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Abstract. In this paper, a two-grid block-centered finite difference method for the in-
compressible miscible displacement in porous medium is introduced and analyzed,
which is to solve a nonlinear equation on coarse mesh space of size H and a linear
equation on fine grid of size h. We establish the full discrete two-grid block-centered
finite difference scheme on a uniform grid. The error estimates for the pressure, Darcy
velocity, concentration variables are derived, which show that the discrete L2 error
is O(∆t+h2+H4). Finally, two numerical examples are provided to demonstrate the
effectiveness and accuracy of our algorithm.
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1 Introduction

In this paper, we consider the incompressible miscible displacement in porous media [1–
3] 

∇·u=q(x,t), x∈Ω, t∈ J,

u=−κ(x)
µ(c)
∇p, x∈Ω, t∈ J,

ϕ(x)
∂c
∂t

+∇·(uc)−∇·(D∇c)= c̃q, x∈Ω, t∈ J.

We assume that Ω is a rectangular domain in R2, t∈ J = (0,T], and T denotes the final
time. The concentration is denoted by c(x,t), p(x,t) is the fluid pressure, and u=(u1,u2)T

is Darcy velocity of the fluid, κ(x) and ϕ(x) represent the permeability and porosity of
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the porous medium, respectively. µ(c) is the concentration dependent viscosity. The
function c̃ is the concentration of the same component as measured by c in the injected
fluid, which must be specified whenever injection is taking place, and it will be assumed
that c̃= c, when the fluid is being produced, q is the external flow rate at wells.

For the sake of simplicity, let a(c) = κ(x)/µ(c), D = ϕdm I = λI, and w = (wx,wy) =
uc−D∇c=uc−λ∇c, where dm is the molecular diffusivity, I is the second order identity
matrix. Then the question may be equivalently written in the form:

∇·u=q(x,t), x∈Ω, t∈ J, (1.1a)
u=−a(c)∇p, x∈Ω, t∈ J, (1.1b)

ϕ(x)
∂c
∂t

+∇·w= f (c̃), x∈Ω, t∈ J, (1.1c)

w=uc−λ∇c, x∈Ω, t∈ J, (1.1d)

where f (c̃)= c̃q.
We consider the following boundary condition and initial condition for the problem:

u·n=0, x∈∂Ω, t∈ J, (1.2a)
(λ∇c)·n=0, x∈∂Ω, t∈ J, (1.2b)
c|t=0= c0, x∈Ω, (1.2c)

where n is the unit outward normal vextor to ∂Ω, the compatibility condition and the
uniqueness condition are as follows ∫

Ω
p(x)dx=0. (1.3)

For problem (1.1a)-(1.3), we consider the following smoothness hypotheses (H):

(1) The funtions a(c),b(c),λ are bounded, And, there exist positive constants a0, a1, b0,
b1, λ0, λ1, such that

0< a0≤ a≤ a1, 0<b0≤b≤b1, 0<λ0≤λ≤λ1.

(2) The second derivative of f , q are continuously bounded in Ω× J, f , a is Lipschitz-
continuous corresponding to variable c. The function ϕ is continuous, there exist a
positive constant ϕ0, such that ϕ≥ ϕ0>0.

(3) p∈L∞(J;W4
∞(Ω)), u∈C1(J;W1

∞(Ω))2, c∈W2
∞(J;W4

∞(Ω)).

People have been interested in efficient oil exploitation and improving the utilization
of groundwater resource for a long time. Two-phase flow and transportation of fluids
in porous media play a vital role in both theoretic and applicative aspects in groundwa-
ter contamination or petroleum engineering. The incompressible miscible displacement
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problem in porous media is a large nonlinear system, so we want to study highly effi-
cient and highly accurate numerical schemes to improve the numerical computational
efficiency.

As we know, the block-centered finite difference method, sometimes called cell-
centered finite difference method, is a simple but effective method. It can be considered
as the lowest order Raviart-Thomas mixed element method in [4], with proper quadra-
ture formulation. In [5], Wheeler presented on convergence of block-centered finite dif-
ference for elliptic problem. Moreover, the mixed finite elements for elliptic problems
with tensor coefficients as cell-centered finite differences was considered in [6]. In [1],
Lui proofed Convergence of the block center finite difference scheme for two-phase flow
in porous media. Then, Rui had done many research about the block-centered finite dif-
ference in [7–9].

The two-grid method is a quite effective method to solve the nonlinear equations.
This method was introduced by Xu in [10,11]. And Layton studied the nonlinear bound-
ary value problems by two-grid method in [12]. Nonlinear parabolic equations with this
method are considered in [13]. Many people are attracted to do research about two-grid
techniques with the finite element, discontinuous Galerkin methods, and mixed element,
for example, in [14–17]. Moreover, the two-grid method is presented and analyzed in
the work of Chen [18–21] for miscible displacement problem. The basic process of two-
grid method is to solve a nonlinear equation on coarse mesh space of size H and a linear
equation on fine grid of size h.

All in all, the two-grid block-centered finite difference method concludes the advan-
tages of the block-centered finite difference method and the two-grid method, which can
not only solve the nonlinear problem efficiently and accurately, but also make the numer-
ical results of the problem reach the second-order convergence accuracy. In addition, the
two-grid block-centered finite difference method is applied to many problems [22, 23],
for example, the Darcy-Forchheimer model and the non-Fickian flow model. There is
no two-grid block-centered finite difference methods for the incompressible miscible dis-
placement in porous medium, therefore we propose the corresponding algorithm in this
paper. By using this method, we establish the full discrete two-grid block-centered finite
difference scheme on a uniform grid and prove the error estimates for the pressure, Darcy
velocity, concentration variables. Some numerical examples are carried out to check the
accuracy and efficiency of the method. The convergence rates for the pressure and ve-
locity in discrete L2 norms are second-order under the conditions h=O(H2), which are
consistent with the numerical analysis. Moreover, we also give the numerical examples,
compared with the nonlinear implicit scheme, the efficiency and accuracy of the two-grid
block-centered finite difference method are illustrated.

The paper is organized as follows. In Section 2, we give some notations and lemmas.
In Section 3, we give the two-grid block-centered finite difference algorithm. Then in
Section 4, we present the error estimates for the two-grid block-centered finite difference
method. Finally in Section 5, Two numerical examples of the two-grid block-centered
finite difference scheme are drawn.
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Through out the paper we use M, with or without subscript, to denote a positive
constant, which could have different values at different appearances.

2 Some notation and lemmas

Firstly, we define some notations. Let N>0 be a positive integer. Set ∆t=T/N, tn =n∆t,
for n≤N, ∆tn=tn−tn−1, ∆t=maxn ∆tn. For simplicity in constructing the finite difference
algorithm, we suppose that the domain Ω is a rectangular, Ω=[dx

1 ,dx
2 ]×[d

y
1,dy

2].
Let Lp(Ω) be the standard Banach space with norm

‖v‖Lp(Ω)=

(∫
Ω
|v|pdΩ

)1/p

.

For the sake of simplicity, let (·,·) denote the L2(Ω) inner product. And let Wk
p(Ω) be the

standard Sobolev space
Wk

p(Ω)={g :‖g‖Wk
p(Ω)<∞},

where

‖g‖Wk
p(Ω)=

(
∑
|α|≤k
‖Dαg‖p

Lp(Ω)

)1/p

.

Let
S=L2(Ω) and V=H(Ω,div)={v∈ (L2(Ω))d, ∇·v∈L2(Ω)}.

And V0 is denoted as the subspaces of V containing functions with normal traces equal
to 0.

Let zh be the quasi-uniform partition of Ω into rectangles in two dimensions with
mesh size h. The lowest-order Raviart-Thomas-Nédélec (RTN) space on rectangles [4,24]
is considered. Thus, on an element D∈zh, we have

Vh(D)={(α1x+β1, α2y+β2)
T : αi, βi∈R, i=1,2},

Sh(D)={α : α∈R}.

To construct the two-grid algorithm we have to define a coarse partition and a fine par-
tition of Ω simultaneously. First we define the fine grid Ωh in detail. The notations are
similar to those in [5]. The fine partition Ωh =δx

h×δ
y
h for Ω is as follows:

δx
h : dx

1 = x1/2< x3/2< ···< xNh
x−1/2< xNh

x+1/2=dx
2 ,

δ
y
h : dy

1 =y1/2<y3/2< ···<yNh
y−1/2<yNh

y+1/2=dy
2.
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Figure 1: An example of mesh partition.

For i=1,··· ,Nh
x and j=1,··· ,Nh

y define

xi =(xi−1/2+xi+1/2)/2, yj =(yj−1/2+yj+1/2)/2,

hx
i = xi+1/2−xi−1/2, hy

j =yj+1/2−yj−1/2,

hx
i+1/2= xi+1−xi =(hx

i +hx
x+1)/2, hy

j+1/2=yj+1−yj =(hy
j +hy

j+1)/2,

h=max
i,j
{hx

i , hy
j }, Ωi,j =(xi−1/2,xi+1/2)×(yj−1/2,yj+1/2),

Ωi+1/2,j =(xi,xi+1)×(yj−1/2,yj+1/2), Ωi,j+1/2=(xi−1/2,xi+1/2)×(yj,yj+1).

Fig. 1 is the description of mesh construction and the nodes.
Let gi,j, gi+1/2,j, gi,j+1/2 denote g(xi,yj), g(xi+1/2,yj), g(xi,yj+1/2). Define the discrete

inner products and norms:

( f ,g)=
Nh

x

∑
i=1

Nh
y

∑
j=1

hx
i hy

j fi,jgi,j, ( f ,g)x =
Nh

x−1

∑
i=1

Nh
y

∑
j=1

hx
i+1/2hy

j fi+1/2,jgi+1/2,j,

( f ,g)y =
Nh

x

∑
i=1

Nh
y−1

∑
j=1

hx
i hy

j+1/2 fi,j+1/2gi,j+1/2, (v,r)TM =(vx,rx)x+(vy,ry)y.

Define

[dxg]i+1/2,j =(gi+1,j−gi,j)/hx
i+1/2, [dyg]i,j+1/2=(gi,j+1−gi,j)/hy

j+1/2,

[Dxg]i,j =(gi+1/2,j−gi−1/2,j)/hx
i , [Dyg]i,j =(gi,j+1/2−gi,j−1/2)/hy

j ,

[Dg]i,j =[Dxg,Dyg]Ti,j, dtgn =(gn−gn−1)/∆tn.
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Similarly to Ωh we define a coarse grid ΩH = δx
H×δ

y
H. Replacing hx, hy we use Hx, Hy to

denote the mesh sizes in x and y directions of the coarse grid, respectively. And similar
to [dxg], [Dxg], [dyg], [Dyg] we use [dx,H g], [Dx,H g], [dy,H g], [Dy,H g] to denote the finite
difference operators on the coarse grid. For the sake of simplicity, we do not give their
definitions in detail. For a discrete function, its norms and seminorms can also be defined
similarly on the coarse grid.

Then we present some lemmas as follow.

Lemma 2.1. Let pi,j, wx
i+1/2,j and wy

i,j+1/2 be any values such that wx
1/2,j=wx

Nx+1/2,j=wy
i,1/2=

wy
i,Ny+1/2=0, then we have

(p,Dxwx)=−(dx p,wx)x, (p,Dywy)=−(dy p,wy)y.

This lemma can be proven similar to [5].
Next the interpolant operator is defined, which is similar to that in [13]. For points

(x,y), set x∈[xi,xi+1], y∈[yj,yj+1], then, Πhc(x,y) can be defined as follow. For i=0,··· ,Nx,
j=1,··· ,Ny,

Πhc(x,y)=
(

ci,j

(
xi+1−x
xi+1−xi

)
+ci+1,j

(
x−xi

xi+1−xi

))(
yj+1−y
yj+1−yj

)
+

(
ci,j+1

(
xi+1−x
xi+1−xi

)
+ci+1,j+1

(
x−xi

xi+1−xi

))(
y−yj

yj+1−yj

)
.

For j=1,··· ,Ny, the two-point extrapolation is defined

Πhc(x1/2,yj)=
(2hx

1+hx
2)c1j−hx

1c2j

hx
1+hx

2
,

and by Taylor’s theorem, we can obtain that

|(Πhc−c)(x1/2,yj)|=O(h2).

For points (x,y), assuming x∈[x1/2,x1], y∈[yj,yj+1], then, Πhc(x,y) can be obtained as the
bilinear interpolant between c1,j, c1,j+1, Πhc(x1/2,yj), and Πhc(x1/2,yj+1). Then for these
points, we can evaluate that |Πhc−c|=Mh2 by interpolation theory. Moreover, for points
(x,y), such that x∈ [xNx ,xNx+1/2], y∈ [yj,yj+1] or x∈ [xi,xi+1], y∈ [y1/2,y1] or x∈ [xi,xi+1],
y∈ [yNy ,yNy+1/2], we can define Πhc(x,y) similarly. Lastly, by three-point extrapolantion,
we define Πhc(x1/2,y1/2) :

Πhc(x1/2,y1/2)=Πhc(x1,y1/2)+Πhc(x1/2,y1)−p1,1

=c1,1/2+c1/2,1−c1,1+Mh2.

We can easily get that
|(Πhc−c)(x1/2,y1/2)|≤Mh2
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by Taylor’s expansion. Hence, for points (x,y), assuming x ∈ [x1/2,x1], y ∈ [y1/2,y1],
Πhc(x,y) can be obtained as the bilinear interpolant between c1,1, Πhc1/2,1, Πhc1,1/2, and
Πhc1/2,1/2. We can define, Πhc1/2,Ny+1/2, ΠhcNx+1/2,1/2, ΠhcNx+1/2,Ny+1/2 similarly. And
in the other three corner regions, we can ge the same approximations. Thus the following
lemma is obtained.

Lemma 2.2. Suppose c is twice differentiable in space, then we can have the estimate that

‖Πhc−c‖∞≤Mh2.

3 Two-grid block-centered finite difference algorithm

The full discrete two-grid block-centered finite difference scheme for the nonlinear prob-
lem (1.1a)-(1.2c) is as follows:

[DxUx
h ]

n
i,j+[DyUy

h ]
n
i,j =qn

i,j, (3.1a)

[α(ΠhCx
h)]

n−1
i+1/2,j[U

x
h ]

n
i+1/2,j =−[dxPh]

n
i+1/2,j, (3.1b)

[α(ΠhCy
h)]

n−1
i,j+1/2[U

y
h ]

n
i,j+1/2=−[dyPh]

n
i,j+1/2, (3.1c)

ϕi,j[dtCh]
n
i,j+[DxWx

h ]
n
i,j+[DyWy

h ]
n
i,j =[ f (C̃)]ni,j, (3.1d)

[Wx
h ]

n
i+1/2,j =[Ux

h ]
n
i+1/2,j[ΠhCx

h ]
n
i+1/2,j−[λdxCh]

n
i+1/2,j, (3.1e)

[Wy
h ]

n
i,j+1/2=[Uy

h ]
n
i,j+1/2[ΠhCy

h ]
n
i,j+1/2−[λdyCh]

n
i,j+1/2, (3.1f)

Ci,j|t=0= c0, (3.1g)

where
α(c)=

1
a(c)

.

The condition (1.3) can be discretized as follows:

Nx

∑
i=1

Ny

∑
j=1

[Pn
h ]ij =0.

For the sake of simplicity, let
g=−λ∇c. (3.2)

Then the boundary and initial approximations can be discretized as follows:

[Ux
h ]

n
1/2,j =[Ux

h ]
n
Nx+1/2,j =0, 1≤ j≤Ny,

[Uy
h ]

n
i,1/2=[Uy

h ]
n
i,Ny+1/2=0, 1≤ i≤Nx,

[Gx
h ]

n
1/2,j =[Gx

h ]
n
Nx+1/2,j =0, 1≤ j≤Ny,

[Gy
h ]

n
i,1/2=[Gy

h ]
n
i,Ny+1/2=0, 1≤ i≤Nx,

[Ch]
0
i,j = c0,i,j, 1≤ i≤Nx, 1≤ j≤Ny.
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Noting Lemma 2.1, the question is equivalent to the mixed finite element problem
with discrete inner product. For Un

h ∈Sh, Pn
h ∈Vh, Cn

h ∈Sh, Wn
h ∈Vh,

(DxUx,n
h +DyUy,n

h ,s)=(∇·Un
h ,s)=(qn

h ,s), ∀s∈Sh, (3.3a)
(α(ΠhCn

h )U
n
h ,v)TM =(Pn

h ,∇·v), ∀v∈Vh, (3.3b)

(ϕdtCn
h ,s)+(∇·Wn

h ,s)=
(

f (C̃n
h ,s)

)
, ∀s∈Sh, (3.3c)

(Wn
h ,v)TM =(Un

h ΠhCn
h ,v)TM+(λCn

h ,∇·v), ∀v∈Vh. (3.3d)

The two-grid algorithm has two steps:
Step 1. On the coarse grid ΩH with mesh sizes Hx and Hy, we compute
{Un

H,Pn
H,Cn

H,Wn
H}N

n=1∈SH×VH×SH×VH to satisfy the following nonlinear system:

(∇·Un
H,s)=(qn

H,s), ∀s∈SH, (3.4a)
(α(ΠHCn

H)U
n
H,v)TM =(Pn

H,∇·v), ∀v∈VH, (3.4b)

(ϕdtCn
H,s)+(∇·Wn

H,s)=
(

f (C̃n
H,s)

)
, ∀s∈SH, (3.4c)

(Wn
H,v)TM =(Un

HΠHCn
H,v)TM+(λCn

H,∇·v), ∀v∈VH, (3.4d)

where the initial approximation C0
H = c0.

Step 2. On the fine grid Ωh with mesh sizes hx and hy, we compute {Un
h ,Pn

h ,Cn
h ,Wn

h }N
n=1∈

Sh×Vh×Sh×Vh to satisfy the following linear system:

(∇·Un
h ,s)=(qn

h ,s), ∀s∈Sh, (3.5a)
(A(ΠhCn

h )U
n
h ,v)TM =(Pn

h ,∇·v), ∀v∈Vh, (3.5b)

(ϕdtCn
h ,s)+(∇·Wn

h ,s)=
(

f (C̃n
h ),s

)
, ∀s∈Sh, (3.5c)

(Wn
h ,v)TM =(Un

h ΠhCn
h ,v)TM+(λCn

h ,∇·v), ∀v∈Vh, (3.5d)

where the initial approximation C0
h = c0, and

A(ΠhCn
h )U

n
h =α(ΠHCn

H)U
n
h +αc(ΠHCn

H)RHUn
H(C

n
h−ΠHCn

H), (3.6a)

Un
h ΠhCn

h =RHUn
HΠhCn

h +ΠHCn
H(RhUn

h−RHUn
H). (3.6b)

Here, we define the interpolant operator RHu = (Rx
Hux,Ry

Huy) which is similar to that
in [23]. For points (x,y), assuming x∈ [xi−1/2,xi+1/2], y∈ [yj,yj+1], then, Rx

Hux(x,y) can be
presented as the bilinear interpolant of ux

i−1/2,j, ux
i−1/2,j+1, ux

i+1/2,j, ux
i+1/2,j+1. Moreover,

we define Rx
Hux

i+1/2,1/2 by the two-point extrapolation of ux
i+1/2,1 and ux

i+1/2,2. For points
(x,y) such that x∈ [xi−1/2,xi+1/2], y∈ [y1/2,y1], Rx

Hux(x,y) can be presented as the bilinear
interpolant of ux

i−1/2,1, ux
i+1/2,1, Rx

Hux
i+1/2,1/2, Rx

Hux
i−1/2,1/2. And other points are similar to

the above, as well as the definition of Ry
Huy. By interpolation theory, we can obtain that

‖RHu−u‖∞≤MH2,

where ux, uy are twice differentiable in space.
The block-centered finite difference method, can be considered as the lowest order

Raviart-Thomas mixed element method in [4], so the existence and uniqueness of a solu-
tion to the discrete nonlinear question are easily obtained, the proof is similar to [2].
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4 Error estimates of the two-grid scheme

In this section, we consider the error estimation for the two-grid block-centered finite
difference algorithm.

First, to analyze the error estimation, we consider the following question and discrete
scheme firstly.

For the elliptic problem 
∇·u=q, x∈Ω,
u=−a(c)∇p, x∈Ω,
u·ν=0, x∈∂Ω,

{Ûn
h ,P̂n

h } ∈ Sh×Vh denote the nonlinear block-centered finite difference approximations
to {un,pn}, respectively. Their values are defined by the following scheme:

(∇·Ûn
h ,s)=(qn

h ,s), ∀s∈Sh, (4.1a)(
α(c)Ûn

h ,v
)

TM =(P̂n
h ,∇·v), ∀v∈Vh, (4.1b)

where c is the exact solution to problems (1.1a)-(1.3).
For the parabolic problem

ϕ
∂c
∂t

+∇·g= f (x,c,t)−∇·(uc)=F(x,t), x∈Ω, t∈ J,

g=−λ∇c, x∈Ω, t∈ J,
g·ν=0, x∈∂Ω, t∈ J,

{Ĉn
h ,Ĝn

h} ∈ Sh×Vh denote the nonlinear block-centered finite difference approximations
to {cn,gn}, respectively. Their values are defined by the following scheme:

(ϕdtĈn
h ,s)+(∇·Ĝn

h ,s)=(Fn
h ,s), ∀s∈Sh, (4.2a)

(Ĝn
h ,v)TM =(λĈn

h ,∇·v), ∀v∈Vh. (4.2b)

By Eq. (3.2), we have
(Gh,v)TM =(λCh,∇·v), ∀v∈Vh. (4.3)

Now for the convenience of analysis, we set

Ph−p=Ph− P̂h+ P̂h−p=ηh+γh,
Uh−u=Uh−Ûh+Ûh−u= ξh+βh,

Ch−c=Ch−Ĉh+Ĉh−c= θh+σh,

Wh−Ĝh =πh+UhΠhCh,

πh =Gh−Ĝh.

In [5] and [8], we can obtain that the approximate solution of the discrete scheme (4.1a)-
(4.1b) and (4.2a)-(4.2b) exists uniquely. Moreover, the following results are easily got.
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Lemma 4.1. Suppose the hypotheses (H) hold, then there exists a positive constant M indepen-
dent of h and ∆t such that

‖γn
h‖M≤Mh2, ‖βn

h‖TM≤Mh2,

‖σn
h ‖M≤M(∆t+h2),

‖Ûn
h ‖L∞≤M.

Next we give the error analysis of the nonlinear scheme (3.4a)-(3.4d) on the course
grid.

Subtracting (4.1a) from (3.4a), we can obtain

(∇·ξn
H,s)=0, ∀s∈SH. (4.4)

And subtracting (4.1b) from (3.4b), we have that(
α(ΠHCn−1

H )ξn
H,v
)

TM
−(ηn

H,∇·v)

=−
((

α(ΠHCn−1
H )−α(c)

)
Ûn

H,v
)

TM
, ∀v∈VH. (4.5)

Subtracting (4.2a) from (3.4c), we can get

(ϕdtθ
n
H,s)+(∇·πn

H,s)

=( f (C̃n
H)−Fn

H,s)+(∇·(Un
HΠHCn

H),s), ∀s∈SH. (4.6)

And (3.4d) subtracting (4.2b), we have that

(πn
H,v)TM =(λθn

H,∇·v), ∀v∈VH. (4.7)

Selecting s=ηn
H in (4.4) and v=ξn

H in (4.5), then adding (4.4) to (4.5), we have the following
equations.

(α(ΠHCn
H)ξ

n
H,ξn

H)TM =−
(
(α(ΠHCn

H)−α(c))Ûn
H,ξn

H
)

TM . (4.8)

Together the assumption of a(c) with Taylor expansion and noting Lemma 2.2, Lemma
4.1 and ε-Chauchy inequality, we have that

‖ξn
H‖2

TM≤M‖(ΠHCn
H−cn)ξn

H‖TM

≤M‖ΠHCn
H−cn‖TM‖ξn

H‖TM

≤M‖ΠHCn
H−Πhcn

H+ΠHcn
H−cn‖2

TM+ε‖ξn
H‖2

TM

≤M(‖θn
H‖2+‖σn

H‖2+H4)+ε‖ξn
H‖2

TM.

Then,
‖ξn

H‖2
TM≤M(H4+‖θn

H‖2+‖σn
H‖2). (4.9)



J. Zhang and H. Rui / Adv. Appl. Math. Mech., 14 (2022), pp. 1433-1455 1443

Selecting v= θn
H in (4.6) and s=πn

H in (4.7), then adding (4.7) to (4.6), we can obtain

(ϕdtθ
n
H,θn

H)+
( 1

λ
πn

H,πn
H

)
TM

=( f (C̃n
H)−Fn

H,θn
H)−(∇·(Un

HΠHCn
H),θ

n
H)

=( f (C̃n
H)− f (c̃n),θn

H)+(∇·(uc)−D(uncn)+D(uncn)−∇·(Un
HΠHCn

H),θ
n
H)

=
( 3

∑
i=1

Ei,θn
H

)
. (4.10)

Next we will estimate the three terms in the right side of (4.10). Note that

C̃n
H− c̃n =

{
Cn

H−cn, if qn >0,
0, if qn <0.

Therefore together the assumption of f (c) with Taylor expansion and Lemma 4.1, we can
get that

|(E1,θn
H)|=|( f (C̃n

H)− f (c̃n),θn
H)|

≤M|( fc(θ
n
1 )(C̃

n
H− c̃n),θn

H)|
≤M|( fc(θ

n
1 )(C

n
H−cn),θn

H)|
≤M(‖θn

H‖2+‖σn
H‖2), (4.11)

where θn
1 is between C̃n

H and c̃n. By the smoothness assumption (H1),

|(E2,θn
H)|≤M|(∇·(uc)−∇·(uncn),θn

H)|+|(∇·(uncn)−D(uncn))|
≤M(H4+‖θn

H‖2). (4.12)

Noting Lemma 2.1 and (4.9), we have that

|(E3,θn
H)|≤M

∣∣∣(uncn−Un
HΠHCn

H,− 1
λ

πn
H

)
TM

∣∣∣
≤M|(uncn−unΠHCn

H,πn
H)TM|+M|(unΠHCn

H−Un
HΠHCn

H,πn
H)TM|

≤M(‖cn−ΠHCn
H‖2+‖un−Un

H‖2)+ε‖π‖2
TM

≤M(‖H4+θn
H‖2+‖σn

H‖2)+ε‖π‖2
TM. (4.13)

Furthermore, we have

(ϕdtθ
n
H,θn

H)=
(

ϕ
(θn

H−θn−1
H )

∆t
,θn

H

)
=

1
2∆t

[2(ϕθn
H,θn

H)−2(ϕθn−1
H ,θn

H)]

=
1

2∆t
[(ϕθn

H,θn
H)−(ϕθn−1

H ,θn−1
H )+(ϕθn−1

H ,θn−1
H )+(ϕθn

H,θn
H)−2(ϕθn−1

H ,θn
H)]

=
1
2

dt(ϕθn
H,θn

H)+
1

2∆t
[(ϕ(θn

H−θn−1
H ),θn

H−θn
H)]

=
1
2

dt(ϕθn
H,θn

H)+
∆t
2
(ϕdtθ

n
H,θn

H). (4.14)



1444 J. Zhang and H. Rui / Adv. Appl. Math. Mech., 14 (2022), pp. 1433-1455

Analyzing the left hand side of (4.10), we have

(ϕdtθ
n
H,θn

H)+(λπn
H,πn

H)TM≥
ϕ0

2
dt‖θn

H‖2+ϕ0
∆t
2
‖dtθ

n
H‖2+

1
λ1
‖πn

H‖2
TM

≥ ϕ0

2∆t
(‖θn

H‖2−‖θn−1
H ‖2)+

1
λ1
‖πn

H‖2
TM. (4.15)

Then combing (4.10) with (4.11)-(4.15), we can get that:

ϕ0

2∆t
(‖θn

H‖2−‖θn−1
H ‖2)+

1
λ1
‖πn

H‖2
TM≤M(H4+‖θn

H‖2+‖σn
H‖2)+ε‖πn

H‖2
TM. (4.16)

Noting Lemma 4.1 and ε-Cauchy inequality, we give that

ϕ0

2∆t
(‖θn

H‖2−‖θn−1
H ‖2)+

1
λ1
‖πn

H‖2
TM≤M‖θn

H‖2+M((∆t)2+H4). (4.17)

Multiplying 2∆t in two sides, summing for n from 1 to N and noting τ0
H=0, we have that

ϕ0(‖θn
H‖2−‖θn−1

H ‖2)+
1

λ1
∆t

N

∑
n=1
‖πn

H‖2
TM≤M

N

∑
n=1
‖θn

H‖2∆t+M((∆t)2+H4). (4.18)

Recalling θ0
H =0 and noting Gronwall’s lemma, we give the result

‖θN
H‖2+∆t

N

∑
n=1
‖πn

H‖2
TM≤M((∆t)2+H4), (4.19)

where ∆t is selected sufficiently small.
Noting Lemma 4.1 and (4.19), we get (4.9),

‖ξn
H‖TM≤M(∆t+H2). (4.20)

By Liu [1], using the dual method, we get the estimate of ηn
H,

‖ηN
H‖TM≤M(∆t+H2). (4.21)

By Lemma 4.1, we obtain the following theorem.

Theorem 4.1. Let Un
H, Pn

H, Cn
H be obtained by Step 1 of the two-grid finite difference algorithm.

Suppose the hypotheses (H) hold and that the time step ∆t is sufficiently small, then for 1≤n≤N,
there exists a positive constant M independent of H and ∆t such that

‖Un
H−un‖TM+‖Pn

H−pn‖+‖Cn
H−cn‖≤M(∆t+H2). (4.22)
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Next we give the error estimates on the fine grid. Subtracting (4.1a) from (3.5a), we
can obtain

(∇·ξn
h ,s)=0, ∀s∈Sh. (4.23)

And subtracting (4.1b) from (3.5b), we have that

(A(πhCn
h )U

n
h−α(cn))Ũn

h ,v)TM =(ηn
h ,∇·v), ∀v∈Vh.

By Taylor expansion, we have

α(cn))Ũn
h

=α(ΠHCn
H)Ũ

n
h +αc(ΠHCn

H)Ũ
n
h (c

n−ΠHCn
H)+

1
2

αcc(c∗)(cn−ΠHCn
H)

2Ũn
h ,

where c∗ is selected between cn and ΠHCn
H. Thus, we get

(α(ΠHCn
H)ξ

n
h ,v)TM

=(ηn
h ,∇·v)+(αc(ΠHCn

H)RHUn
H(c

n−ΠhCn
h ),v)TM

+(αc(ΠHCn
H)(c

n−ΠHCn
H)(u

n−RHUn
H),v)TM

+(αc(ΠHCn
H)(c

n−ΠHCn
H)(Ũ

n
h−un),v)TM

+
(1

2
αcc(c∗)(cn−ΠHCn

H)
2Ũn

h ,v
)

TM

=(ηn
h ,∇·v)+

( 4

∑
i=1

Ti,v
)

TM
, ∀v∈Vh. (4.24)

We can obtain the following equation by subtracting (4.2a) from (3.5c)

(ϕdtθ
n
h ,s)+(∇·πn

h ,s)

=( f (C̃n
h )−Fn

h ,s)−(∇·(Un
h ΠhCn

h ),s), ∀s∈Sh. (4.25)

And (3.5d) subtracting (4.2b), we can get

(πn
h ,v)TM+(Un

h ΠhCn
h ,v)TM

=(RHUn
HΠhCn

h +ΠHCn
H(RhUn

h−RHUn
H),v)TM+(λθn

h ,∇·v), ∀v∈Vh. (4.26)

Setting s=ηn
h , v= ξn

h , (4.23) and (4.24) can be transformed into the following:

(α(ΠHCn
H)ξ

n
h ,ξn

h)TM =
( 4

∑
i=1

Ti,ξn
h

)
TM

. (4.27)
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We now analyze each term on the right hand side of (4.27). By Lemma 2.2, Lemma 4.1
and ε-Chauchy inequality, we have that

|(T1,ξn
h)TM|≤‖αcRHUn

H‖∞‖ΠhCn
h−cn‖‖ξn

h‖TM

≤M‖ΠhCn
h−Πhcn+Πhcn−cn‖2+ε‖ξn

h‖2
TM

≤M‖Cn
h−cn‖2+Mh4+ε‖ξn

h‖2
TM

≤M((∆t)2+h4+‖θn
h‖2)+ε‖ξn

h‖2
TM, (4.28a)

|(T2,ξn
h)TM|≤‖αc‖∞‖(ΠHCn

H−cn)(RHUn
H−un)‖‖ξn

h‖TM

≤M‖ΠHCn
H−cn‖2‖RHUn

H−un‖2+ε‖ξn
h‖2

TM

≤M((∆t)2+H4)((∆t)2+H4)+ε‖ξn
h‖2

TM, (4.28b)
|(T3,ξn

h)TM|≤M‖(ΠHCn
H−cn)(Ũn

h−un)‖‖ξn
h‖TM

≤M‖ΠHCn
H−cn‖2‖Ũn

h−un‖2+ε‖ξn
h‖2

TM

≤M((∆t)2+H4)h4+ε‖ξn
h‖2

TM, (4.28c)

|(T4,ξn
h)TM|≤‖αccŨn

h ‖∞‖ΠHCn
H−cn‖2‖ξn

h‖TM

≤M((∆t)4+H8)+ε‖ξn
h‖2

TM. (4.28d)

Analyzing the left hand side of (4.27), we infer that

(α(ΠHCn
H)ξ

n
h ,ξn

h)TM≥
1
a1
‖ξn

h‖2
TM. (4.29)

Then, from the analyzing of the both sides of (4.27), we can obtain

‖ξn
h‖2

TM≤M((∆t)2+h4+H8)+M‖θn
h‖2. (4.30)

Selecting v= θn
h in (4.25), and s=πn

h in (4.26), then adding (4.25) to (4.26), we can get

(ϕdtθ
n
h ,θn

h )+
1
λ
(πn

h ,πn
h )TM

=( f (C̃n
h )−Fn

h ,θn
h )−(∇·(Un

h ΠhCn
h ),θ

n
h )

− 1
λ
(RHUn

HΠhCn
h−Un

h ΠhCn
h +ΠHCn

H(RhUn
h−RHUn

H),π
n
h )TM

=( f (C̃n
h )− f (c̃n),θn

h )+(∇·(uc)−∇·(Un
h ΠhCn

h ),θ
n
h )

− 1
λ
(RHUn

HΠhCn
h−Un

h ΠhCn
h +ΠHCn

H(RhUn
h−RHUn

H),π
n
h )TM

=
( 3

∑
i=1

Ji,θn
h

)
. (4.31)
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Similar to the proof process of Lemma (4.1a), we obtain

|(J1+ J2,θn
h )|≤M(h4+‖θn

h‖2+‖σn
h ‖2)

≤M((∆t)2+h4+‖θn
h‖2), (4.32a)

|(J3,θn
h )|≤M|(ΠHCn

H(U
n
h−un),πn

h )TM|+M|(ΠhCn
h (u

n−Un
h ),π

n
h )TM|

+|((ΠHCn
H−ΠhCn

h )(u
n−RHUn

H),π
n
h )TM|

≤M(h4+H8+∆t2)+M(H4+h4+∆2+‖θn
h‖2)(H4+∆2)+ε‖πn

h‖2
TM

≤M((∆)2+h4+H8)+ε‖πn
h‖2

TM. (4.32b)

Next we will estimate the terms in the right side of (4.31), we have that

(ϕdtθ
n
h ,θn

h )+
( 1

λ
πn

h ,πn
h

)
TM
≥ ϕ0

2∆t
(‖θn

h‖2−‖θn−1
h ‖2)+

1
λ1
‖πn

h‖2
TM. (4.33)

Then, from the analysis of the both sides of (4.31), we can obtain

ϕ0

2∆t
(‖θn

h‖2−‖θn−1
h ‖2)+

1
λ1
‖πn

h‖2
TM

≤M((∆t)2+h4+H8)+M‖θn
h‖2+ε‖πn

h‖2
TM. (4.34)

Multiplying 2∆t in two sides, summing for n from 1 to N and noting π0
H=0, we infer that

ϕ0(‖θN
h ‖2−‖θ0

h‖2)+
1

λ1
∆t

N

∑
n=1
‖πn

h‖2
TM

≤M
N

∑
n=1
‖θn

h‖2∆t+M((∆t)2+h4+H8). (4.35)

Recalling θ0
H =0 and applying Gronwall’s lemma, we get the result

‖θN
h ‖2+∆t

N

∑
n=1
‖πn

h‖2
TM≤M((∆t)2+h4+H8), (4.36)

where ∆t is selected sufficiently small.
Noting Lemma 4.1, we have the following theorem.

Theorem 4.2. Let Un
h , Pn

h , Cn
h be obtained by Step 2 of the two-grid finite difference algorithm.

Suppose the hypotheses (H) hold and that the time step ∆t is sufficiently small, then for 1≤n≤N,
we have

‖Un
h−un‖TM+‖Pn

h −pn‖+‖Cn
h−cn‖≤M(∆t+h2+H4). (4.37)
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5 Numerical tests

In this section, some numerical experiments using the two-grid block-centered finite dif-
ference method have been constructed.

For the following incompressible miscible displacement problem:
∇·u=q(x,t), x∈Ω, t∈ (0,T],
u=−a(c)∇p, x∈Ω, t∈ (0,T],

ϕ
∂c
∂t

+∇·(uc)−∇·(D∇c)= f (c̃), x∈Ω, t∈ (0,T].

(5.1)

For convenient, the domain Ω=(0,1)2 is uniformly divided by the rectangle of uniform
mesh size H and h, respectively. And as presented in Theorem 4.2, we set h=H2. Mean-
while, we choose the time step τ sufficiently small to illustrate the space convergence rate
in Examples 5.1 and 5.2. And we also set τ = h2 to illustrate the time convergence rate
in Example 5.3. In addition, to verify the efficiency of the two-grid block-centered finite
difference method, we apply the nonlinear implicit scheme in (3.4a)-(3.4d) with mesh
size h. Tables 1, 2, 3 and 4 are presented to get the space convergence rate and the effi-
ciency of the two-grid block-centered finite difference method, while the Tables 5 and 6
are given in order to obtain the time convergence rate and the efficiency of the two-grid
block-centered finite difference method. Moreover, to present vividly the numerical so-
lutions, Figs. 2-7 are given with H=1/8, h=1/64, T=1e−3, and Figs. 8-10 are given with
H=1/8, h=1/64, T=1. And we define the norm

‖Ph−p‖0,∞ = max
1≤n≤N

{‖(Ph−p)n‖}.

Example 5.1. Here, ϕ=1, D=0.01, a(c)−1 =(c+2), τ=1.0e−5, T=1.0e−3. Meanwhile,
f (x,t,c) and q(x,t) are suitably chosen such that the exact solution of (5.1) is c=sin2(πx)sin2(πy)t,

p=−1
2

sin4(πx)sin4(πy)t2−2sin2(πx)sin2(πy)t+
9

128
t2+

1
2

t.

Then, we have

q=2tπ2cos(2πx)sin(πy)2+2tπ2cos(2πy)sin(πx)2,

f = c2+sin(πx)2sin(πy)2−λ(2tπ2cos(2πx)sin(πy)2+2tπ2cos(2πy)sin(πx)2)

−t2sin(πx)4sin(πy)4+2t2π2cos(2πx)sin(πx)2sin(πy)4

+2t2π2cos(2πy)sin(πx)4sin(πy)2+2t2π2cos(πx)sin(πx)sin(2πx)sin(πy)4

+2t2π2cos(πy)sin(πx)4sin(πy)sin(2πy).
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Figure 2: The concentration figures for Example 5.1. (a): the exact solution c, (b): the numerical solution Ch.
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Figure 3: The pressure figures for Example 5.1. (a): the exact solution p, (b): the numerical solution Ph.

Table 1: Error and CPU time cost of two-grid method with Example 5.1.

H h ‖c−Ch‖0,∞ rate ‖p−Ph‖0,∞ rate ‖u−Uh‖0,∞ rate CPU time
2−1 2−2 1.3350e-08 — 1.3062e-04 — 2.1301e-04 — 0.1143 s
2−2 2−4 9.0352e-10 1.94 7.2375e-06 2.09 1.2417e-05 2.05 0.5750 s
2−3 2−6 5.6745e-11 2.00 4.4802e-07 2.01 7.7282e-07 2.00 299.5745 s

Table 2: Error and CPU time cost of nonlinear implicit scheme with Example 5.1.

h ‖c−Ch‖0,∞ rate ‖p−Ph‖0,∞ rate ‖u−Uh‖0,∞ rate CPU time
2−2 1.3350e-08 — 1.3060e-04 — 2.1301e-04 — 0.1249 s
2−4 9.0352e-10 1.94 7.2409e-06 2.09 1.2417e-05 2.05 0.6754 s
2−6 5.6745e-11 2.00 4.4930e-07 2.01 7.7282e-07 2.00 864.5798 s
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Figure 4: The Darcy velocity figures for Example 5.1. (a): the exact solution u, (b): the numerical solution Uh.

Table 3: Error and CPU time cost of two-grid method with Example 5.2.

H h ‖c−Ch‖0,∞ rate ‖p−Ph‖0,∞ rate ‖u−Uh‖0,∞ rate CPU time
2−1 2−2 1.3350e-08 — 6.5321e-05 — 2.1301e-04 — 0.1116 s
2−2 2−4 9.0352e-10 1.94 3.6096e-06 2.09 1.2418e-05 2.05 0.5514 s
2−3 2−6 5.6745e-11 2.00 2.2367e-07 2.00 7.7351e-07 2.00 306.0547 s

Table 4: Error and CPU time cost of nonlinear implicit scheme with Example 5.2.

h ‖c−Ch‖0,∞ rate ‖p−Ph‖0,∞ rate ‖u−Uh‖0,∞ rate CPU time
2−2 1.3350e-08 — 6.5321e-05 — 2.1301e-04 — 0.2545 s
2−4 9.0352e-10 1.94 3.6198e-06 2.09 1.2417e-05 2.05 0.7521 s
2−6 5.6745e-11 2.00 2.2461e-07 2.01 7.7282e-07 2.00 887.9120 s

Example 5.2. Here, ϕ=1, D=0.01, a(c)−1=(c2+1), τ=1.0e−5, T=1.0e−3. Meanwhile,
f (x,t,c) and q(x,t) are suitably chosen, such that the exact solution of (5.1) is c=cos2(πx)cos2(πy)t,

p=−1
3

cos6(πx)cos6(πy)t3−cos2(πx)cos2(πy)t+
252

7741
t3+

1
4

t.

Then, we have

q=2tpi2cos(πx)2∗sin(πy)2−4tπ2cos(πx)2cos(πy)2+2tπ2cos(πy)2sin(πx)2,

f = c2+λ(2tπ2cos(2πx)cos(πy)2+2tπ2cos(πx)2cos(2πy))+cos(πx)2cos(πy)2

−t2cos(πx)4cos(πy)4−tcos(πx)2cos(πy)2(2tπ2cos(πx)2cos(πy)2

−2tπ2cos(πx)2sin(πy)2)−tcos(πx)2cos(πy)2(2tπ2cos(πx)2cos(πy)2

−2tπ2cos(πy)2∗sin(πx)2)+4t2π2cos(πx)2cos(πy)4sin(πx)2

+4t2π2cos(πx)4cos(πy)2∗sin(πy)2.
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Figure 5: The concentration figures for Example 5.2. (a): the exact solution c, (b): the numerical solution Ch.
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Figure 6: The pressure figures for Example 5.2. (a): the exact solution p, (b): the numerical solution Ph.
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Figure 7: The Darcy velocity figures for Example 5.2. (a): the exact solution u, (b): the numerical solution Uh.

Example 5.3. Here, ϕ=1, D=1, a(c)−1=(c2+1), τ=h2, T=1.0. Meanwhile, f (x,t,c) and
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Table 5: Error and CPU time cost of two-grid method with Example 5.2.

H h ‖c−Ch‖0,∞ rate ‖p−Ph‖0,∞ rate ‖u−Uh‖0,∞ rate CPU time
2−1 2−2 2.23e-03 — 9.74e-04 — 3.65e-03 — 0.0924 s
2−2 2−4 1.31e-04 2.04 6.48e-05 1.96 3.33e-04 1.73 1.5203 s
2−3 2−6 8.17e-06 2.00 3.97e-06 2.01 2.58e-05 1.84 1037.4227 s

q(x,t) are suitably chosen, such that the exact solution of (5.1) is c= x2(1−x)2y2(1−y)2t,

p=−1
3

x6(1−x)6y6(1−y)6t3−x2(1−x)2y2(1−y)2t+
1

432864471
t3+

1
900

t.

Then, we have

q=2tx2(x−1)2(y−1)2+2ty2(x−1)2(y−1)2+2tx2y2(x−1)2+2tx2y2(y−1)2

+4txy2(2x−2)(y−1)2+4tx2y(2y−2)(x−1)2,

f = c2+(2txy2(x−1)2(y−1)2+tx2y2(2x−2)(y−1)2)2+(2tx2y(x−1)2(y−1)2

+tx2y2(2y−2)(x−1)2)2−λ(2tx2(x−1)2(6y2−6y+1)

+2ty2(y−1)2(6x2−6x+1))+x2y2(x−1)2(y−1)2−t2x4y4(x−1)4(y−1)4

+tx2y2(x−1)2(y−1)2(2tx2(x−1)2(y−1)2+2tx2y2(x−1)2

+4tx2y(2y−2)(x−1)2)+tx2y2(x−1)2(y−1)2(2ty2(x−1)2(y−1)2

+2tx2y2(y−1)2+4txy2(2x−2)(y−1)2).

From Tables 1-6 and Fig. 2-10, we can obtain that the convergence order of the two-
grid block-centered finite difference method is theO(∆t+h2+H4) accuracy in discrete L2
norm. These results are corresponding to the error estimates in Theorem 4.2. Moreover,
we also can see that the two-grid method spends less time than the nonlinear implicit
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Figure 8: The concentration figures for Example 5.3. (a): the exact solution c, (b): the numerical solution Ch.
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Figure 9: The pressure figures for Example 5.3. (a): the exact solution p, (b): the numerical solution Ph.
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Figure 10: The Darcy velocity figures for Example 5.3. (a): the exact solution u, (b): the numerical solution
Uh.

Table 6: Error and CPU time cost of nonlinear implicit scheme with Example 5.3.

h ‖c−Ch‖0,∞ rate ‖p−Ph‖0,∞ rate ‖u−Uh‖0,∞ rate CPU time
2−2 3.48e-09 — 9.91e-07 — 3.65e-06 — 0.1227 s
2−4 3.42e-10 1.67 6.67e-08 1.95 3.33e-07 1.73 5.4492 s
2−6 2.63e-11 1.85 4.20e-09 1.99 2.58e-08 1.84 3535.9231 s

scheme by comparing Tables 1, 3, 5 with Tables 2, 4, 6. This phenomenon shows that two-
grid method is a highly effective method for the incompressible miscible displacement
problem.

Acknowledgements

The authors thank the editor and referees for their valuable comments and suggeations
which helped us to improve the results of this paper. This work is supported by National
Natural Science Foundation of China No. 12131014.



1454 J. Zhang and H. Rui / Adv. Appl. Math. Mech., 14 (2022), pp. 1433-1455

References

[1] Y. LUI, On convergence of block-centered finite difference scheme for two-phase flow in porous
medium (in chinese), Journal of Shandong University (Natural Science), 30(1) (1995), pp.
20–29.

[2] J. DOUGLAS, R. E. EWING, AND M. F. WHEELER, The approximation of the pressure by a mixed
method in the simulation of miscible displacement, RAIRO Analyse Numérique, 17(1) (1983),
pp. 17–33.

[3] J. ZHANG, J. ZHU, R. ZHANG, AND D. YANG, A combined discontinuous Galerkin finite ele-
ment method for miscible displacement problem, J. Comput. Appl. Math., 309 (2017), pp. 44–55.

[4] P. A. RAVIART, AND J. M. THOMAS, A mixed finite element method for 2-nd order elliptic prob-
lems, Mathematical Aspects of Finite Element Methods, 1977.

[5] A. WEISER, AND M. W. FANETT, On convergence of block-centered finite differences for elliptic-
problems, SIAM J. Numer. Anal., 25(2) (1988), pp. 351–375.

[6] T. ARBOGAST, M. F. WHEELER AND I. YOTOV, Mixed finite elements for elliptic problems with
tensor coefficients as cell-centered finite differences, SIAM J. Numer. Anal., (1997).

[7] H. RUI, AND H. PAN, A block-centered fifinite difference method for the Darcy-Forchheimer model,
SIAM J. Numer. Anal., 50(5) (2012), pp. 2612–2631.

[8] H. RUI, AND H. PAN, Block-centered finite difference methods for parabolic equation with time-
dependent coefficient, Japan J. Industr. Appl. Math., 30(3) (2013), pp. 681–699.

[9] X. LI, AND H. RUI, Characteristic block-centred finite difference methods for nonlinear convection-
dominated diffusion equation, Int. J. Comput. Math., (2017), pp. 1–19.

[10] J. XU, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15(1)
(1994), pp. 231–237.

[11] J. XU, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Sci. Comput.,
33(5) (1996), pp. 1759–1777.

[12] O. A. LAYTON, A two-level method for the discretization of nonlinear boundary value problems,
SIAM J. Numer. Anal., 33(6) (1996), pp. 2359–2374.

[13] C. N. DAWSON, M. F. WHEELER, AND C. S. WOODWARD, A two-grid finite difference scheme
for nonlinear parabolic equations, SIAM J. Numer. Anal., 35(2) (1998), pp. 435–452.

[14] L. WU, AND M. B. A. III, A two-grid method for mixed finite-element solution of Reaction-
Diffusion equations, Numer. Methods Partial Differential Equations, 15 (1999), pp. 317–332.

[15] C. BI, AND V. E. GINTING, Two-grid discontinuous Galerkin method for quasi-linear elliptic prob-
lems, J. Sci. Comput., 49(3) (2011), pp. 311–331.

[16] S. CONGREVE, P. HOUSTON, AND T. P. WIHLER, Two-grid hp-version discontinuous galerkin
finite element methods for second-order quasilinear elliptic PDEs, J. Sci. Comput., 55(2) (2013),
pp. 471–497.

[17] L. CHEN, AND Y. CHEN, Two-grid method for nonlinear reaction-diffusion equations by mixed
finite element methods, J. Sci. Comput., 49(3) (2011), pp. 383–401.

[18] J. ZENG, Y. CHEN, AND H. HU, Two-grid method for compressible miscible displacement problem
by CFEM-MFEM, J. Comput. Appl. Math., (2018).

[19] H. HU, Y. CHEN, AND J. ZHOU, Two-grid method for miscible displacement problem by mixed
finite element methods and finite element method of characteristics, Comput. Math. Appl., 72(11)
(2016), pp. 2694–2715.

[20] Y. CHEN, J. ZENG, AND J. ZHOU, Lp error estimates of two-grid method for miscible displacement
problem, J. Sci. Comput., 69(1) (2016), pp. 28–51.

[21] S. LIU, Y. CHEN, Y. HUANG, AND J. ZHOU, Two-grid methods for miscible displacement problem



J. Zhang and H. Rui / Adv. Appl. Math. Mech., 14 (2022), pp. 1433-1455 1455

by Galerkin methods and mixed finite-element methods, Int. J. Comput. Math., (2017), pp. 1–28.
[22] H. RUI, AND W. LIU, A two-grid block-centered finite difference method for Darcy-Forchheimer

flow in porous media, SIAM J. Numer. Anal., 53(4) (2015), pp. 1941–1962.
[23] X. LI, AND H. RUI, A two-grid block-centered finite difference method for nonlinear non-fickian

flow model, Appl. Math. Comput., 281 (2016), pp. 300–313.
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