.t. ‖θσk − θσ‖∞ ≤ Āk, (4.12)

where θ̃µk+1 is the solution of (4.11). Then we denote the solution of (4.12) as θ̃σk+1 and the

trial point θ̃k+1 = (θ̃µk+1, θ̃
σ
k+1).

Essentially, the infinite norm constraint controls the distance between two Gaussian policies

and plays a similar role in regulating the entropy loss for the Gaussian policy since

Ent(θk, Bθk) = 1T θσk +
n

2
(1 + log 2π),

where n is the dimension of the action space. We can take the bound Āk related to the entropy

of the current policy, i.e., εk ∝ |Ent(θk, Bθk)|. The subproblem (4.11) is solved by following the

process in Algorithm 4.2, while the solution of the subproblem (4.12) is approximated using

the projected gradient method. In our experiments, we find that the alternative update for

the Gaussian policy is helpful in releasing the log-standard deviations from the extreme decline

caused by the estimations and encouraging the mean parameter to update toward the accurate

optimal actions.

4.4. Algorithmic Development

According to the Algorithm 3.1, if the iteration is successful, we exploit the samples for

testing θ̃k+1 in the next iteration without additional simulations. However, once a rejection of

θ̃k+1 arises, the policy remains unchanged, i.e., θk+1 = θk. Apparently, the samples in Bθk can

be used to construct the trust region model (4.6) in the next iteration. In such a situation,

apart from updating the trust region radius δk using (3.4), we simulate another N sample pairs

from πθk+1
and merge it with Bθk to be Bθk+1

. Thereby after a rejection, the sample size is

enlarged and the estimations are supposed to be more accurate. Ideally, when the sample size

is sufficiently large and the trust region gets small enough, an acceptance is very likely to occur

with high probability. In consideration of data storage, once the sample size reaches an upper

limit Nmax after several consecutive rejections, a mandatory acceptance is enforced such that

the best performed policy among the last few rejected iterations is taken as the next iteration:

(θk+1, Bθk+1
) = arg max

(z,Tz)∈H
η̂(z), (4.13)
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where H is the set of rejected iterations and Tz is the sample set with respect to the policy πz.

Undesirably, the landscape of η becomes much more noisy in low-sampled regime as the

training progresses [15]. More seriously, the total expected rewards η(θk) and η(θ̃k+1) are

estimated from different sample sets, which is different from that of the general deep learn-

ing problems. These challenges make the estimations to be accompanied with large variance.

Therefore, we take the sample standard deviation into the ratio (3.2) for empirical stability:

rk =
η̂(θ̃k+1)− η̂(θk)

σ̂η(θk) + L̂θk(θ̃k+1, Bk)− L̂θk(θk, Bk)
. (4.14)

As a generalization of the standard ratio in trust region methods, this revision checks the

agreement between the objective function and surrogate function in a confidence interval.

In view of the oscillations under sampling, a small negative ratio is permitted in acceptance.

Namely the update criterion for θk+1 is modified from (3.3) as:

θk+1 =


θ̃k+1, rk ≥ 0 > β0,

θk, rk ≤ β0 and |Bθk | < Nmax,

θ̂k+1, otherwise.

(4.15)

We select the trust region radius depending linearly on the norm of the gradient [37], i.e.,

δk = µk‖gk(θk)‖. The adjustment of the coefficient µk is based on the ratio as:

µk+1 =


min(γ1µk, µmax), rk ≥ β1,

max(γ2µk, µmin), rk ∈ [β0, β1),

max(γ3µk, µmin), otherwise,

(4.16)

where β1 ≥ 0 > β0 and µmax > µmin > 0. The empirical algorithm is summarized in Algorithm

4.3.

Algorithm 4.3. STRO

Require: Set µ0, θ0, φ0, N , Nmax, σ, τ .

1: k = 0, Bθk = SAMPLE(θk, N), H = ∅;
2: while stopping criterion not met do

3: compute a trial point θ̃k+1 = InnerSolu(θk, δk, Bθk , σ, τ);

4: Tθ̃k+1
= SAMPLE(θ̃k+1, N);

5: compute the ratio rk via (4.14);

6: update µk+1 by (4.16);

7: if rk ≥ β0 then

8: θk+1 = θ̃k+1 and Bθk+1
= Tθ̃k+1

;

9: else if |Sk| < Nmax then

10: θk+1 = θk and Bθk+1
= SAMPLE(θk+1, N) ∪Bθk ;

11: H = H ∪ {(θ̃k+1, Tθ̃k+1
)};

12: else

13: update (θk+1, Bθk+1
) by (4.13); H = H \ {(θk+1, Bθk+1

)};
14: end if

15: update φk by (4.5);

16: k = k + 1;

17: end while
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5. Experiments

To investigate the effectiveness and robustness of our stochastic trust region method for

policy optimization among the state-of-the-art deep reinforcement learning algorithms, we make

a comprehensive comparison using OpenAI’s Baselines [7] and Spinningup1). The discrepancy

between the implementations in these two repositories are primarily in the preprocessing of

the environments and the structure of the networks. In Baselines, some additional wrappers

are included for normalizing the environment informations and the size of the networks varies

for the algorithms, while in Spinningup the observations and the reward function are taken

from the environments directly and the acquiescent network architecture is shared among the

methods. As an on-policy algorithm, we compare our method with TRPO and PPO on a

range of continuous control tasks and Atari game playings using the benchmark suite OpenAI

Gym. In order to facilitate comparisons, we take the distance function in our method as the

KL divergence since it is differentiable and is commonly used. We should point out that there

is a gap between the implemented PPO in Baselines and the theoretical algorithm in [31]. Ilyas

et al. [15] state that, the optimization which is not part of the core algorithm develop the

practical success of PPO to a large extent and the theoretical framework might be negligible

in practice. To study the learning capability of the policy-based and values-based methods,

we take a comparison with DDPG, TD3, and soft actor-critic (SAC) method [12] which is an

energy-based off-policy algorithm. They are known to perform well in continuous controls at

the expense of large interactions and long training time. Since these methods are incapable to

handle discrete problems directly, we only compare with them in continuous tasks.

5.1. Continuous Controls

We test nine representative robotic locomotion experiments using the simulator MuJoCo2)

in Gym. The problem is simulating a robot to win highest returns with fluent and safe move-

ments. The unknown dynamics, non-smooth reward shape and the high dimensionality make

the problems being challenging.

For these continuous tasks, we use the Gaussian distribution to characterize the conditional

probability πθ(a|s). As we described in section 4.3, the policy is defined by the normal distri-

bution N(µ(s; θµ),diag(exp(2θσ))). The mean function µ(·; θµ) is parameterized by a neural

network with tanh units. Moreover, for the value network where the parameter is denoted as φ,

we use the same architecture as the mean function except that the dimension of the last layer

is one. We update the parameter θ = [θµ, θσ] by the alternative models in (4.11) and (4.12),

and train the value network using the Adam [18] method simultaneously.

During our experiments, we take N = 2048 for each simulation and set the initial trust region

coefficient µ0 = 0.05, the adjustment factors γ1 = 2, γ2 = 0.8, γ3 = 0.6, µmax = 0.1 and µmin =

0.01. Empirically, the trial point is accepted once η(θ̃k+1) > η(θk), i.e., β1 = 0. The compulsive

acceptance takes place after four consecutive rejections. Fig. 5.1 presents the training curves

over these environments in Baselines. Each task is run for one million time steps over five

random seeds of the network initialization and Gym simulator. The horizontal and vertical axes

are training time steps and the empirical total expected rewards, respectively. The solid curves

represent the mean values of five independent simulations and the shaded areas correspond to

the standard deviation. Table 5.1 summaries the maximal averaged return and a single standard

1) An educational resource produced by OpenAI, https://spinningup.openai.com.
2) http://www.mujoco.org.
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Fig. 5.1. Training curves on MuJoCo-v2 continuous control benchmarks under Baselines.

deviation over five trials. A higher maximal average return indicates that the algorithm has

ability to capture the better agent. We find that our method outperforms or matches TRPO

and PPO in almost the same amount of time over all experimented environments.

Table 5.1: Max Average Reward ± standard deviation over 5 trials of 1e6 time steps under Baselines.

The last column lists the average running time of these three methods.

Env PPO TRPO STRO Time(min)

HalfCheetah 1816±798 1406±390 2985±491 36\35\54

Reacher -5±1 -3±0 -4±0 34\38\53

Swimmer 94±18 97±24 117±9 36\43\46

Hopper 2475±91 3591±107 3463±81 35\43\48

Walker2d 3681±794 3935±936 5849±2063 39\43\51

InvPend 1000±0 1000±0 1000±0 41\33\49

InvDoubPend 9328±1 9340±7 9346±3 43\36\49

Ant 793±206 666±79 1512±101 43\43\46

Humanoid 679±64 627±11 784±36 47\44\ 56
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Fig. 5.2. Training curves on MuJoCo-v2 continuous control benchmarks with Spinningup.

As the recent studies [13, 15] demonstrate that the experimental techniques in the envi-

ronment wrappers, such as observation normalization, reward clipping, etc., have a dramatic

effect on the numerical performance, we make another comparison in Spinningup where no

extra modification is applied in the environments and the network structure is shared among

all algorithms. From the results in Fig 5.2, our algorithm still surpass TRPO and PPO on

most experiments as in Baselines. Because the implementations are slightly different between

Baselines and Spinningup, the values of the average reward in Fig 5.1 and Fig 5.2 are different

in some tasks, even for the same algorithm. Generally, as illustrated in Table 5.1, our method

takes around 50 minutes in Baselines for each task over one random seed on average, slightly

slower than PPO and TRPO.

We now compare with DDPG, TD3 and SAC. For these methods, in addition to the one

million time steps for deterministic evaluation, i.e., no noise in sampling, they require another

several million interactions for training which may take about several hours, and even longer

in complex problems. In other words, the empirical convergence rate of these methods is much

slower than that of policy-based methods. Due to the remarkable difference in the computational

time among these algorithms, we compare their learning ability within a specified time. Since
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Fig. 5.3. One hour training curves on MuJoCo-v2 continuous control benchmarks under SpinningUp.

there is no standard implementation of TD3 and SAC in Baselines as a benchmark, we take

the comparisons in Spinningup and terminate the algorithms after one hour training. We

test these methods on nine robotic locomotion experiments. Specifically, the numerical results

on Swimmer, Ant and Humanoid are reported in Fig 5.3. Our method is always better

than DDPG on most environments except in HalfCheetah. Moreover, in some problems our

algorithm can surpass SAC and TD3, and in others it is slightly inferior than the best performed

method. The comparisons demonstrate that our method is comparable with state-of-the-art

deep reinforcement learning algorithms under such time constraint. Notably, for the other three

methods, the simulations are deterministic which has inherent advantages compared to ours,

sometimes even significant.

Table 5.2: Max Average Reward ± standard deviation over 5 trials of 1e7 time steps.

Environment PPO TRPO STRO

BeamRider 3113±375 760±30 3836±903

Bowling 61±11 58±18 81±18

FishingDerby 11±18 -82±2 25±0

MsPacman 2037±153 1538±159 2558±442

Pong 19±0 3±7 20±0

Seaquest 1100±317 692±92 1396±398

SpaceInvaders 965±108 540±20 1010±81

PrivateEye 100±0 88±16 100±0

Freeway 30±0 28±3 31±0

5.2. Discrete Control

To evaluate our method on discrete problems, we randomly test 9 Atari games which have

partially observed states in the form of images and discrete action spaces. The complex obser-

vations, high dimensionality, delayed reward and many other challenging elements make them

to be extremely tough to learn. Different from the robotic locomotion experiments, the game

images are preprocessed and feed into a convolutional neural network with softmax operator

in the last layer to represent a categorical policy. The value network has a similar structure as

the policy network except the dimension of the output. Our method is implemented in Base-

lines, and the network architecture is the same as the one in PPO. For all tested games, we

take N = 2048 for each simulation and initialize the trust region coefficient µ0 = 0.01. We set
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Fig. 5.4. Training curves on Atari games over 16 parallel programmings.

µmax = 0.5 and µmin = 0.005. The maximal average return over 100 episodes on several games

is reported in Table 5.2, and the learning curves are plotted in Fig 5.4 to illustrate the gener-

alization of our method. Generally, our algorithm reaches higher or almost the same average

reward in all tested environments.

6. Conclusion

We propose a stochastic trust-region framework for policy optimization and a decoupled up-

date for the Gaussian policy to avoid premature convergence. For the unparameterized policies,

we prove the global convergence of the proposed algorithm under mild and feasible assumptions.

Moreover, in the parameterized case, we show that the mean of the Gaussian policies converges

to the stationary point where the covariance of the policies is assumed to converge. In robot-

ic locomotion using a general-purpose policy network, we successfully learn better controllers

than PPO and TRPO. Our method is able to surpass DDPG in most tested environments

under given time constraints. Meanwhile, we show that our algorithm is comparable with the

start-of-the-art deep reinforcement learning methods, such as TD3 and SAC. Our method is

also suitable for discrete tasks such as playing some Atari games, and it can outperform PPO
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and TRPO in quite a few tasks.
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