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Abstract. In this paper, we propose and analyze a second order accurate in time, mass
lumped mixed finite element scheme for the Cahn-Hilliard equation with a logarithmic
Flory-Huggins energy potential. The standard backward differentiation formula (BDF)
stencil is applied in the temporal discretization. In the chemical potential approxima-
tion, both the logarithmic singular terms and the surface diffusion term are treated
implicitly, while the expansive term is explicitly updated via a second-order Adams-
Bashforth extrapolation formula, following the idea of the convex-concave decomposi-
tion of the energy functional. In addition, an artificial Douglas-Dupont regularization
term is added to ensure the energy dissipativity. In the spatial discretization, the mass
lumped finite element method is adopted. We provide a theoretical justification of the
unique solvability of the mass lumped finite element scheme, using a piecewise linear
element. In particular, the positivity is always preserved for the logarithmic arguments
in the sense that the phase variable is always located between −1 and 1. In fact, the
singular nature of the implicit terms and the mass lumped approach play an essential
role in the positivity preservation in the discrete setting. Subsequently, an uncondi-
tional energy stability is proven for the proposed numerical scheme. In addition, the
convergence analysis and error estimate of the numerical scheme are also presented.
Two numerical experiments are carried out to verify the theoretical properties.
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1 Introduction

The Cahn-Hilliard equation plays an important role in materials science and biological
applications. It was constructed by Cahn and Hilliard [9] as a conserved gradient flow
with respect to the free energy of an isothermal, isotropic fluid. Usually, the evolution of
the system is driven by the gradient of the singular Flory-Huggins free energy and de-
scribes phase separation processes with respect to the concentration φ. Phase separation
can be observed, e.g., when a binary alloy is cooled down sufficiently. One then may ob-
serve spinodal decomposition, whereby the material quickly becomes inhomogeneous,
forming a fine-grained structure in which each of the two phases appears in a more or
less alternating pattern. In the second stage, which is called coarsening, and which oc-
curs at a slower time scale, the average size of phases in the microstructure grows with
time. Such phenomena play an essential role in the structural and mechanical proper-
ties of the material [4, 17, 38]. The equation is flexible, allowing several variants–based
on the choices of mobility and free energy density–which are relevant in different con-
texts and for disparate physical and biological processes in which phase separation and
coarsening/clustering processes can be observed (see [34, 37]).

There have been a lot of theoretical analyses and numerical approximations for these
gradient flows in the two-phase case. The existence of solutions and attractors to the
Cahn-Hilliard equation with degenerate mobility and logarithmic nonlinearities has been
proved in [24,36,44,45]. For the time integration, several numerical techniques have been
applied to design the energy dissipative schemes for gradient flows [2,5,6,10,15,29,54], in-
cluding convex splitting [25,55,57], stabilization [29,49], auxiliary variable approaches [1]
(such as invariant energy quadrature method [60, 64] and scalar auxiliary variable ver-
sion [16,46–48]). In particular, the convex splitting method has been widely used to solve
various phase field equations by virtue of its theoretical advantages [11, 13, 26, 30, 31,
50, 52]. Meanwhile, the IEQ and SAV approaches can be used to design linear and en-
ergy stable numerical schemes, which can improve the computational efficiency of many
relatively complex problems [41, 43, 48, 51, 56, 61], and have been rapidly developed in
recent years. And also, the stabilization method turns out to be a useful tool to extend
the above methods to a higher-order accuracy of time [28, 29, 48, 58, 59]. These numer-
ical techniques possess two main features: mass conservation and energy dissipativity
(conditionally/unconditionally).

Meanwhile, most above-mentioned works have been focused on the physical model
with a polynomial approximation in the energy potential expansion. For the Cahn-
Hilliard equation with the original Flory-Huggins logarithmic energy potential, a the-
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oretical justification of the positivity-preserving property for the logarithmic arguments
has always been an essential difficulty, at both the analytic and numerical levels. There
have been quite a few works on the positivity-preserving analysis of the numerical so-
lutions for the Cahn-Hilliard equation with logarithmic free energy. In [18], a finite el-
ement scheme was proposed, based on the backward Euler temporal discretization for
the Flory-Huggins-Cahn-Hilliard equation, and the positivity-preserving property of the
numerical solution was proven under a constraint on the time step. In fact, such a time
step constraint comes from the explicit treatment of the concave expansive term, so that
the monotone property of the implicit parts is not automatically ensured. To overcome
this shortcoming, Chen et al. [14] applied the convex splitting approach to the equation,
combined with finite difference spatial discretization, in which the singular logarithmic
terms and the surface diffusion part are computed implicitly, while an explicit update
is applied to the explicit part. In turn, both the unconditionally unique solvability and
positivity-preserving feature have been theoretically justified for the numerical scheme,
and an optimal convergence estimate has been derived in the `∞(0,T;H−1)∩`2(0,T;H1)
norm. Following similar theoretical framework, more positivity-preserving numerical
schemes have been proposed and analyzed for a variety of the Cahn-Hilliard type equa-
tions with singular energy potential, with finite difference spatial discretization; see the
related works [12, 19–21, 32, 33, 40, 42, 62, 63] and the reference therein. It is noticed that
these approaches have been based on the implicit treatment of the singular logarithmic
terms, due to their convexity. On the other hand, there have also been some works of
positivity-preserving numerical schemes for certain gradient flows with logarithmic en-
ergy potential, such as [27] for the Poisson-Nernst-Planck system, based on the Lagrange
multiplier method. The energy functional has to be modified in this work, because of the
scalar auxiliary variable (SAV) method used.

In fact, most existing numerical works of positivity-preserving analysis for gradient
flows with singular energy potential have been focused on the finite difference spatial dis-
cretization, because of its simplicity in the numerical representation. In comparison with
the finite difference approximation, the finite element (FEM) method allows for flexible,
adaptive meshes and has a systematic theoretical framework. Inspired by the scientific
idea in [14], we would like to extend the theoretical framework of positivity preserving
scheme to the fully discrete finite element scheme. However, a direct extension to the
FEM method would face a serious difficulty in the numerical analysis. It is well-known
that the standard-conforming FEM fails to satisfy the discrete maximum principle, thus it
is a great challenge to derive the rigid theoretical analysis of positivity preserving in the
finite element framework. The main contribution of this paper is that we propose a sec-
ond order accurate in time, mass-lumped FEM numerical scheme for the Cahn-Hilliard
equation with logarithmic free energy. In more details, the standard backward differen-
tiation formula (BDF) stencil is applied in the temporal discretization. In the chemical
potential approximation, both the logarithmic singular terms and the surface diffusion
term are treated implicitly, while the expansive term is explicitly updated via a second-
order Adams-Bashforth extrapolation formula, following the idea of the convex-concave
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decomposition of the energy functional. In addition, an artificial Douglas-Dupont reg-
ularization term is added to ensure the energy dissipativity. Meanwhile, as mentioned
earlier, a direct application of the positivity-preserving analysis techniques for the finite
difference method, as reported in [14], is not available to the standard FEM method, due
to the difficulty to ensure the point-wise positivity of the numerical solution in the stan-
dard FEM because of the non-diagonal mass matrix. Instead, a lumped mass FEM is
chosen to diagonalize the mass matrix, that is, the diagonal elements are the row sums of
the original mass matrix [53]. With the mass lumped FEM approximation, the positivity-
preserving analysis of the numerical scheme could be theoretically justified, with the help
of the singular nature of the logarithmic terms as the phase variable approaches the sin-
gular limit values of 1 and−1. A modified energy stability of the proposed mass-lumped
FEM will be proven, with the help of the artificial Douglas-Dupont regularization term.
In addition, the convergence analysis and error estimate will be theoretically established,
in the `∞(0,T;H−1)∩`2(0,T;H1) norm.

The rest of this article is organized as follows. In Section 2, we review the Sobolev
spaces and the corresponding weak form, as well as the mass lumped FEM method. In
Section 3, we propose the fully discrete numerical scheme, demonstrate the positivity-
preserving property of the numerical solutions. The modified energy stability analysis
and the optimal rate convergence analysis are provided in Section 4. Finally, this paper
ends with some concluding remarks in the last section.

2 The weak formulation

In this section, we provide a review on the basic property of the Cahn-Hilliard equation
with the logarithmic potential, as well as the corresponding weak formulation. To this
end, we consider the following (total) free energy:

E(φ)=
∫

Ω
f (φ)+

ε2

2
|∇φ|2dx, (2.1a)

f (φ)=(1+φ)ln(1+φ)+(1−φ)ln(1−φ)− θ0

2
φ2, (2.1b)

where φ is the phase variable and f (φ) is a double-well logarithmic potential, often ap-
proximated by a smooth polynomial function, with minimums located at the two attrac-
tion points that represent pure phases φ=±1, and ε, θ0 are positive constants associated
with the diffuse interface width. In turn, the Cahn-Hilliard equation with respect to the
energy functional (2.1) is defined as

∂tφ=∇·(M(φ)∇µ) (2.2)

subject to the initial condition

φ(x,0)=φ0(x), x∈Ω. (2.3)
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For simplicity, we are using periodic boundary conditions on square area Ω=[0,L]2. The
variable µ is the chemical potential

µ :=δφE= ln(1+φ)−ln(1−φ)−θ0φ−ε2∆φ. (2.4)

M(φ)>0 is the mobility function, which is often taken to be either constant [22,23,39] or
of degenerate type [3, 4, 8, 14, 24]. Eq. (2.2) has been proposed to model phase separation
in a binary mixture composed of two species which is quenched into an unstable state.
It can be regarded as a type of H−1 (conserved) gradient flow with respect to the energy
functional (2.1), satisfying the following properties:

• mass conservation ∫
Ω

φ(x,t)dx=
∫

Ω
φ(x,0)dx, ∀t>0,

• energy dissipation

d
dt

E(φ(t))=−
∫

Ω
M(φ)|∇µ|2dx≤0.

Now, we use standard notation for the function spaces and norms. In particular,
we denote the standard norms for the Sobolev spaces Wm,p(Ω) by ‖·‖m,p. When p= 2,
Wm,2(Ω) is a Hilbert space denoted by Hm(Ω) with the norm ‖·‖m. Let C∞

per(Ω) be the set
of all restrictions onto Ω of all real-valued, L-periodic, C∞(Ω)-functions on R2. For each
integer q≥ 0, let Hq

per(Ω) be the closure of C∞
per(Ω) in the usual Sobolev norm ‖·‖q, and

H−q
per(Ω) be the dual space of Hq

per(Ω). Note that H0
per(Ω)=L2(Ω), and denote by (·,·) the

L2 inner-product on domain Ω, which, naturally induces the L2 norm ‖·‖.
The mixed weak formulation of Cahn-Hilliard equation (2.2) is defined as follows:

find (φ,µ)∈L2(0,T;H1
per(Ω)), with φt∈L2(0,T;H−1

per(Ω)), satisfying{
(φt,v)+(M(φ)∇µ,∇v)=0, ∀v∈H1

per(Ω),

(µ,w)=(g(φ)−θ0φ,w)+ε2(∇φ,∇w), ∀w∈H1
per(Ω),

(2.5)

for almost every t∈ [0,T], where

g(u)= ln(1+u)−ln(1−u).

Let Th=K be a quasi-uniform, shape-regular triangulation of Ω, with mesh size h. By
he we denote the diameter of each triangle e∈Th. The symbol ∆e denotes the area of e.
Then, as usual,

h=max
e∈Th

he.
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Since the mesh is shape regular, we can assume that h2
e

∆e
is uniformly bounded by one

constant

CT :
h2

e
∆e
≤CT .

Based on the quasi-uniform triangulated mesh Th, the finite element space is defined as

Sh :=
{

v∈H1
per(Ω)|v is piecewise linear on each e∈Th

}
=span

{
χj|j=1,··· ,Np

}
,

where χj∈Sh is the jth Lagrange nodal basis function, which has the property χj(Pi)=δi,j.
Define

S̊h :=Sh∩L2
0(Ω) with L2

0(Ω)=
{

v∈L2(Ω)|(v,1)=0
}

the function space with zero mean in L2(Ω).
The standard mixed finite element scheme of (2.5) will lead to a theoretical difficulty

with regard to justifying the positivity-preserving property. To overcome this difficulty,
we apply a mass lumped FEM instead, which is a modification of standard FEM for solv-
ing parabolic equations. It simplifies the computation for the inverse of mass matrix and
overcomes the shortcoming of the standard FEM that it cannot preserve the maximum
principle for homogeneous parabolic equations. In more details, let Pe,k, k=1,2,3, be the
three vertices of triangle e. The construction of the lumped mass inner product can be
carried out as follows: we first introduce the quadrature formula on e,

Qh( f ) := ∑
e∈Th

Qe( f ), ∀ f ∈C(Ω;R), (2.6)

where

Qe( f ) :=
∆e

3

3

∑
k=i

f (Pe,k)≈
∫

e
f dx.

It is straightforward to confirm that Qh(χjχk)= 0 for k 6= j, so that Qh has the following
diagonalization property:

Qh(χjχk)=δj,kQh(χ
2
j ), j,k=1,··· ,Np. (2.7)

Furthermore,

Qh(χ
2
j )= ∑

e∈Th

Qe

(
χ2

j

)
=

1
3

area
(

Dj
)

, Dj :=supp(χj). (2.8)

We may now define an approximation of the canonical inner product on Sh by

(ψ,η)Q :=Qh(ψη), ∀ψ,η∈Sh. (2.9)

Likewise, we define ‖η‖Q :=
√
(η,η)Q for any η∈Sh. This norm is observed to be equiv-

alent to the standard ‖·‖L2 norm on Sh by considering each triangle separately.
To facilitate the analysis below, we have to modify the definition of the discrete Lapla-

cian operator and the discrete H−1 norm. In fact, the primary difference is in the integral
definition.
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Definition 2.1. The discrete Laplacian operator ∆h :Sh→S̊h is defined as follows: for any vh∈Sh,
∆hvh∈ S̊h denotes the unique solution to the problem

(∆hvh,χ)Q =−(∇vh,∇χ), ∀χ∈Sh.

It is straightforward to show that, by restricting the domain, ∆h : S̊h→ S̊h is invertible,
and for any vh∈ S̊h, we have(

∇(−∆h)
−1 vh,∇χ

)
=(vh,χ)Q , ∀χ∈Sh.

Definition 2.2. The discrete H−1 norm ‖·‖−1,Q, is defined as follows:

‖vh‖−1,Q :=
√
(vh,(−∆h)−1vh)Q, ∀vh∈ S̊h. (2.10)

3 The fully discrete numerical scheme

In this section, we propose the fully discrete scheme based on the lumped mass FEM, and
establish the positivity-preserving property, energy stability and convergence analysis at
the theoretical level. For simplicity, we consider the mobilityM(φ)=1, and propose the
following second order accurate in time, fully discrete finite element numerical scheme
for the Cahn-Hilliard equation (2.5): given φn

h ,φn−1
h ∈Sh, find φn+1

h ,µn+1
h ∈Sh, such that

(
3
2 φn+1

h −2φn
h +

1
2 φn−1

h
τ

,vh

)
Q

+(∇µn+1
h ,∇vh)=0, ∀vh∈Sh,

(µn+1
h ,wh)Q =

(
g(φn+1

h )−θ0φ̌n+1
h ,wh

)
Q
+ε2(∇φn+1

h ,∇wh)

+Aτ(∇(φn+1
h −φn

h ),∇wh), ∀wh∈Sh,

(3.1)

where φ̌n+1
h =2φn

h−φn−1
h . Obviously, the scheme requires an initialization step for n=0.

To this end, we introduce the Ritz projection operator Rh : H1
per(Ω)→Sh, satisfying

(∇(Rhu−u),∇χ)=0, ∀χ∈Sh, (Rhu−u,1)=0. (3.2)

The initial data are chosen so that φ0
h =Rhφ0.

If a solution to the proposed numerical scheme (3.1) exists, it is clear that, for any
n∈N,

φ̄0
h := |Ω|−1(φ0

h,1)Q = |Ω|−1(φ1
h,1)Q = ···= |Ω|−1(φn

h ,1)Q = φ̄n
h ,

with |φ̄n
h |<1. Thus we expect

(φn
h−φ̄0

h,1)Q =0.

In addition, the following technical lemmas are needed in the positivity-preserving anal-
ysis.

The following lemma is one finite element version of Lemma 2.8 in [14] where the
Fourier analysis was used, here we use the discrete Gagliard-Nirenberg inequality.
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Lemma 3.1. Suppose that ξ1,ξ2∈Sh with (ξ1−ξ2,1)=0, that is, ξ1−ξ2∈ S̊h, and assume that
‖ξ1‖∞ <1, ‖ξ2‖∞≤M. Then, we have the following estimate:∥∥∥−∆−1

h (ξ1−ξ2)
∥∥∥

∞
≤C1, (3.3)

where C1 >0 depends only upon M and Ω. In particular, C1 is independent of the mesh spacing
h.

Proof. By the discrete Gagliard-Nirenberg inequality (for example, see Theorem 2.8 in [35]):
if Ω is convex and polyhedral, then for any Ψh∈Sh,

‖Ψh‖L∞≤C‖∆hΨh‖
d

2(6−d) ‖Ψh‖
3(4−d)
2(6−d)

L6 +C‖Ψh‖L6 , (d=2,3).

Now combining with the following Lp interpolation inequality

‖Ψh‖L6≤‖Ψh‖
1
3 ‖Ψh‖

2
3
L∞ ,

and by simple calculations, we have another discrete Gagliard-Nirenberg inequality:

‖Ψh‖L∞≤C‖∆hΨh‖
d
4 ‖Ψh‖1− d

4 +C‖Ψh‖, (d=2,3). (3.4)

It is obvious that ξ1−ξ2∈ S̊h, let Ψh :=−∆−1
h (ξ1−ξ2), we directly obtain

‖−∆−1
h (ξ1−ξ2)‖L∞≤C‖ξ1−ξ2‖L2≤C(‖ξ1‖L∞ +‖ξ2‖L∞)≤C(M+1) :=C1,

where the estimate ‖−∆−1
h (ξ1−ξ2)‖≤C‖ξ1−ξ2‖ is used.

Lemma 3.2. For any φ∈Sh and any piecewise linear Lagrange nodal basis element χj, we have

(∇φ,∇χj)≤ ∑
e∈Dj

h2
e

2∆e

3

∑
i=1

φ(Pe,i) (3.5)

on Th with mesh size he.

Proof. Let Pi =(xi,yi), (i=1,2,3) be the three vertex points of e, then

∂φ

∂x
=

1
2∆e

(φ(P1)(y2−y3)+φ(P2)(y3−y1)+φ(P3)(y1−y2)),

∂φ

∂y
=

1
2∆e

(φ(P1)(x3−x2)+φ(P2)(x1−x3)+φ(P3)(x2−x1)),

which implies

(∇φ,∇χj)= ∑
e∈Th

∫
e
∇φ·∇χjdx= ∑

e∈Dj

∫
e

∂φ

∂x
∂χj

∂x
+

∂φ

∂y
∂χj

∂y
dx≤ ∑

e∈Dj

h2
e

2∆e

3

∑
i=1

φ(Pe,i). (3.6)

The proof is finished.
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The positivity-preserving property of the proposed numerical scheme (3.1) is stated
in the following theorem.

Theorem 3.1. Given φk
h∈Sh with ‖φk

h‖∞≤M, k=n,n−1, for some M>0 and |φ̄n
h |=|φ̄

n−1
h |<1,

there exists a unique solution φn+1
h ∈Sh to (3.1), with φn+1

h −φ̄n
h ∈
◦
Sh and ‖φn+1

h ‖∞ <1.

Proof. In fact, the numerical solution of (3.1) is a minimizer of the following discrete en-
ergy functional

J n(φ) :=
1

3τ

∥∥∥∥3
2

φ−2φn
h +

1
2

φn−1
h

∥∥∥∥2

−1,Q
+(1+φ,ln(1+φ))Q+(1−φ,ln(1−φ))Q

+
ε2+Aτ

2
‖∇φ‖2

2+(φ,Aτ∆φn
h )−

(
θ0φ̌n+1

h ,φ
)

Q
(3.7)

over the admissible set

Ah :=
{

φ∈Sh|‖φ‖∞≤1,
(
φ−φ̄0

h,1
)

Q =0
}
⊂RN2

p .

Observe that J n is a strictly convex function over this domain.
To facilitate the analysis below, we transform the minimization problem into an equiv-

alent one. Consider the functional

F n(ϕ) :=J n(ϕ+φ̄0
h
)

=
1

3τ

∥∥∥∥3
2
(

ϕ+φ̄0
h
)
−2φn

h +
1
2

φn−1
h

∥∥∥∥2

−1,Q

+
(
1+ϕ+φ̄0

h,ln
(
1+ϕ+φ̄0

h
))

Q+
(
1−ϕ−φ̄0

h,ln
(
1−ϕ−φ̄0

h
))

Q

+
ε2+Aτ

2
‖∇ϕ‖2

2+
(

ϕ+φ̄0
h,Aτ∆φn

h
)
−
(

θ0φ̌n+1,ϕ+φ̄0
h

)
Q

(3.8)

defined on the set

Åh :=
{

ϕ∈
◦
Sh |−1−φ̄0

h≤ ϕ≤1−φ̄0
h

}
⊂RN2

p .

If ϕ minimizes F n, then φ := ϕ+φ̄0
h ∈Ah minimizes J n, and vice versa. Next, we prove

that there exists a minimizer of F n over the domain Åh. The following closed domain is
taken into consideration, for δ∈ (0,1/2):

Åh,δ :=
{

ϕ∈
◦
Sh |δ−1−φ̄0

h≤ ϕ≤1−φ̄0
h−δ

}
⊂RN2

p . (3.9)

Since Åh,δ is a bounded, compact, and convex set in the subspace
◦
Sh, there exists a (not

necessarily unique) minimizer of F n over Åh,δ. The key point of the positivity analysis is
that such a minimizer could not occur on the boundary of Åh,δ, if δ is sufficiently small.
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To be more explicit, by the boundary of Ah,δ, we mean the locus of points ψ∈ Åh,δ such
that ‖ψ+φ̄0

h‖∞ =1−δ, precisely.
To get a contradiction, suppose that the minimizer of F n, call it ϕ? occurs at a bound-

ary point of Åh,δ. There is at least one grid point Pα0 =(i0, j0) such that

|ϕ?|α0+φ̄0
h|=1−δ.

First, let us assume that ϕ?|α0+φ̄0
h = δ−1, so that the grid function ϕ? has a global min-

imum at α0. Suppose that Pα1 =(i1, j1) is a grid point at which ϕ achieves its maximum.
By the fact that ϕ̄?, it is obvious that

1−δ≥ ϕ?|α1+φ̄0
h≥ φ̄0

h.

Since F n is smooth over Åh,δ, for all ψ∈
◦
Sh, the directional derivative becomes

dSF n (ϕ?+sψ)|s=0

=
(
ln
(
1+ϕ?+φ̄0

h
)
−ln

(
1−ϕ?−φ̄0

h
)

,ψ
)

Q

+(Aτ∆φn
h ,ψ)−θ0

(
φ̌n+1,ψ

)
Q
+
(
ε2+Aτ

)
(∇ϕ?,∇ψ)

+
1
τ

(
(−∆)−1

(
3
2
(

ϕ?+φ̄0
h
)
−2φn

h +
1
2

φn−1
h

)
,ψ
)

. (3.10)

This time, due to ϕ?
1+sψ∈ Åh,δ, let us pick the direction

ψ=δα0−C2δα1 , C2=
area(Dα0)

area(Dα1)
, (3.11)

where δα0 and δα1 are the basis functions on α0 and α1, Dα0 and Dα1 are the support of δα0

and δα1 , respectively.
For simplicity, now let us write φ? := ϕ?+φ̄0

h. Since φ?|α0 =−1+δ and φ?|α1 ≥ φ̄0
h, we

have

(ln(1+φ?)−ln(1−φ?),ψ)Q

= ∑
e∈Th

1
3

∆e

3

∑
j=1

(ln(1+φ?)−ln(1−φ?))ψ(Pe,j)

=
1
3

area(Dα0)((ln(1+φ?)−ln(1−φ?))|α0−(ln(1+φ?)−ln(1−φ?))|α1)

≤1
3

area(Dα0)
(

ln
δ

2−δ
−ln

1+φ̄0
h

1−φ̄0
h

)
. (3.12)
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Furthermore, an application of Lemma 3.2 gives the following estimate

(∆φn
h ,ψ)=−(∇φn

h ,∇ψ)=−(∇φn
h ,∇δα0)+C2(∇φn

h ,∇δα1)

≤− ∑
e∈Dα0

h2
e

2∆e

3

∑
i=1

φn
h (Pe,i)+C2 ∑

e∈Dα1

h2
e

2∆e

3

∑
i=1

φn
h (Pe,i)

≤− ∑
e∈Dα0

3Mh2
e

2∆e
+C2 ∑

e∈Dα1

3Mh2
e

2∆e
≤ 3MC̃T

2
, (3.13)

where
C̃T :=CT

(
∑

e∈Dα0

1|e+C2 ∑
e∈Dα1

1|e
)

.

For the numerical solution φk
h, k=n,n−1, at the previous time steps, the a priori assump-

tion ‖φk
h‖∞≤M yields

−2M≤φk
h|α0−φk

h|α1≤2M, (3.14)

so that (
θ0φk

h,ψ
)

Q
=θ0 ∑

e∈Th

1
3

∆e

3

∑
j=1

φk
hψ(Pe,j)

=
θ0

3
area(Dα0)

(
φk

h|α0−φk
h|α1

)
≤2Mθ0

3
area(Dα0). (3.15)

This in turn leads to the estimate for the third term in (3.10):

−6Marea(Dα0)≤ (φ̌n+1
h ,ψ)Q≤6Marea(Dα0). (3.16)

For the fourth term, we easily obtain

(∇ϕ?,∇ψ)=(∇ϕ?,∇δα0)−C2(∇ϕ?,∇δα1)≤0. (3.17)

For the last term, an application of Lemma 3.1 reveals that(
(−∆)−1

(
3
2
(φ?)−2φn

h +
1
2

φn−1
h

)
,ψ
)

Q

= ∑
e∈Th

1
3

∆e

3

∑
j=1

(
(−∆)−1

(
3
2
(φ?)−2φn

h +
1
2

φn−1
h

)
ψ(Pe,j)

)
=

1
3

area(Dα0)

(
(−∆)−1

(
3
2
(φ?)−2φn

h +
1
2

φn−1
h

)∣∣∣
~α0

−(−∆)−1
(

3
2
(φ?)−2φn

h +
1
2

φn−1
h

)
|~α1

)
≤5C3area(Dα0)

3
. (3.18)
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Subsequently, a substitution of (3.13)-(3.18), (3.12) and (3.17) into (3.10) yields the follow-
ing bound on the directional derivative:

dSF n (ϕ?+sψ)|s=0

≤area(Dα0)

(
1
3

ln
δ

2−δ
− 1

3
ln

1+φ̄0

1−φ̄0
+6Mθ0+

5C3

3τ

)
+

3AτMC̃T
2

. (3.19)

We denote

r1=−ln
1+φ̄0

h

1−φ̄0
h
+18Mθ0+5C3τ−1+

9AτMC̃T
2

(area(Dα0))
−1.

Note that r1 is a constant for a fixed τ, though it becomes singular as τ→0. However, for
any fixed τ, we may choose δ∈ (0,1/2) sufficiently small so that

ln
δ

2−δ
+r1<0. (3.20)

This in turn shows that, provided δ satisfies (3.20) such that

dsF n (ϕ?+sψ)|s=0<0. (3.21)

As before, this contradicts the assumption that F n has a minimum at ϕ?, since the direc-
tional derivative is negative in a direction pointing into the interior of Åh,δ.

Using very similar arguments, we can also prove that the global minimum of F n over
Åh,δ could not occur at a boundary point ϕ? such that ϕ?|α0+φ̄0

h = 1−δ, for some α0, so
that the grid function ϕ? has a global maximum at α0. The details are left to interested
readers. A combination of these two facts shows that, the global minimum of F n over
Åh,δ could only possibly occur at interior point

ϕ∈ interior(Åh,δ)⊂ interior(Åh).

We conclude that there must be a solution φ = ϕ+φ̄0 ∈ Ah that minimizes J n over Ah,
which is equivalent to the numerical solution of (3.1). The existence of the numerical
solution is established. In addition, since J n is a strictly convex function over Ah, the
uniqueness analysis for this numerical solution is straightforward.

4 The energy stability and convergence analysis

In this section, we derive the discrete energy stability of the proposed numerical scheme
(3.1), as well as the convergence analysis. The discrete energy is defined as

Eh(φ)=(1+φ,ln(1+φ))Q+(1−φ,ln(1−φ))Q+
ε2

2
‖∇φ‖2− θ0

2
‖φ‖2

Q. (4.1)

Now, we will establish a modified energy stability for the numerical algorithm (3.1), pro-

vided that A≥ θ2
0

16 . This result is stated in the following theorem.
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Theorem 4.1. We have the stability analysis of the following modified energy functional for the
proposed numerical scheme (3.1):

Ẽh

(
φn+1

h ,φn
h

)
≤ Ẽh

(
φn

h ,φn−1
h

)
, if A≥ θ2

0
16

, (4.2)

with

Ẽh

(
φn+1

h ,φn
h

)
=Eh

(
φn+1

h

)
+

1
4τ

∥∥∥φn+1
h −φn

h

∥∥∥2

−1,Q
+

θ0

2

∥∥∥φn+1
h −φn

h

∥∥∥2

Q
. (4.3)

Proof. In (3.1), by choosing

v=(−∆h)
−1(φn+1

h −φn
h ) and w=φn+1

h −φn
h ,

we could derive the following inequalities:(
3
2 φn+1

h −2φn
h +

1
2 φn−1

h
τ

,(−∆h)
−1
(

φn+1
h −φn

h

))
Q

=
3

2τ

∥∥∥φn+1
h −φn

h

∥∥∥2

−1,Q
− 1

2τ

(
φn

h−φn−1
h ,(−∆h)

−1(φn+1
h −φn

h )
)

Q

≥ 1
τ

(
5
4

∥∥∥φn+1
h −φn

h

∥∥∥2

−1,Q
− 1

4

∥∥∥φn
h−φn−1

h

∥∥∥2

−1,Q

)
, (4.4a)(

φn+1
h −φn

h ,g(φn+1
h )

)
Q
=
(

φn+1
h −φn

h ,ln
(

1+φn+1
h

)
−ln

(
1−φn+1

h

))
Q

≥
(

1+φn+1
h ,ln

(
1+φn+1

h

))
Q
−
(

1−φn+1
h ,ln

(
1−φn+1

h

))
Q

−(1+φn
h ,ln(1+φn

h ))Q−(1−φn
h ,ln(1−φn

h ))Q , (4.4b)

−
(

φ̌n+1
h ,

(
φn+1

h −φn
h

))
Q
=−

(
2φn

h−φn−1
h ,

(
φn+1

h −φn
h

))
Q

≥−1
2

(∥∥∥φn+1
h

∥∥∥2

Q
−‖φn

h‖
2
Q

)
− 1

2

∥∥∥φn
h−φn−1

h

∥∥∥2

Q
, (4.4c)

(∇φn+1
h ,∇

(
φn+1

h −φn
h

)
)=

1
2

(∥∥∥∇φn+1
h

∥∥∥2
−‖∇φn

h‖
2+
∥∥∥∇(φn+1

h −φn
h

)∥∥∥2
)

, (4.4d)

(∇(φn+1
h −φn

h ),∇
(

φn+1
h −φn

h

)
)=‖∇(φn+1

h −φn
h )‖2. (4.4e)

Meanwhile, an application of Cauchy inequality indicates the following estimate:

1
τ

∥∥∥φn+1
h −φn

h

∥∥∥2

−1,Q
+Aτ

∥∥∥∇(φn+1
h −φn

h

)∥∥∥2
≥2A1/2

∥∥∥φn+1
h −φn

h

∥∥∥2

Q
· (4.5)



1490 M. Yuan et al. / Adv. Appl. Math. Mech., 14 (2022), pp. 1477-1508

Therefore, a combination of (4.4a)-(4.5) yields

Eh

(
φn+1

h

)
−Eh (φ

n
h )+

1
4τ

(∥∥∥φn+1
h −φn

h

∥∥∥2

−1,Q
−
∥∥∥φn

h−φn−1
h

∥∥∥2

−1,Q

)
+

θ0

2

(∥∥∥φn+1
h −φn

h

∥∥∥2

Q
−
∥∥∥φn

h−φn−1
h

∥∥∥2

Q

)
≤
(
−2A1/2+

θ0

2

)∥∥∥φn+1
h −φn

h

∥∥∥2

Q
≤0, (4.6)

provided that A≥ θ2
0

16 . Therefore, by denoting a modified energy as given by (4.3), we get
the energy estimate (4.2).

Next, we will provide a convergence analysis for the proposed numerical scheme
(3.1), in the `∞(0,T;H−1)∩`2(0,T;H1) norm. We denote the exact solution as φn=φ(x,tn)
at t= tn. As usual, a regularity assumption has to be made in the error analysis, and we
denote all the upper bounds for the exact solution as C0. The following estimates hold
for Ritz projection [7]:

‖Rh ϕ‖1,p≤C‖ϕ‖1,p,, ∀1< p≤∞, (4.7a)

‖ϕ−Rh ϕ‖p+h‖ϕ−Rh ϕ‖1,p≤Chq+1‖ϕ‖q+1,p,, ∀1< p≤∞. (4.7b)

Suppose that φ∈L∞(0,T;W1,p(Ω)). By combining (4.7a) and the Sobolev imbedding the-
orem: W1,p(Ω) ↪→L∞(Ω), for d< p≤∞, there are constants C3,C4>0, such that

‖φn‖∞≤C‖φn‖1,p≤C3, ‖Rhφn‖∞≤C‖Rhφn‖1,p≤C‖φn‖1,p≤C4. (4.8)

Lemma 4.1. If φ ∈ H2(Ω), where Ω ∈ Rd, and ‖φ‖L∞ ≤ 1−δ where δ > 0, then there exists
0<h0<1 such that for any h≤h0,

‖Rhφ‖L∞≤1− 1
2

δ. (4.9)

Proof. For any vh∈Sh,

‖Rhφ‖L∞≤‖Rhφ−vh‖L∞ +‖vh‖L∞≤Ch−
d
2 ‖Rhφ−vh‖+‖vh‖L∞ .

We can choose vh as the standard Lagrange linear interpolation, and

‖vh‖L∞≤‖φ‖L∞ and ‖vh−φ‖≤Ch2‖φ‖H2 .

By the approximation of Rh (see (4.7b)),

‖Rhφ‖L∞≤‖φ‖L∞ +Ch2− d
2 ‖φ‖H2 .
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For d=2,3, we can choose h0 such that

Ch
1
2
0 ‖φ‖H2≤ δ

2
,

then
‖Rhφ‖L∞≤1− δ

2
.

Thus, we complete the proof.

By (φ,µ) we denote the exact solution to the weak formulation (2.5). We say that the
solution pair belongs to regularity of class C2 if and only if

φ∈W3,∞
(

0,T;L2
per(Ω)

)⋂
W1,∞

(
0,T;H2

per(Ω)
)

,

µ∈L∞
(

0,T;H2
per(Ω)

)
.

On the other hand, the solution of (3.1) is also mass conservative at the discrete level:

φ̄n+1= φ̄n = φ̄n−1, ∀n∈N. (4.10)

Lemma 4.2 ([53]). Let κh(·,·)=(·,·)−(·,·)Q denote the quadrature error in (2.6). We then have

|κh(ψ,χ)|≤Ch2‖∇ψ‖‖∇χ‖, ∀ψ,χ∈Sh. (4.11)

Lemma 4.3. Suppose g(·)∈W2,∞(R) and κh(g(·),·)=(g(·),·)−(g(·),·)Q, then we have

|κh(g(ψ),χ)|≤C5h2(‖∇ψ‖2
L4‖χ‖+‖∇ψ‖‖∇χ‖), ∀ψ,χ∈Sh, (4.12)

where C5=Cmax{‖g′′‖L∞ ,‖g′‖L∞} is independent of h.

Proof. Since the quadrature formula (2.6) is exact for f linear we have, by transformation
to a fixed reference triangle e0 and using the Bramble-Hilbert lemma and the Sobolev
inequality

‖ f ‖L∞(e0)≤C‖ f ‖W2
1 (e0)

,

that ∣∣∣∣Qe( f )−
∫

e
f dx
∣∣∣∣≤Ch2 ∑

|α|=2
‖Dα f ‖L1(e) .

After application to f = g(ψ)χ this implies, that∣∣∣∣Qe(g(ψ)χ)−
∫

e
g(ψ)χdx

∣∣∣∣≤Ch2 ∑
|α|=2
‖Dα(g(ψ)χ)‖L1(e) .
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Next, we will continuous to expand every term in the right hand of the above: if α=(1,0),
then

Dα(g(ψ)χ)= g′ψxχ+gχx,

since both ψ and χ are linear in e, α=(2,0) implies that

Dα(g(ψ)χ)= g′′ψ2
xχ+2g′ψxχx.

Then

‖Dα(g(ψ)χ)‖L1(e)≤
∫

e
|g′′ψ2

xχ|dx+2
∫

e
|g′ψxχx|dx

≤‖g′′‖L∞(e)‖ψx‖2
L4(e)‖χ‖L2(e)+2‖g′‖L∞(e)‖ψx‖L2(e)‖χx‖L2(e).

Similarly, for α=(1,1), then

‖Dα(g(ψ)χ)‖L1(e)≤‖g′′‖L∞(e)‖ψxψy‖L2(e)‖χ‖L2(e)

+‖g′‖L∞(e)(‖ψx‖L2(e)‖χy‖L2(e)+‖ψy‖L2(e)‖χx‖L2(e)),

and α=(0,2)

‖Dα(g(ψ)χ)‖L1(e)≤‖g′′‖L∞(e)‖ψy‖2
L4(e)‖χ‖L2(e)+2‖g′‖L∞(e)‖ψy‖L2(e)‖χy‖L2(e).

Here we have at once∣∣∣∣Qe(g(ψ)χ)−
∫

e
g(ψ)χdx

∣∣∣∣
≤Ch2(‖g′′‖L∞(e)‖∇ψ‖2

L4(e)‖χ‖L2(e)+‖g′‖L∞(e)‖∇ψ‖L2(e)‖∇χ‖L2(e)).

Then, we conclude that

|κh(g(ψ),χ)|≤Ch2 ∑
e∈Th

(‖g′′‖L∞(e)‖∇ψ‖2
L4(e)‖χ‖L2(e)+‖g′‖L∞(e)‖∇ψ‖L2(e)‖∇χ‖L2(e))

≤Ch2(‖g′′‖L∞‖∇ψ‖2
L4‖χ‖+‖g′‖L∞‖∇ψ‖‖∇χ‖)

≤C5h2(‖∇ψ‖2
L4‖χ‖+‖∇ψ‖‖∇χ‖),

where C5=Cmax{‖g′′‖L∞ ,‖g′‖L∞} is independent of h.

Before proceeding into the convergence analysis, we introduce a new norm from [59].
Let p=[u,v]T ∈

[
L2(Ω)

]2, where Ω represents an arbitrary bounded domain. Define the
G-norm to be a weighted inner product

‖p‖2
G=(p,G(−∆h)

−1p)Q, G=

 1
2
−1

−1
5
2

.
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Since G is symmetric positive definite, the norm is well-defined. Moreover,

G=

 1
2
−1

−1
5
2

=[ 1
2
−1

−1 2

]
+

[
0 0

0
1
2

]
=:G1+G2.

By the positive semi-definiteness of G1, we immediately have

‖p‖2
G=

(
p,(G1+G2)(−∆h)

−1p
)

Q
≥
(

p,G2(−∆h)
−1p

)
Q
=

1
2
‖v‖2

−1,Q. (4.13)

For any vi∈H1
per(Ω), i=0,1,2, the following equality is valid:

(
3
2

v2−2v1+
1
2

v0,(−∆h)
−1v2

)
Q
=

1
2

(∥∥p2∥∥2
G−
∥∥∥p1

∥∥∥2

G

)
+
‖v2−2v1+v0‖2

−1,Q

4
, (4.14)

where p2=[v1,v2]T, p1=[v0,v1]
T, especially, when v0=0,

‖p1‖2
G=

5
2
‖v1‖2

−1,Q.

Subsequently, the convergence result is stated in the following theorem.

Theorem 4.2. Suppose that the exact solution pair (φ,µ) is in the regularity class C2, for the
fixed final time T > 0. Let φn =φ(tn) and φn

h be the solution at time t= tn to the fully discrete
numerical scheme (3.1), for 1≤n≤N, with N ·τ=T, provided that τ and h are sufficiently small,
then we have the error estimate

‖φn+1−φn+1
h ‖−1,Q+

(
τε2

n

∑
0
‖∇(φn+1−φn+1

h )‖2

) 1
2

≤C(T,ε)(τ2+h2)

for some constant C(T,ε)>0 that is independent of τ and h.

Proof. We define ξn+1 = φn+1−φn+1
h and ηn+1 = µn+1−µn+1

h . The following error evolu-
tionary equation could be derived:

(δτξn+1,vh)Q+(∇ηn+1,∇vh)=−(Rn+1
1 ,vh)−κh(δτφn+1,vh),

(ηn+1,wh)Q+κh(µ
n+1,wh)=(g(φn+1)−g(φn+1

h ),wh)Q+κh(g(φn+1),wh)

−θ0(Rn+1
2 ,wh)Q−θ0(Tn+1

1 ,wh)Q−θ0κh(φ
n+1,wh)

+ε2(∇ξn+1,∇wh)+τ(∇Tn+1
2 ,∇wh)+(Rn+1

3 ,wh),

(4.15)
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where

δτvn+1 :=


3vn+1−4vn+vn−1

2τ
, n≥1,

v1−v0

τ
, n=0,

Rn+1
1 :=∂tφ

n+1−δτφn+1,

Rn+1
2 :=φn+1−

{
2φn−φn−1, n≥1,
φ0, n=0,

Rn+1
3 :=

{
Aτ∆

(
φn+1−φn), n≥1,

0, n=0,

Tn+1
1 :=

{
2ξn−ξn−1, n≥1,
ξ0, n=0,

Tn+1
2 :=

{
A
(
ξn+1−ξn), n≥1,

0, n=0.

By the Cauchy-Schwarz inequality, we have the following estimate (see [59]):

∥∥∥Rn+1
1

∥∥∥2
≤32τ3

∫ tn+1

tn−1

‖∂tttφ‖2 dt≤32τ3
∫ tn+1

tn−1

‖∂tttφ‖2 dt, if n≥1, (4.16a)∥∥∥Rn+1
1

∥∥∥2
≤ τ

3

∫ t1

0
‖∂ttφ‖2 dt≤ τ2

3
‖φ‖W2,∞(0,T;L2)≤C9τ2, if n=0. (4.16b)

An analogous estimate is available for the second remainder term:

∥∥∥∇Rn+1
2

∥∥∥2
≤

 32τ3
∫ tn+1

tn−1

‖∂tt∇φ‖2 dt, n≥1,

C10τ2, n=0.
(4.17)

In fact, the estimate for n=0 is based on the fact that

‖∇R1
2‖2=‖∇(φ1−φ0)‖2≤τ

∫ t1

t0

‖∂t∇φ‖2dt≤τ2‖φ‖W1,∞(0,T;H1
per(Ω))≤C10τ2.

For the third remainder term, we obtain the estimate

∥∥∥Rn+1
3

∥∥∥2
≤

 A2τ3
∫ tn+1

tn

‖∂t∆φ‖2 dt, n≥1,

0, n=0.
(4.18)

Using the definitions of Ritz projection and combining the lumped version definition of
the discrete Laplacian operator, it holds that

(∆hvh,χ)Q =−(∇vh,∇χ)
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for ∀vh,χ∈Sh,(
∇ηn+1,∇vh

)
=
(
∇µn+1−∇Rhµn+1,∇vh

)
+
(
∇Rhµn+1−∇µn+1

h ,∇vh

)
=
(
∇
(

Rhµn+1−µn+1
h

)
,∇vh

)
=
(

Rhµn+1−µn+1
h ,−∆hvh

)
Q

=
(

µn+1−µn+1
h +Rhµn+1−µn+1,−∆hvh

)
Q

=
(

ηn+1,−∆hvh

)
Q
−
(

µn+1−Rhµn+1,−∆hvh

)
Q

. (4.19)

Denote ρn+1
φ :=φn+1−Rhφn+1, σn+1

φ :=Rhφn+1−φn+1
h , taking wh=∆hvh in (4.15) and using

(4.19), we have

(δτσn+1
φ ,vh)Q−ε2(∇σn+1

φ ,∇(∆hvh))

=−(Rn+1
1 ,vh)+(g(φn+1)−g(φn+1

h ),∆hvh)Q−θ0(Rn+1
2 ,∆hvh)Q−θ0(Tn+1

1 ,∆hvh)Q

+(Rn+1
3 ,∆hvh)+(µ−Rhµn+1,−∆hvh)Q−κh(δτφn+1,vh)

−κh(µ
n+1,∆hvh)+κh(g(φn+1),∆hvh)−θ0κh(φ

n+1,∆hvh)

+τ(∇Tn+1
2 ,∇(∆hvh))−(δτρn+1

φ ,vh)Q. (4.20)

In turn, taking vh =(−∆h)
−1σn+1

φ , Eq. (4.20) can be written as follows

(δτσn+1
φ ,−∆−1

h σn+1
φ )Q+ε2(∇σn+1

φ ,∇σn+1
φ )+τ(∇Tn+1

2 ,∇σn+1
φ )

=−(Rn+1
1 ,−∆−1

h σn+1
φ )−(g(φn+1)−g(φn+1

h ),σn+1
φ )Q+θ0(Rn+1

2 ,σn+1
φ )Q

+θ0(Tn+1
1 ,σn+1

φ )Q+(µn+1−Rhµn+1,σn+1
φ )Q−κh(δτφn+1,−∆−1

h σn+1
φ )+κh(µ

n+1,σn+1
φ )

−κh(g(φn+1),σn+1
φ )+θ0κh(φ

n+1,σn+1
φ )−(δτρn+1

φ ,−∆−1
h σn+1

φ )Q−(Rn+1
3 ,σn+1

φ )

=J1+ J2+ J3+ J4+ J5+ J6+ J7+ J8+ J9+ J10+ J11 := J. (4.21)

Now look at the left-hand side of (4.21). From (4.14), we have(
δτσn+1

φ ,−∆−1
h σn+1

φ

)
Q

=


1

2τ

(∥∥pn+1
∥∥2

G−‖p
n‖2

G

)
+

1
4τ

∥∥∥σn+1
φ −2σn

φ +σn−1
φ

∥∥∥2

−1,Q
, n≥1,

1
2τ

(∥∥∥σ1
φ

∥∥∥2

−1,Q
−
∥∥∥σ0

φ

∥∥∥2

−1,Q

)
+

1
2τ

∥∥∥σ1
φ−σ0

φ

∥∥∥2

−1,Q
, n=0,

(4.22)

where
pk+1=[σk

φ,σk+1
φ ]T.
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Using the equality (3.2) indicates that

τ(∇Tn+1
2 ,∇σn+1

φ )=Aτ(∇(ξn+1−ξn),∇σn+1
φ )

=Aτ(∇(ρn+1
φ −ρn

φ),∇σn+1
φ )+Aτ(∇(σn+1

φ −σn
φ ),∇σn+1

φ )

≥1
2

Aτ(‖∇σn+1
φ ‖2−‖∇σn

φ‖2). (4.23)

Meanwhile, the estimate for the term associated with the surface diffusion is straightfor-
ward:

ε2(∇σn+1
φ ,∇σn+1

φ )= ε2‖∇σn+1
φ ‖2. (4.24)

A combination with of (4.22), (4.23) and (4.24) reveals that, the left-hand side of (4.21) is
bounded from below:

1
2τ

(∥∥∥pn+1
∥∥∥2

G
−‖pn‖2

G

)
+

1
2

Aτ

(∥∥∥∇σn+1
φ

∥∥∥2
−
∥∥∥∇σn

φ

∥∥∥2
)

+ε2
∥∥∥∇σn+1

φ

∥∥∥2
≤ J for n≥1. (4.25)

Observe that σ0
φ≡0 for n=0, and we know that A=0. As a result, we get

1
2τ

(‖σ1
φ‖2
−1,Q−‖σ0

φ‖2
−1,Q+‖σ1

φ−σ0
φ‖2
−1,Q)+ε2‖∇σ1

φ‖2≤ J, (4.26a)

1
2τ
‖σ1

φ‖2
−1,Q+ε2‖∇σ1

φ‖2≤ J. (4.26b)

Next, we study the eleven terms on the right-hand side of (4.21). Employing the (4.16a)
and Young inequality reveals that

J1≤‖Rn+1
1 ‖−1,Q‖σn+1

φ ‖−1,Q≤


64τ3

∫ tn+1

tn−1

‖∂tttφ‖2 dt+
1
8

∥∥∥σn+1
φ

∥∥∥2

−1,Q
, n≥1,

2C9τ3+
1

8τ

∥∥∥σ1
φ

∥∥∥2

−1,Q
, n=0.

(4.27)

For the nonlinear term J2, we begin with an application of the mean value theorem:

g(φn+1)−g(Rhφn+1)=
2(φn+1−Rhφn+1)

1−(λn+1)2 ,

where λn+1 ∈ Sh is between φn+1 and Rhφn+1. Moreover, from the positivity analysis,
suppose there exists a constant δ>0, ‖φn+1‖L∞≤1−δ. In turn, we get

‖Rhφn+1‖L∞≤1− 1
2

δ,
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if h is small enough, by Lemma 4.1. Therefore,

‖ 2
1−(λn+1)2 ‖≤

2
1−(1− 1

2 δ)2
:= C̃8. (4.28)

Moreover, the convex nature of logarithmic term implies the following results:(
g(Rhφn+1)−g(φn+1

h ),σn+1
φ

)
≥0. (4.29)

Immediately, using the above inequality and Poincare’s inequality yields the following
result

J2=−(g(φn+1)−g(φn+1
h ),σn+1

φ )Q

=−(g(φn+1)−g(Rhφn+1),σn+1
φ )Q−(g(Rhφn+1)−g(φn+1

h ),σn+1
φ )Q

≤C̃8‖ρn+1
φ ‖‖σn+1

φ ‖≤CC̃8‖ρn+1
φ ‖‖∇σn+1

φ ‖

≤C8Ch4

2ε2 ‖φ
n+1‖2

H2+
ε2

8
‖∇σn+1

φ ‖2, (4.30)

where C8=(CC̃8)2.
The standard finite element approximation estimate could be applied to handle the

term J5:

J5=(µn+1−Rhµn+1,σn+1
φ )Q

≤‖(I−Rh)µ
n+1‖−1,Q‖∇σn+1

φ ‖

≤4Ch4

ε2 ‖µ
n+1‖2

H2+
ε2

16
‖∇σn+1

φ ‖2. (4.31)

By Lemma 4.2, we have

J6=−κh(δτφn+1,−∆−1
h σn+1

φ )

≤Ch2‖∇δτφn+1‖‖∇(∆−1
h σn+1

φ )‖
≤Ch2‖∇δτφn+1‖‖σn+1

φ ‖−1,Q

≤2Ch4

τ

∫ tn+1

tn

‖∂t∇φ‖2dt+
1
8
‖σn+1

φ ‖2
−1,Q. (4.32)

Similarly, the following bounds could be derived:

J7=κh(µ
n+1,σn+1

φ )≤ 4Ch4

ε2 ‖∇µn+1‖2+
ε2

16
‖∇σn+1

φ ‖2, (4.33a)

J9= θ0κh(φ
n+1,σn+1

φ )≤ 4Ch4θ2
0

ε2 ‖∇φn+1‖2+
ε2

16
‖∇σn+1

φ ‖2. (4.33b)
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Moreover, an application of Lemma 4.3 yields

J8≤κh(g(φn+1),σn+1
φ )

≤C5h2(‖∇φn+1‖2
L4‖σn+1

φ ‖+‖∇φn+1‖‖∇σn+1
φ ‖)

≤8(CC5)2h4

ε2 (‖∇φn+1‖4
L4+‖∇φn+1‖2)+

ε2

16
‖∇σn+1

φ ‖2. (4.34)

The term J10 could be analyzed in a similar manner:

J10=−(δτρn+1
φ ,−∆−1

h σn+1
φ )Q≤‖δτρn+1

φ ‖−1,Q‖σn+1
φ ‖−1,Q

≤2‖δτρn+1
φ ‖2

−1,Q+
1
8
‖σn+1

φ ‖2
−1,Q≤

2Ch4

τ

∫ tn+1

tn

‖∂tφ‖2dt+
1
8
‖σn+1

φ ‖2
−1,Q. (4.35)

For the J3 term, we see that

J3≤θ0‖∇Rn+1
2 ‖‖σn+1

φ ‖−1,Q

≤


64θ2

0τ3
∫ tn+1

tn−1

‖∂tt∇φ‖2 dt+
1
8

∥∥∥σn+1
φ

∥∥∥2

−1,Q
, n≥1,

2θ2
0C10τ3+

1
8τ

∥∥∥σ1
φ

∥∥∥2

−1,Q
, n=0.

(4.36)

For the J4 term, we define Tn+1
1,a := 2ρn

φ−ρn−1
φ and Tn+1

1,h := 2σn
φ−σn−1

φ . It is obvious that
Tn+1

1 =Tn+1
1,a +Tn+1

1,h , so that the following bound is valid:

J4=θ0(Tn+1
1 ,σn+1

φ )Q = θ0(Tn+1
1,a ,σn+1

φ )Q+θ0(Tn+1
1,h ,σn+1

φ )Q

≤θ0‖Tn+1
1,a ‖−1,Q‖∇σn+1

φ ‖+θ0‖Tn+1
1,h ‖−1,Q‖∇σn+1

φ ‖

≤


ε2

4
‖∇σn+1

φ ‖2+
4θ2

0Ch4

ε2 (4‖φn‖2
H2+‖φn−1‖H2)+

4θ2
0

ε2 (4‖σn
φ‖2
−1,Q+‖σ

n−1
φ ‖2

−1,Q), n≥1,

3ε2

8
‖∇σ1

φ‖2+
2θ2

0Ch4

ε2 ‖φ0‖2
H2 , n=0.

Lastly, repeating a similar process as in (4.18) gives an estimate for J11 as follows

J11=τ(Rn+1
3 ,σn+1

φ )=Aτ(∇(φn+1−φn),∇σn+1
φ )≤Aτ‖∇(φn+1−φn)‖‖∇σn+1

φ ‖

≤2A2τ3

ε2

∫ tn+1

tn

‖∂t∇φ‖2dt+
ε2

8
‖∇σn+1

φ ‖2.

Substituting these estimates into (4.21), and multiplying by 2τ on both sides, we have,
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for n≥1,(∥∥∥pn+1
∥∥∥2

G
−‖pn‖2

G

)
+Aτ2

(∥∥∥∇σn+1
φ

∥∥∥2
−
∥∥∥∇σn

φ

∥∥∥2
)
+

ε2τ

2

∥∥∥∇σn+1
φ

∥∥∥2

≤τ‖σn+1
φ ‖2

−1,Q+128τ4
∫ tn+1

tn−1

‖∂tttφ‖2 dt+
C8Ch4τ

ε2 ‖φn+1‖2
H2+128θ2

0τ4
∫ tn+1

tn−1

‖∂tt∇φ‖2 dt

+
8θ2

0Ch4τ

ε2 (4‖φn‖2
H2+‖φn−1‖H2)+

8θ2
0τ

ε2 (4‖σn
φ‖2
−1,Q+‖σn−1

φ ‖2
−1,Q)

+
8Ch4τ

ε2 ‖µn+1‖2
H2+4Ch4

∫ tn+1

tn

‖∂t∇φ‖2dt+
8Ch4τ

ε2 ‖∇µn+1‖2+
16C2

5Ch4τ

ε2 ‖∇φn+1‖4
L4

+
8Ch4τ

ε2 (θ2
0+2C2

5)‖∇φn+1‖2+4Ch4
∫ tn+1

tn

‖∂tφ‖2dt+
4A2τ4

ε2

∫ tn+1

tn

‖∂t∇φ‖2dt. (4.37)

For n=0, a similar inequality could be derived:

1
2
‖σ1

φ‖2
−1,Q+

τε2

2
‖∇σ1

φ‖2

≤τ

2

∥∥∥σ1
φ

∥∥∥2

−1,Q
+

C8Ch4τ

ε2 ‖φ1‖2
H2+

4θ2
0Ch4τ

ε2 ‖φ0‖2
H2+

8Ch4τ

ε2 ‖µ1‖2
H2

+4Ch4
∫ t1

t0

‖∂t∇φ‖2dt+
8Ch4τ

ε2 ‖∇µ1‖2+
16C2

5Ch4τ

ε2 ‖∇φ1‖4
L4

+
8Ch4τ

ε2 (θ2
0+2C2

5)‖∇φ1‖2+4Ch4
∫ t1

t0

‖∂tφ‖2dt+4C9τ4+4θ2
0C10τ4, (4.38)

or equivalently,

5
2
‖σ1

φ‖2
−1,Q+

τε2

2
‖∇σ1

φ‖2

≤5τ

2

∥∥∥σ1
φ

∥∥∥2

−1,Q
+

5C8Ch4τ

ε2 ‖φ1‖2
H2+

20θ2
0Ch4τ

ε2 ‖φ0‖2
H2

+
40Ch4τ

ε2 ‖µ1‖2+20Ch4
∫ t1

t0

‖∂t∇φ‖2dt+
40Ch4τ

ε2 ‖∇µ1‖2

+
80C2

5Ch4τ

ε2 ‖∇φ1‖4
L4+

40Ch4τ

ε2 (θ2
0+2C2

5)‖∇φ1‖2

+20Ch4
∫ t1

t0

‖∂tφ‖2dt+20C9τ4+20θ2
0C10τ4, (4.39)

in which

‖p1‖2
G=

5
2
‖σ1

φ‖2
−1,Q and ‖pn+1‖2

G≥
1
2
‖σn+1

φ ‖2
−1,Q.
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Summing (4.37) from k=1 to k=n+1, adding (4.39), keeping in mind of (4.13) (the rela-
tionship between G-norm and H−1-norm), we arrive at the following estimate for n≥1:

1
2
‖σn+1

φ ‖2
−1,Q+

ε2τ

2

n

∑
k=0
‖∇σk+1

φ ‖2

≤
∥∥∥pn+1

∥∥∥2

G
+Aτ2

∥∥∥∇σn+1
φ

∥∥∥2
+

ε2τ

2

n

∑
k=0

∥∥∥∇σk+1
φ

∥∥∥2

≤τ‖σn+1
φ ‖2

−1,Q+
(5

2
+

40θ2
0

ε2

)
τ

n−1

∑
k=0

∥∥∥σk+1
φ

∥∥∥2

−1,Q
+R,

where

R=
40Ch4τ

ε2

n

∑
k=0
‖µk+1‖2

H2+
40Ch4τ

ε2

n

∑
k=0
‖∇µk+1‖2+128τ4

(∫ T

0
‖∂tttφ‖2dt+θ2

0

∫ T

0
‖∂tt∇φ‖2dt

)
+20Ch4

(∫ T

0
‖∂t∇φ‖2dt+

∫ T

0
‖∂tφ‖2dt

)
+

5Ch4τ

ε2 (C8+8θ2
0)

n

∑
k=0
‖φk+1‖2

H2

+
80Ch4τ

ε2

n

∑
k=0
‖∇φk+1‖4

L4+
40Ch4τ

ε2 (θ2
0+2C2

5)
n

∑
k=0
‖∇φk+1‖2+

4A2τ4

ε2

∫ T

0
‖∂t∇φ‖2dt

+20(C9+θ2
0C10)τ

4

≤C(T,ε)(τ4+h4),

where C(T,ε) is independent of τ and h, under a technical assumption

0<τ≤ 1
4

:=τ1. (4.40)

Finally, an application of the discrete Gronwall inequality leads to the desired conver-
gence result

‖σn+1
φ ‖2

−1,Q+ε2τ
n

∑
k=0
‖∇σk+1

φ ‖2≤C(T,ε)(τ4+h4),

which completes the proof.

Remark 4.1. Here the restriction condition (4.40) is simple and does not depend on ε,
which may be different if the L2 norm estimates are considered. This comes from the
convexity property of the nonlinear term which has been used in H−1 norm analysis.

5 Numerical results

In this section, we present some numerical simulation results using the proposed scheme
(3.1) to verify the theoretical results. We demonstrate, in particular, the positivity of the
numerical solutions.
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In the numerical test, we use a slightly different formulation of the Cahn-Hilliard
equation, which allows for a comparison with the so-called obstacle potential. Specifi-
cally, we will use the standard Ginzburg-Landau free energy

E[φ]=
∫

Ω

{
f (φ)+

ε2

2
|∇φ|2

}
dx,

where f (φ)= fc(φ)− fe(φ) and

fc(φ)=
1

2θ0
[(1−φ)ln(1−φ)+(1+φ)ln(1+φ)], fe(φ)=

1
2
(φ−1)(φ+1). (5.1)

Importantly, as θ0→∞, f tends to the obstacle potential

fobs(θ)=


1
2
(φ−1)(φ+1), if −1<φ<1,

∞, if |φ|≥1,

which has been investigated elsewhere [5, 6]. While we are only interested in the case
of finite values of θ0, it is interesting to explore the effects of increasing θ0. For finite θ0,
clearly f ′e(φ)=φ and

f ′c(φ)=
1

2θ0
(ln(1+φ)−ln(1−φ)).

In turn, the chemical potential for the Cahn-Hilliard model could be expressed as

µ= f ′c(φ)− f ′e(φ)−ε2∆φ.

Next, two examples will be simulated to verify the theoretical result. The first example is
aimed to test the numerical convergence associated with the numerical scheme and the
second one is to present some results associated with the phase evolution.

Example 5.1. Here we give a convergence test for the proposed numerical scheme. The
initial condition is given by

φ(x,y,0)=1.8

(
1−cos

( 4xπ
3.2

)
2

)1−cos
(

2yπ
3.2

)
2

−0.9. (5.2)

To get the convergence rate, “the Cauchy difference”, δφ, is computed between ap-
proximate solutions obtained with successively finer time sizes. Since the exact solution
is unknown, we compute the errors by adjacent time step in the numerical accuracy test,
where the coarse spacial step hc is twice as much as the fine step h f . The parameters
are given by: (domain size) L = 3.2; (interfacial parameter) ε = 0.2; (mobility) M ≡ 1;
(quench parameter) θ0 = 3.0; (final time) T = 0.4; (Newton iteration stopping tolerance)
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Table 1: Numerical errors and convergence rates for the proposed numerical scheme at T=0.4.

hc h f ‖eφ‖∞ Rate ‖eφ‖2 Rate
3.2
16

3.2
32 1.3811e-01 – 1.0976e-01 –

3.2
32

3.2
64 3.7976e-02 1.8626 3.0280e-02 1.8579

3.2
64

3.2
128 9.7227e-03 1.9657 7.7705e-03 1.9623

3.2
128

3.2
256 2.4478e-03 1.9898 1.9580e-03 1.9886

3.2
256

3.2
512 6.1343e-04 1.9965 4.9085e-04 1.9961

σ=10−6; (stabilization parameter) A=1. The refinement path for the proposed second-
order scheme is linear, τ=0.1h. We only consider the periodic boundary condition, while
the case of homogeneous Neumann boundary condition could be similarly handled. The
test results are displayed in Table 1. We observe that the optimal convergence rate is
achieved, with perfect second order accuracy in both time and space.

Example 5.2. Consider the spinodal decomposition over the domain Ω=(0,1)2, with the
physical parameters ε=5.0×10−3, θ0=3.0, as well as the numerical resolution h=1/256,
τ=5×10−6. The initial data is given by

φ(x,y,0)=0.2+ri,j, (5.3)

where ri,j is uniformly distributed random numbers in [−0.02,0.02].

Figure 1: Evolution of phase variables at t=0.004, 0.01, 0.02, 0.1, 0.4 and 1, respectively.
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Figure 2: (a): The time evolution of the minimum and the maximum value of φ; (b): The error development
of the total mass for φ.

The second order scheme is implemented with stabilization parameter A=1 to show
the details of spinodal decomposition with random initial data. Fig. 1 displays the snap-
shot plot of φ at t = 0.004, 0.01, 0.02, 0.1, 0.4 and 1, respectively. Moreover, the maximum
values and minimum values of the phase variable are presented in Fig. 2(a). In particular,
a larger version of Fig. 2(a) implies that the numerical solution is always located in the
interval (−1,1), which is in agreement with the theory analysis. In addition, we present
the error evolution of the total mass of φ (away from the mass of φ0) in Fig. 2(b), which
demonstrates the mass conservation property. The energy evolution of the numerical
solution is illustrated in Fig. 3, and a clear energy decay is observed.

6 Concluding remarks

In this paper, we propose and analyze a second-order accurate in time, mass lumped
finite element numerical scheme for the Cahn-Hilliard equation with logarithmic Flory-
Huggins energy potential. which contains an implicit treatment of the logarithmic term
and the linear surface diffusion terms, as well as an explicit update of the concave expan-
sive linear terms. The backward differentiation formula (BDF) stencil is applied in the
temporal discretization. In the chemical potential approximation, both the logarithmic
singular terms and the surface diffusion term are treated implicitly, while the expansive
term is explicitly updated via a second-order Adams-Bashforth extrapolation formula.
An artificial Douglas-Dupont regularization term is added to ensure the energy dissi-
pation. Mass lumped finite element approximation and the singular nature of the loga-
rithmic term ensure that the proposed numerical algorithm has a unique solution with
preserved positivity for the logarithmic arguments, so that the finite element numeri-
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Figure 3: Evolution of the energy over time, with τ=5×10−6.

cal solution is always located in the interval (−1,1) for all time in the piecewise sense.
Moreover, a modified energy stability is theoretically justified, and the convergence anal-
ysis and error estimate have been established in the `∞(0,T;H−1)∩`2(0,T;H1) norm. Fi-
nally, two numerical examples are carried out to show the robustness and accuracy of the
proposed numerical scheme, especially the performance of the spinodal decomposition
phenomenon.
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