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Abstract. This paper concerns the asymptotic behavior of solutions to one-
dimensional semilinear parabolic equations with boundary degeneracy both
in bounded and unbounded intervals. For the problem in a bounded inter-
val, it is shown that there exist both nontrivial global solutions for small initial
data and blowing-up solutions for large one if the degeneracy is not strong.
Whereas in the case that the degeneracy is strong enough, the nontrivial solu-
tion must blow up in a finite time. For the problem in an unbounded interval,
blowing-up theorems of Fujita type are established. It is shown that the critical
Fujita exponent depends on the degeneracy of the equation and the asymptotic
behavior of the diffusion coefficient at infinity, and it may be equal to one or
infinity. Furthermore, the critical case is proved to belong to the blowing-up
case.
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1 Introduction

In this paper, we consider the following semilinear degenerate equation of the
form:

∂u

∂t
−

∂

∂x

(

a(x)
∂u

∂x

)

= f (x,t,u), 0< x<1, t>0, (1.1)
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where a∈C([0,1])∩C1((0,1]) such that a>0 in (0,1] and a(0)=0. As a parabolic
equation with boundary degeneracy, (1.1) is degenerate at x=0, a portion of the
lateral boundary. Such equations are used to describe some models, such as the
Budyko-Sellers climate model [18], the Black-Scholes model coming from the op-
tion pricing problem [3], and a simplified Crocco-type equation coming from the
study on the velocity field of a laminar flow on a flat plate [7]. The typical case of
a is

a(x)= xλ , x∈ [0,1], λ>0. (1.2)

In recent years, the null controllability of the control system governed by (1.1)
was studied in [1, 8, 9, 17, 22, 25, 26]. In particular, the following control system
was studied:

∂u

∂t
−

∂

∂x

(

xλ ∂u

∂x

)

+c(x,t)u=h(x,t)χω , (x,t)∈ (0,1)×(0,T), (1.3)







u(0,t)=u(1,t)=0, if 0<λ<1,

lim
x→0+

xλ ∂u

∂x
(x,t)=u(1,t)=0, if λ≥1,

t∈ (0,T), (1.4)

u(x,0)=u0(x), x∈ (0,1), (1.5)

where λ>0,c∈ L∞((0,1)×(0,T)). It was shown that the system (1.3)-(1.5) is null
controllable if 0 < λ < 2, while not if λ ≥ 2. Although the system (1.3)-(1.5) is
not null controllable for λ ≥ 2, it was proved in [11, 19, 21] and [4–6] that it is
approximately controllable in L2((0,1)) and regional null controllable for each
λ>0, respectively.

In this paper, we study the asymptotic behavior of solutions to (1.1) with

f (x,t,u)=up , (x,t,u)∈ (0,1)×(0,+∞)×R, p>1.

That is to say, we consider the following problem:

∂u

∂t
−

∂

∂x

(

a(x)
∂u

∂x

)

=up, (x,t)∈ (0,1)×(0,T), (1.6)

lim
x→0+

a(x)
∂u

∂x
(x,t)=0, u(1,t)=0, t∈ (0,T), (1.7)

u(x,0)=u0(x), x∈ (0,1). (1.8)

By a weighted energy estimate, it is shown that the asymptotic behavior of so-
lutions to the problem (1.6)-(1.8) depends on the degenerate rate of a at x = 0.
Precisely, it is assumed that a∈C([0,1])∩C1((0,1]) satisfies

a(0)=0, a(x)>0 for 0< x≤1. (1.9)
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Furthermore, a satisfies one of the following two asymptotic behaviors as x→0+:

x

a(x)
is integrable near x=0 (1.10)

or

lim
x→0+

|a′(x)|

a1/2(x)
<+∞ and lim

x→0+

a(x)

xγ
>0 for some constant γ≥2. (1.11)

For the typical a given by (1.2), it satisfies (1.10) if 0<λ<2, while satisfies (1.11) if
λ≥2. In this paper it is proved that any nontrivial solution to the problem (1.6)-
(1.8) blows up in a finite time if a satisfies (1.9) and (1.11), while there exist both
nontrivial global and blowing-up solutions if a satisfies (1.9) and (1.10).

We also study the following problem in an unbounded interval:

∂u

∂t
−

∂

∂x

(

a(x)
∂u

∂x

)

=up, (x,t)∈ (0,+∞)×(0,T), (1.12)

lim
x→0+

a(x)
∂u

∂x
(x,t)=0, t∈ (0,T), (1.13)

u(x,0)=u0(x), x∈ (0,+∞), (1.14)

where p>1, and a∈C([0,+∞))∩C1((0,+∞)) satisfies

a(0)=0, a(x)>0 for x>0. (1.15)

Furthermore, a satisfies the asymptotic behavior (1.10) or (1.11) as x → 0+. For
the case that a satisfies (1.15) and (1.11), it is proved that any nontrivial solution
to the problem (1.12)-(1.14) must blow up in a finite time for p > 1. As to the
case that a satisfies (1.15) and (1.10), the asymptotic behavior of solutions to the
problem (1.12)-(1.14) is determined by the asymptotic behavior of a as x→+∞. It
is assumed that a also satisfies

lim
x→0+

x2

a(x)
<+∞, lim

x→+∞

xa′(x)

a(x)
=λ, lim

x→+∞

a(x)

x2
>−|λ−2|, (1.16)

where λ ≥ 0 is a constant. Owing to (1.15), it is noted that the third formula
in (1.16) is trivial for λ 6= 2. Using weighted energy estimates and suitable self-
similar supersolutions, we prove that, if a satisfies (1.15), (1.10) and (1.16), the
critical Fujita exponent to the problem (1.12)-(1.14) is max{3−λ,1}. That is to say,
in the case that a satisfies (1.15), (1.10) and (1.16), any nontrivial solution to the
problem (1.12)-(1.14) must blow up in a finite time if 1< p<max{3−λ,1}, while
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there are both nontrivial global and blowing-up solutions to the problem (1.12)-
(1.14) if p > max{3−λ,1}. Furthermore, the critical case p = 3−λ for λ ∈ [0,2)
belongs to the blowing-up case under the following additional condition:

lim
x→+∞

a(x)

xλ
<+∞. (1.17)

Summing up, it is shown that the critical Fujita exponent to the problem (1.12)-
(1.14) is

pc=











3−λ, if a satisfies (1.15),(1.10) and (1.16) with 0≤λ<2,

1, if a satisfies (1.15),(1.10) and (1.16) with λ≥2,

+∞, if a satisfies (1.15) and (1.11).

In particular, pc =1 if a is suitably large as x→+∞, pc=+∞ if a is suitably small
as x→0+.

In 1966, Fujita [12] proved that for the Cauchy problem of the semilinear equa-
tion

∂u

∂t
−∆u=up , x∈R

n, t>0,

any nontrivial solution must blow up in a finite time if 1 < p < 1+ n
2 , whereas

there exist both nontrivial global and blowing-up solutions when p> 1+ n
2 . For

this problem, pc =1+ n
2 is called the critical Fujita exponent, and the critical case

p = pc was proved to belong to the blowing-up case in [13, 15]. Fujita revealed
an important topic of nonlinear partial differential equations. And there have
been a great number of extensions of Fujita’s results in several directions since
then, including similar results for numerous of quasilinear parabolic equations
and systems in various of geometries with nonlinear sources or nonhomogeneous
boundary conditions, see the survey papers [10, 16] and also the recent papers
[2, 14, 23, 24, 27].

In this paper, we study the asymptotic behavior of solutions to the problem
(1.6)-(1.8) in a bounded interval and the problem (1.12)-(1.14) in an unbounded
interval. The methods used in this paper are similar to the ones in [20], where the
following special case was considered:

a(x)= xλ , x≥0. (1.18)

For this special a given by (1.18), it satisfies (1.10), (1.16) and (1.17) if 0< λ< 2,
while satisfies (1.11) if λ ≥ 2. For the blowing-up of solutions to the problem
(1.6)-(1.8) in a bounded interval and the problem (1.12)-(1.14) in an unbounded
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interval, we apply the method of weighted energy estimates to determine the in-
teraction of the degenerate diffusions and the reactions, and the key is to choose
appropriate weights. To prove the global existence of nontrivial solutions, we
construct suitable self-similar supersolutions. Since the diffusion coefficients are
more general functions in this paper, the weights and self-similar supersolutions
are more complicated, and we have to overcome some technical difficulties. Fur-
thermore, for the critical case p=pc when a satisfies (1.15), (1.10), (1.16) and (1.17),
we need a series of elaborate energy estimates.

The paper is organized as follows. Main results are stated in Section 2. The
problem (1.6)-(1.8) in a bounded interval and the problem (1.12)-(1.14) in an un-
bounded interval are studied in Sections 3 and 4, respectively. Finally, we state
the results for the problems with inner degeneracy in Section 5.

2 Main results

Solutions to the problems (1.6)-(1.8) and (1.12)-(1.14) are defined as follows.

Definition 2.1. Let 0<T≤+∞. A nonnegative function u is said to be a subsolution

(supersolution, solution) to the problem (1.6)-(1.8) in (0,T), if

(i) For any 0< T̃<T, u∈L∞((0,1)×(0,T̃)), and
∂u

∂t
, a

1
2

∂u

∂x
∈L2((0,1)×(0,T̃)).

(ii) For any 0< T̃<T and any nonnegative function ϕ∈C1([0,1]×[0,T̃]) vanishing

at x=1, it holds that

∫ T̃

0

∫ 1

0

(

∂u

∂t
(x,t)ϕ(x,t)+a(x)

∂u

∂x
(x,t)

∂ϕ

∂x
(x,t)

)

dxdt

≤ (≥,=)
∫ T̃

0

∫ 1

0
up(x,t)ϕ(x,t)dxdt.

(iii) u(1,·)≤ (≥,=)0 in (0,T) and u(·,0)≤ (≥,=)u0(·) in (0,1) in the sense of trace.

Definition 2.2. Let 0<T≤+∞. A nonnegative function u is said to be a subsolution

(supersolution, solution) to the problem (1.12)-(1.14) in (0,T), if

(i) For any 0 < T̃ < T and any R > 0, u ∈ L∞((0,+∞)×(0,T̃)), and
∂u

∂t
, a

1
2

∂u

∂x
∈

L2((0,R)×(0,T̃)).
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(ii) For any 0<T̃<T and any nonnegative function ϕ∈C1([0,+∞)×[0,T̃]) vanishing

when x is large, it holds that

∫ T̃

0

∫ +∞

0

(

∂u

∂t
(x,t)ϕ(x,t)+a(x)

∂u

∂x
(x,t)

∂ϕ

∂x
(x,t)

)

dxdt

≤ (≥,=)
∫ T̃

0

∫ +∞

0
up(x,t)ϕ(x,t)dxdt.

(iii) u(·,0)≤ (≥,=)u0(·) in (0,+∞) in the sense of trace.

Similarly to [20], one can establish the well-posedness and the comparison
principles for the problems (1.6)-(1.8) and (1.12)-(1.14).

Proposition 2.1. Assume that a∈C([0,1])∩C1((0,1]) satisfies (1.9).

(i) For any 0≤ u0 ∈ L∞((0,1)) with a
1
2 u′

0 ∈ L2((0,1)), there is a unique solution to

the problem (1.6)-(1.8) locally in time.

(ii) Assume that û and ǔ are a supersolution and a subsolution to the problem (1.6)-

(1.8) in (0,T), respectively. Then ǔ≤ û in (0,1)×(0,T).

Proposition 2.2. Assume that a∈C([0,+∞))∩C1((0,+∞)) satisfies (1.15).

(i) For any 0 ≤ u0 ∈ L∞((0,+∞)) with a
1
2 u′

0 ∈ L2((0,R)) for each R > 0, there is

a unique solution to the problem (1.12)-(1.14) locally in time.

(ii) Assume that û and ǔ are a supersolution and a subsolution to the problem (1.12)-

(1.14) in (0,T), respectively. Then ǔ≤ û in (0,+∞)×(0,T).

If u is a solution to the problem (1.6)-(1.8) (or to the problem (1.12)-(1.14)) in
(0,+∞), we say that u is a global solution in time. Otherwise, there exists T > 0
such that u is a solution in (0,T) and satisfies

lim
t→T−

sup
(0,1)

u(·,t)=+∞ (or lim
t→T−

sup
(0,+∞)

u(·,t)=+∞),

and we say that u blows up in a finite time.
The main results of the paper are the following theorems.

Theorem 2.1. Assume that a∈C([0,1])∩C1((0,1]) satisfies (1.9) and (1.10). The so-

lution to the problem (1.6)-(1.8) exists globally in time if u0 is small, while blows up in

a finite time if u0 is large.
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Theorem 2.2. Assume that a∈C([0,1])∩C1((0,1]) satisfies (1.9) and (1.11). Then any

nontrivial solution to the problem (1.6)-(1.8) must blow up in a finite time.

Theorem 2.3. Assume that a ∈ C([0,+∞))∩C1((0,+∞)) satisfies (1.15), (1.10) and

(1.16) with 0≤λ<2.

(i) If 1<p<3−λ, then any nontrivial solution to the problem (1.12)-(1.14) must blow

up in a finite time.

(ii) If p>3−λ, then the solution to the problem (1.12)-(1.14) exists globally in time if

u0 is small, while blows up in a finite time if u0 is large.

Theorem 2.4. Assume that a ∈ C([0,+∞))∩C1((0,+∞)) satisfies (1.15), (1.10) and

(1.16) with λ≥ 2. For p> 1, the solution to the problem (1.12)-(1.14) exists globally in

time if u0 is small, while blows up in a finite time if u0 is large.

Theorem 2.5. Assume that a∈C([0,+∞))∩C1((0,+∞)) satisfies (1.15), (1.10), (1.16)

and (1.17) with 0≤λ<2. For p=3−λ, any nontrivial solution to the problem (1.12)-

(1.14) must blow up in a finite time.

Theorem 2.6. Assume that a ∈ C([0,+∞))∩C1((0,+∞)) satisfies (1.15) and (1.11).

Then any nontrivial solution to the problem (1.12)-(1.14) must blow up in a finite time.

3 Problem in a bounded interval

In this section, we prove Theorems 2.1 and 2.2 for the problem (1.6)-(1.8) in a
bounded interval.

Proof of Theorem 2.1. First consider the global case. Due to (1.9) and (1.10), x/a(x)
is integrable on [0,1]. We study self-similar supersolutions to (1.6) of the form

û(x,t)=(t+L)
− 1

p−1

(

1

L

∫ 1

0

s

a(s)
ds−

1

t+L

∫ x

0

s

a(s)
ds

)

, 0≤ x≤1, t≥0,

where L≥1 is a constant to be determined later. Owing to L≥1 and p>1, a direct

calculation shows that

∂û

∂t
−

∂

∂x

(

a(x)
∂û

∂x

)

− ûp (3.1)

=(t+L)
−

p
p−1

(

1−
1

(p−1)L

∫ 1

0

s

a(s)
ds+

p

(p−1)(t+L)

∫ x

0

s

a(s)
ds
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−

(

1

L

∫ 1

0

s

a(s)
ds−

1

t+L

∫ x

0

s

a(s)
ds

)p
)

≥ (t+L)
−

p
p−1

(

1−
1

(p−1)L

∫ 1

0

s

a(s)
ds−

1

L

(

∫ 1

0

s

a(s)
ds

)p
)

, 0< x<1, t>0.

Set

L0=
1

p−1

∫ 1

0

s

a(s)
ds+

(

∫ 1

0

s

a(s)
ds

)p

+1.

For each L≥L0, one gets from (3.1) that

∂û

∂t
−

∂

∂x

(

a(x)
∂û

∂x

)

− ûp≥0, 0< x<1, t>0.

It is noted that

lim
x→0+

a(x)
∂û

∂x
(x,t)=0, û(1,t)≥0, t>0.

Therefore, û is a supersolution to the problem (1.6)-(1.8) if

u0(x)≤ û(x,0), 0< x<1. (3.2)

Thanks to Proposition 2.1 (ii), there is a global solution to the problem (1.6)-(1.8)

if u0 satisfies (3.2).

Turn to the blowing-up case. Set

ζ(x)=

{

2, 0≤ x≤1/2,

1+cos(2x−1)π, 1/2< x≤1.

It is clear that ζ∈C1
(

[0,1]
)

is piecewise smooth, and satisfies ζ′(0)=0 and ζ(1)=0.

Owing to (1.9), one gets that

(

a(x)ζ′(x)
)′
=−2πa′(x)sin(2x−1)π−4π2a(x)cos(2x−1)π

≥−2π|a′(x)|−4π2a(x)cos(2x−1)π

≥−4π2

(

a(x)+
|a′(x)|

2π

)

(

1+cos(2x−1)π
)

≥−4π2Mζ(x), 1/2< x<1,

where

M=sup

{

a(x)+
|a′(x)|

2π
: 1/2< x<1

}

.
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Assume that u is a global solution to the problem (1.6)-(1.8). It follows from Defi-

nition 2.1 and the Hölder inequality that u satisfies

d

dt

∫ 1

0
u(x,t)ζ(x)dx

=
∫ 1

0

∂

∂x

(

a(x)
∂u

∂x

)

ζ(x)dx+
∫ 1

0
up(x,t)ζ(x)dx

≥−4π2M
∫ 1

0
u(x,t)ζ(x)dx+

(

∫ 1

0
ζ(x)dx

)1−p(∫ 1

0
u(x,t)ζ(x)dx

) p

≥−4π2M
∫ 1

0
u(x,t)ζ(x)dx+21−p

(

∫ 1

0
u(x,t)ζ(x)dx

) p

, t>0.

If u0 is sufficiently large such that

∫ 1

0
u0(x)ζ(x)dx≥

(

2p+2π2M
)

1
p−1 ,

then
d

dt

∫ 1

0
u(x,t)ζ(x)dx≥2−p

(

∫ 1

0
u(x,t)ζ(x)dx

) p

, t>0.

Therefore, there exists T>0 such that

lim
t→T−

∫ 1

0
u(x,t)ζ(x)dx=+∞,

which leads to

lim
t→T−

sup
(0,1)

u(·,t)=+∞.

That is to say, u must blow up in a finite time.

Proof of Theorem 2.2. Thanks to (1.9) and (1.11), there exist two positive constants

M1 and M2 such that

−M1a
1
2 (x)≤ a′(x)≤M1a

1
2 (x), a(x)≥M2xγ, 0< x<1. (3.3)

Set

ζδ(x)=

(

∫ 1

x

1

a(s)
ds

)δ

, 0< x≤1,

where 0<δ< 1
γ is a constant to be determined. It is clear that ζδ∈C2((0,1]) satisfies

ζδ(1)=0, ζδ(x)>0 for 0< x<1,
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and
(

a(x)ζ′δ(x)
)′
=

δ(δ−1)

a(x)

(

∫ 1

x

1

a(s)
ds

)δ−2

, 0< x<1. (3.4)

It follows from the second formula in (3.3) that

∫ 1

x

1

a(s)
ds≤

1

M2(γ−1)

(

1

xγ−1
−1

)

, 0< x<1.

Hence, ζδ ∈ L1((0,1)) and there exists a constant M3 > 0 independent of δ such

that
∫ 1

0
ζδ(x)dx≤M3. (3.5)

It follows from (1.9) and the first formula in (3.3) that

1

a(x)
≥

a′(x)

M1a3/2(x)
=

2

M1

(

−a−
1
2 (x)

)′
, 0< x<1,

which yields
∫ 1

x

1

a(s)
ds≥

2

M1

(

a−
1
2 (x)−a−

1
2 (1)

)

, 0< x<1. (3.6)

Due to (1.9), there exists x0∈ (0,1) such that

a(x)<
a(1)

4
, 0≤ x≤ x0,

which, together with (3.4), leads to

∫ 1

x

1

a(s)
ds≥

1

M1a1/2(x)
, 0< x< x0. (3.7)

Hence,

1

a(x)

(

∫ 1

x

1

a(s)
ds

)−2

≤M2
1, 0< x< x0. (3.8)

Thanks to (3.4), (3.8) and (1.9), there exists a constant M4 > 0 independent of δ

such that
(

a(x)ζ′δ(x)
)′
≥−M4δζδ(x), 0< x<1. (3.9)

For 0< ε< 1
2 , let µε ∈C∞([0,1]) satisfy

µε(x)=

{

0, 0≤ x≤ ε,

1, 2ε≤ x≤1,
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and

0≤µε(x)≤1, 0≤µ′
ε(x)≤

2

ε
,
∣

∣µ′′
ε (x)

∣

∣≤
4

ε2
, 0≤ x≤1.

Assume that u is a global solution to the problem (1.6)-(1.8). It follows from Defi-

nition 2.1 that

d

dt

∫ 1

0
u(x,t)µε(x)ζδ(x)dx

=
∫ 1

0
u(x)

(

a(x)(µε(x)ζδ(x))
′
)′

dx+
∫ 1

0
up(x,t)µε(x)ζδ(x)dx

=
∫ 1

0
u(x)µε(x)

(

a(x)ζ′δ(x)
)′

dx+
∫ 2ε

ε
u(x)µ′

ε(x)
(

2a(x)ζ′δ(x)+a′(x)ζδ(x)
)

dx

+
∫ 2ε

ε
u(x)a(x)µ′′

ε (x)ζδ(x)dx+
∫ 1

0
up(x,t)µε(x)ζδ(x)dx, t>0. (3.10)

Owing to (3.7) and 0<δ< 1
γ <1, one gets that

∣

∣a(x)ζ′δ(x)
∣

∣=δ

(

∫ 1

x

1

a(s)
ds

)δ−1

≤δ
(

M1a
1
2 (x)

)1−δ

=δM1−δ
1 a

1−δ
2 (x), 0< x< x0. (3.11)

It follows from the first formula in (3.3) that

(

a
1
2 (x)

)′
≤

M1

2
, 0< x<1,

which, together with (1.9), leads to

a(x)≤
M2

1

4
x2, 0≤ x≤1. (3.12)

Thanks to (3.3), (3.12) and 0<δ< 1
γ , one gets that

∣

∣a′(x)ζδ(x)
∣

∣=
∣

∣a′(x)
∣

∣

(

∫ 1

x

1

a(s)
ds

)δ

≤M1a
1
2 (x)

(

∫ 1

x

1

M2sγ
ds

)δ

≤
M2

1

2
x

(

1

M2(γ−1)

(

1

xγ−1
−1

))δ

≤
M2

1

2Mδ
2(γ−1)δ

x1−δ(γ−1), 0< x<1. (3.13)
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Due to (3.11), (3.13), (1.9), γ≥2 and 0<δ<1/γ, it holds that

lim
ε→0+

sup
{

∣

∣2a(x)ζ′δ(x)+a′(x)ζδ(x)
∣

∣; ε< x<2ε
}

=0. (3.14)

Letting ε→0+ in (3.10), one can obtain from (3.14) and the Hölder inequality that

d

dt

∫ 1

0
u(x,t)ζδ(x)dx (3.15)

=
∫ 1

0
u(x)

(

a(x)ζ′δ(x)
)′

dx+
∫ 1

0
up(x,t)ζδ(x)dx

≥
∫ 1

0
u(x)

(

a(x)ζ′δ(x)
)′

dx+

(

∫ 1

0
ζδ(x)dx

)1−p(∫ 1

0
u(x,t)ζδ(x)dx

)p

, t>0.

Substitute (3.5) and (3.9) into (3.15) to get

d

dt

∫ 1

0
u(x,t)ζδ(x)dx

≥−M4δ
∫ 1

0
u(x,t)ζδ(x)dx+M

1−p
3

(

∫ 1

0
u(x,t)ζδ(x)dx

)p

, t>0. (3.16)

For a nontrivial u0, it is noted that

inf
0<δ<1/2

∫ 1

0
u0(x)ζδ(x)dx>0.

Hence, there exists a sufficiently small 0<δ< 1
2 such that

2M4δ≤M
1−p
3

(

∫ 1

0
u0(x)ζδ(x)dx

)p−1

.

It follows from (3.16) that

d

dt

∫ 1

0
u(x,t)ζδ(x)dx≥

1

2
M

1−p
3

(

∫ 1

0
u(x,t)ζδ(x)dx

)p

, t>0.

Therefore, there exists T>0 such that

lim
t→T−

∫ 1

0
u(x,t)ζδ(x)dx=+∞,

which leads to

lim
t→T−

sup
(0,1)

u(·,t)=+∞.

That is to say, u must blow up in a finite time.



66 X. Jing, C. Wang and M. Zhou / Commun. Math. Res., 39 (2023), pp. 54-78

4 Problem in an unbounded interval

In this section, we prove the theorems for the problem (1.12)-(1.14) in an un-
bounded interval. It is noted that Theorem 2.6 is a corollary of Theorem 2.2 and
Proposition 2.2, and we need only to prove Theorems 2.3-2.5.

Proof of Theorem 2.3. First prove the Case (i). For p< 3−λ, set η = (3−λ−p)/2.

Owing to (1.16), there exists a constant R1>0 depending only on a such that

xa′(x)

a(x)
<λ+η, x≥R1. (4.1)

Hence,
(

a(x)

xλ+η

)′

<0, x≥R1. (4.2)

It follows from (4.2) and (1.15) that

a(x)≤
a(R1)

R
λ+η
1

xλ+η, x≥R1. (4.3)

For R>0, set

ζR(x)=



















1, 0≤ x≤R,
1

2

(

1+cos
(x−R)π

R

)

, R< x<2R,

0, x≥2R.

(4.4)

It is clear that ζR ∈C1([0,+∞)) is piecewise smooth and satisfies

(

a(x)ζ′R(x)
)′
=−

π

2R
a′(x)sin

(x−R)π

R
−

π2

2R2
a(x)cos

(x−R)π

R
, R<x<2R. (4.5)

Thanks to (4.1), (4.3) and (4.5), one gets that for R≥R1,

(

a(x)ζ′R(x)
)′
≥−

π(λ+η)

2xR
a(x)sin

(x−R)π

R
−

π2

2R2
a(x)cos

(x−R)π

R

≥−
π2

2R2
a(x)

(

λ+η

π
+1

)(

1+cos
(x−R)π

R

)

≥−
π2a(R1)

2R
λ+η
1 R2

(

λ+η

π
+1

)

xλ+η

(

1+cos
(x−R)π

R

)

≥−N1Rλ+η−2ζR(x), R< x<2R, (4.6)
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where

N1=
2λ+ηπ2a(R1)

R
λ+η
1

(

λ+η

π
+1

)

.

Assume that u is a solution to the problem (1.12)-(1.14). Definition 2.2, (4.6) and

the Hölder inequality yield

d

dt

∫ +∞

0
u(x,t)ζR(x)dx (4.7)

=
∫ +∞

0
u(x,t)

(

a(x)ζ′R(x)
)′

dx+
∫ +∞

0
up(x,t)ζR(x)dx

≥−N1Rλ+η−2
∫ +∞

0
u(x,t)ζR(x)dx+

(

∫ +∞

0
ζR(x)dx

)1−p(∫ +∞

0
u(x,t)ζR(x)dx

)p

≥−N1Rλ+η−2
∫ +∞

0
u(x,t)ζR(x)dx+21−pR1−p

(

∫ +∞

0
u(x,t)ζR(x)dx

)p

, t>0.

It follows from the choice of η that λ+η−2< 1−p. Hence, there exists a suffi-

ciently large R≥R1 such that

2N1Rλ+η−2≤21−pR1−p

(

∫ +∞

0
u0(x)ψR(x)dx

)p−1

.

It follows from (4.7) that

d

dt

∫ +∞

0
u(x,t)ζR(x)dx≥2−pR1−p

(

∫ +∞

0
u(x,t)ζR(x)dx

)p

, t>0.

Therefore, there exists T>0 such that

lim
t→T−

∫ +∞

0
u(x,t)ζR(x)dx=+∞,

which leads to

lim
t→T−

sup
(0,+∞)

u(·,t)=+∞,

i.e. u blows up in a finite time.

Turn to the Case (ii) that p > 3−λ. Thanks to Theorem 2.1, Propositions 2.1

and 2.2, the solution to the problem (1.12)-(1.14) blows up in a finite time if u0

is suitably large. Below we prove that the solution to the problem (1.12)-(1.14)

exists globally if u0 is suitably small. Set

û(x,t)=
ε

(t+L)1/(p−1)
exp

{

−
ηA(x)

t+L

}

, x≥0, t≥0,
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where ε and L are positive constants to be determined below, η is a constant such

that
1

p−1
<η<

1

2−λ
, (4.8)

and

A(x)=
∫ x

0

s

a(s)
ds, x≥0.

Here η and A are well-defined owing to p> 3−λ and (1.10). Direct calculations

show that

∂û

∂t
−

∂

∂x

(

a(x)
∂û

∂x

)

− ûp

=
ε

(t+L)p/(p−1)

(

η
(

a(x)A′(x)
)′
−

1

p−1

)

exp

{

−
ηA(x)

t+L

}

+
εη

(t+L)p/(p−1)+1

(

A(x)−ηa(x)
(

A′(x)
)2
)

exp

{

−
ηA(x)

t+L

}

+
εp

(t+L)p/(p−1)
exp

{

−
ηpA(x)

t+L

}

=
ε

(t+L)p/(p−1)

(

η−
1

p−1

)

exp

{

−
ηA(x)

t+L

}

+
εη

(t+L)p/(p−1)+1

(

∫ x

0

s

a(s)
ds−

ηx2

a(x)

)

exp

{

−
ηA(x)

t+L

}

+
εp

(t+L)p/(p−1)
exp

{

−
ηpA(x)

t+L

}

, x>0, t>0. (4.9)

It follows from the L’Hospital rule and (1.16) that

lim
x→+∞

a(x)

x2

∫ x

0

s

a(s)
ds= lim

x→+∞

a(x)

2a(x)−xa′(x)
=

1

2−λ
. (4.10)

Thanks to (1.15), (4.8) and (4.10), there exists a constant x0>0 such that

∫ x

0

s

a(s)
ds−

ηx2

a(x)
≥0, x≥ x0. (4.11)

It follows from (1.15) and the first formula in (1.16) that x2/a(x)(x ∈ (0,x0)) is

bounded. Choose suitably large L>0 and suitably small ε>0 such that

η

L
sup

{

ηx2

a(x)
: 0< x< x0

}

≤
1

2

(

η−
1

p−1

)

, εp−1≤
1

2

(

η−
1

p−1

)

. (4.12)
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Using (4.11) and (4.12), one gets from (4.9) that

∂û

∂t
−

∂

∂x

(

a(x)
∂û

∂x

)

− ûp≥0, x>0, t>0.

It is noted that

lim
x→0+

a(x)
∂û

∂x
(x,t)=0, t>0.

Therefore, û is a supersolution to the problem (1.12)-(1.14) if

u0(x)≤ û(x,0), x>0. (4.13)

Thanks to Proposition 2.2 (ii), the solution to the problem (1.12)-(1.14) exists glob-

ally in time if u0 satisfies (4.13).

Proof of Theorem 2.4. Let p>1. It follows from Theorem 2.1, Propositions 2.1 and

2.2 that the solution to the problem (1.12)-(1.14) blows up in a finite time if u0 is

suitably large. Below we prove that the solution to the problem (1.12)-(1.14) exists

globally if u0 is suitably small. Set

û(x,t)=
ε

(t+L)1/(p−1)
exp

{

−
2A(x)

(p−1)(t+L)

}

, x≥0, t≥0,

where ε and L are positive constants to be determined below, and

A(x)=
∫ x

0

s

a(s)
ds, x≥0,

which is well-defined due to (1.10). Similar to the proof of (4.9), it holds that

∂û

∂t
−

∂

∂x

(

a(x)
∂û

∂x

)

− ûp

=
ε

(p−1)(t+L)p/(p−1)
exp

{

−
2A(x)

(p−1)(t+L)

}

+
2ε

(p−1)(t+L)p/(p−1)+1

(

∫ x

0

s

a(s)
ds−

2x2

(p−1)a(x)

)

exp

{

−
2A(x)

(p−1)(t+L)

}

+
εp

(t+L)p/(p−1)
exp

{

−
2pA(x)

(p−1)(t+L)

}

≥
ε

(p−1)(t+L)p/(p−1)

(

1−
4x2

(p−1)(t+L)a(x)

)

exp

{

−
2A(x)

(p−1)(t+L)

}

+
εp

(t+L)p/(p−1)
exp

{

−
2pA(x)

(p−1)(t+L)

}

, x>0, t>0. (4.14)



70 X. Jing, C. Wang and M. Zhou / Commun. Math. Res., 39 (2023), pp. 54-78

If λ= 2, it follows from the third formula in (1.16) that there exist two constants

x1>0 and S1>0 such that

a(x)≥S1x2, x≥ x1. (4.15)

If λ> 2, it follows from the second formula in (1.16) that there exists a constant

x2>0 such that

xa′(x)−2a(x)>0, x≥ x2,

which yields

a(x)≥
a(x2)

x2
2

x2, x≥ x2. (4.16)

Thanks to (1.15), the first formula in (1.16), (4.15) and (4.16), there exists a constant

S2>0 such that
x2

a(x)
≤S2, x>0. (4.17)

Choose

L=
8S2

p−1
, ε=

(

1

2(p−1)

)
1

p−1

. (4.18)

One gets from (4.14), (4.17) and (4.18) that

∂û

∂t
−

∂

∂x

(

a(x)
∂û

∂x

)

− ûp≥0, x>0, t>0.

It is noted that

lim
x→0+

a(x)
∂û

∂x
(x,t)=0, t>0.

Therefore, û is a supersolution to the problem (1.12)-(1.14) if

u0(x)≤ û(x,0), x>0. (4.19)

Thanks to Proposition 2.2 (ii), the solution to the problem (1.12)-(1.14) exists glob-

ally in time if u0 satisfies (4.19).

In order to prove Theorem 2.5, we need the following two lemmas.

Lemma 4.1. Assume that a∈C([0,+∞))∩C1((0,+∞)) satisfies (1.15), (1.10), (1.16)

and (1.17). Let p = pc = 3−λ and u be a global solution to the problem (1.12)-(1.14).

There exist two positive constants R2 and N2 depending only on λ and a, such that for

any R≥R2,
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d

dt

∫ +∞

0
u(x,t)ζR(x)dx (4.20)

≥−N2Rλ−2
∫ +∞

0
u(x,t)ζR(x)dx+2λ−2Rλ−2

(

∫ +∞

0
u(x,t)ζR(x)dx

)3−λ

, t>0,

where ζR is defined in (4.4).

Proof. It follows from Definition 2.2 that u satisfies

d

dt

∫ +∞

0
u(x,t)ζR(x)dx

=
∫ +∞

0
u(x,t)

(

a(x)ζ′R(x)
)′

dx+
∫ +∞

0
u3−λ(x,t)ζR(x)dx, t>0. (4.21)

Owing to (1.16) and (1.17), there exist two constants R2 >0 and L>0, depending

only on a, such that

xa′(x)

a(x)
<λ+1, a(x)<Lxλ , x≥R2. (4.22)

Hence,

a′(x)< (λ+1)Lxλ−1 , x≥R2. (4.23)

Thanks to (4.22) and (4.23), one gets that for R≥R2,

(

a(x)ζ′R(x)
)′
=−

π

2R
a′(x)sin

(x−R)π

R
−

π2

2R2
a(x)cos

(x−R)π

R

≥−
π(λ+1)L

2R
xλ−1sin

(x−R)π

R
−

π2L

2R2
xλcos

(x−R)π

R

≥−
π2L

2R2

(

λ+1

π
+1

)

xλ

(

1+cos
(x−R)π

R

)

≥−N2Rλ−2ζR(x), R< x<2R, (4.24)

where

N2=2λπ2L

(

λ+1

π
+1

)

.

Thanks to (4.21), (4.24) and the Hölder inequality, one gets that for R≥R2,

d

dt

∫ +∞

0
u(x,t)ζR(x)dx≥−N2Rλ−2

∫ +∞

0
u(x,t)ζR(x)dx+

(

∫ +∞

0
ζR(x)dx

)λ−2
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×

(

∫ +∞

0
u(x,t)ζR(x)dx

)3−λ

, t>0,

which leads to (4.20).

Lemma 4.2. Assume that a∈C([0,+∞))∩C1((0,+∞)) satisfies (1.15), (1.10), (1.16)

and (1.17). Let p = pc = 3−λ and u be a global solution to the problem (1.12)-(1.14).

Then for any R≥R2,
∫ +∞

0
u(x,t)ζR(x)dx≤2

3−λ
2−λ N

1
2−λ

2 , t>0, (4.25)

d

dt

∫ +∞

0
u(x,t)ζR(x)dx≥−2N

3−λ
2−λ

2 Rλ−2, t>0, (4.26)

and

d

dt

∫ +∞

0
u(x,t)ζR(x)dx≥Rλ−2

(

∫ +∞

0
u(x,t)ζR(x)dx

)
1
2

(4.27)

×

(

−N2

(

∫ 2R

R
u(x,t)ζR(x)dx

)
1
2

+2λ−2

(

∫ +∞

0
u(x,t)ζR(x)dx

)
5
2−λ
)

, t>0,

where ζR is defined in (4.4), and R2 and N2 are given in Lemma 4.1.

Proof. First we prove (4.25) by a contradiction. Otherwise, there exists t0 >0 and

R≥R2 such that

2N2≤2λ−2

(

∫ +∞

0
u(x,t0)ζR(x)dx

)2−λ

.

It follows from (4.20) that

d

dt

∫ +∞

0
u(x,t)ζR(x)dx≥2λ−3Rλ−2

(

∫ +∞

0
u(x,t)ζR(x)dx

)3−λ

, t> t0,

which leads to that u must blow up in a finite time since 0≤λ<2. Hence, (4.25)

is proved.

Second, from (4.20) and the Young inequality, one can get that

d

dt

∫ +∞

0
u(x,t)ζR(x)dx

≥2λ−2Rλ−2

(

−22−λN2

∫ +∞

0
u(x,t)ζR(x)dx+

(

∫ +∞

0
u(x,t)ζR(x)dx

)3−λ
)
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≥2λ−2Rλ−2

(

−
1

3−λ

(

∫ +∞

0
u(x,t)ζR(x)dx

)3−λ

−
2−λ

3−λ
(22−λN2)

3−λ
2−λ

+

(

∫ +∞

0
u(x,t)ζR(x)dx

)3−λ
)

≥−2N
3−λ
2−λ

2 Rλ−2, t>0,

which is just (4.26).

Finally, it follows from (4.21), (4.24) and the Hölder inequality that

d

dt

∫ +∞

0
u(x,t)ζR(x)dx

=
∫ 2R

R
u(x,t)

(

a(x)ζ′R(x)
)′

dx+
∫ +∞

0
u3−λ(x,t)ζR(x)dx

≥−N2Rλ−2
∫ 2R

R
u(x,t)ζR(x)dx+

(

∫ +∞

0
ζR(x)dx

)λ−2(∫ +∞

0
u(x,t)ζR(x)dx

)3−λ

≥−N2Rλ−2
∫ 2R

R
u(x,t)ζR(x)dx+2λ−2Rλ−2

(

∫ +∞

0
u(x,t)ζR(x)dx

)3−λ

≥Rλ−2

(

∫ +∞

0
u(x,t)ζR(x)dx

)
1
2

×

(

−N2

(

∫ 2R

R
u(x,t)ζR(x)dx

)
1
2

+2λ−2

(

∫ +∞

0
u(x,t)ζR(x)dx

)
5
2−λ
)

, t>0,

which is just (4.27).

Proof of Theorem 2.5. Let ζR be defined in (4.4), and R2 and N2 be given in Lem-

ma 4.1. Assume that u is a global solution to the problem (1.12)-(1.14). For any

R≥R2, set

wR(t)=
∫ +∞

0
u(x,t)ζR(x)dx, t>0.

Denote

Λ= sup
R>0,t>0

wR(t)=sup
t>0

∫ +∞

0
u(x,t)dx. (4.28)

It follows from (4.25) and the nontriviality of u0 that 0<Λ<+∞. For ε0, there

exists t1≥0 and R0≥R2 such that

wR0
(t1)≥Λ−ε0, (4.29)
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where ε0 >0 is a constant to be determined below. For any t≥ t1, it follows from

(4.26) with R=R0 and (4.29) that

wR0
(t)≥wR0

(t1)−2N
3−λ
2−λ

2 Rλ−2
0 (t−t1)

≥Λ−ε0−2N
3−λ
2−λ
2 Rλ−2

0 (t−t1),

which, together with (4.28), leads to

∫ 4R0

2R0

u(x,t)ζ2R0
(x)dx

≤
∫ +∞

0
u(x,t)dx−

∫ +∞

0
u(x,t)ζR0

(x)dx

≤ ε0+2N
3−λ
2−λ
2 Rλ−2

0 (t−t1). (4.30)

Choosing R=2R0 in (4.27) yields

d

dt
w2R0

(t)≥ (2R0)
λ−2w

1
2
2R0

(t)

×

(

−N2

(

∫ 4R0

2R0

u(x,t)ζ2R0
(x)dx

)
1
2

+2λ−2w
5
2−λ
2R0

(t)

)

, t> t1.

Fix ε0∈ (0,Λ) and τ>0 such that

N2(ε0+τ)
1
2 ≤2λ−3(Λ−ε0)

5
2−λ.

Owing to (4.28)-(4.30), it holds that

d

dt
w2R0

(t)≥22λ−5Rλ−2
0 (Λ−ε0)

3−λ, t1< t< t2, (4.31)

where

t2= t1+
1

2
N

− 3−λ
2−λ

2 τR2−λ
0 .

It follows from (4.29) and (4.31) that

w2R0
(t2)≥w2R0

(t1)+22λ−5Rλ−2
0 (Λ−ε0)

3−λ(t2−t1)≥Λ−ε0+γ0, (4.32)

where

γ0=22λ−6N
− 3−λ

2−λ
2 τ(Λ−ε0)

3−λ.
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Thanks to (4.26) with R=2R0 and (4.32), one gets that

w2R0
(t)≥w2R0

(t2)−2N
3−λ
2−λ
2 (2R0)

λ−2(t−t2)

≥Λ−ε0−2N
3−λ
2−λ
2 (2R0)

λ−2(t−t2), t≥ t2,

which, together with (4.28) with R=2R0, leads to
∫ 8R0

4R0

u(x,t)ζ4R0
(x)dx

≤
∫ +∞

0
u(x,t)dx−

∫ +∞

0
u(x,t)ζ2R0

(x)dx

≤ ε0+2N
3−λ
2−λ
2 (2R0)

λ−2(t−t2), t≥ t2. (4.33)

Taking R=4R0 in (4.27) yields

d

dt
w4R0

(t)≥ (4R0)
λ−2w

1
2
4R0

(t)

×

(

−N2

(

∫ 8R0

4R0

u(x,t)ζ4R0
(x)dx

)
1
2

+2λ−2w
5
2−λ

4R0
(t)

)

, t> t2.

Thanks to (4.31)-(4.33), one gets that

d

dt
w4R0

(t)≥22λ−5(2R0)
λ−2(Λ−ε0)

3−λ, t2< t< t3, (4.34)

where

t3= t2+
1

2
N

− 3−λ
2−λ

2 τ(2R0)
2−λ.

It follows from (4.31) and (4.34) that

w4R0
(t3)≥w4R0

(t2)+22λ−5(2R0)
λ−2(Λ−ε0)

3−λ(t3−t2)

≥w2R0
(t2)+γ0≥Λ−ε0+2γ0.

Repeating the procedure in turn, one obtains that for any positive integer i,

w2iR0
(ti+1)≥w2iR0

(ti)+γ0≥w2i−1R0
(ti)+γ0≥Λ−ε0+iγ0,

where

ti+1= ti+
1

2
N

− 3−λ
2−λ

2 τ(2i−1R0)
2−λ.

Therefore

sup
t>0

∫ +∞

0
u(x,t)dx=+∞,

which contradicts (4.28) and completes the proof of Theorem 2.5.
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5 Problems with inner degeneracy

Similarly to the proof for the problems (1.6)-(1.8) and (1.12)-(1.14) in Sections 3
and 4, one can establish the similar theorems for the following problems with
inner degeneracy

∂u

∂t
−

∂

∂x

(

a(|x|)
∂u

∂x

)

=up, (x,t)∈ (−1,1)×(0,T), (5.1)

u(±1,t)=0, t∈ (0,T), (5.2)

u(x,0)=u0(x), x∈ (−1,1), (5.3)

and

∂u

∂t
=

∂

∂x

(

a(|x|)
∂u

∂x

)

+up, (x,t)∈R×(0,T), (5.4)

u(x,0)=u0(x), x∈R. (5.5)

We state the results without proof.

Theorem 5.1. Assume that a∈C([0,1])∩C1((0,1]) satisfies (1.9) and (1.10). The so-

lution to the problem (5.1)-(5.3) exists globally in time if u0 is small, while blows up in

a finite time if u0 is large.

Theorem 5.2. Assume that a∈C([0,1])∩C1((0,1]) satisfies (1.9) and (1.11). Then any

nontrivial solution to the problem (5.1)-(5.3) must blow up in a finite time.

Theorem 5.3. Assume that a ∈ C([0,+∞))∩C1((0,+∞)) satisfies (1.15), (1.10) and

(1.16) with 0≤λ<2.

(i) If 1< p<3−λ, then any nontrivial solution to the problem (5.4)-(5.5) must blow

up in a finite time.

(ii) If p>3−λ, then the solution to the problem (5.4)-(5.5) exists globally in time if u0

is small, while blows up in a finite time if u0 is large.

Theorem 5.4. Assume that a ∈ C([0,+∞))∩C1((0,+∞)) satisfies (1.15), (1.10) and

(1.16) with λ≥2. For p>1, the solution to the problem (5.4)-(5.5) exists globally in time

if u0 is small, while blows up in a finite time if u0 is large.

Theorem 5.5. Assume that a∈C([0,+∞))∩C1((0,+∞)) satisfies (1.15), (1.10), (1.16)

and (1.17) with 0≤λ<2. For p=3−λ, any nontrivial solution to the problem (5.4)-(5.5)

must blow up in a finite time.

Theorem 5.6. Assume that a ∈ C([0,+∞))∩C1((0,+∞)) satisfies (1.15) and (1.11).

Then any nontrivial solution to the problem (5.4)-(5.5) must blow up in a finite time.
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