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Abstract. The one-dimensional compressible Navier-Stokes-Vlasov-Fokker-
Planck system with density-dependent viscosity and drag force coefficients is
investigated in the present paper. The existence, uniqueness, and regularity
of global weak solution to the initial value problem for general initial data are
established in spatial periodic domain. Moreover, the long time behavior of
the weak solution is analyzed. It is shown that as the time grows, the distri-
bution function of the particles converges to the global Maxwellian, and both
the fluid velocity and the macroscopic velocity of the particles converge to the
same speed.
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1 Introduction

Fluid-particle models have a wide range applications such as biosprays in medi-
cine, chemical engineering, compressibility of droplets, fuel-droplets in combus-
tion theory, pollution settling processes, and polymers to simulate the motion of
particles dispersed in dense fluids [1,3,8,24,32,37,39].
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In this paper, we consider the initial value problem (IVP) for the one-dimen-
sional compressible Navier-Stokes-Vlasov-Fokker-Planck (NS-VFP) system

pr+(pu)x =0, (1.1a)
(Pwr-+(p)s-+ (P(p)) = (o))~ [ w(p) (u=0)fdo, (1.1b)
fit+vfat (k(o)(u—0)f—x(0)fo) ,=0, (x,0) ETXR, t>0, T:=R/Z (1.1c)

with the initial data

(p(x,0),pu(x,0),f(x,0,0)) = (po(x),mo(x),fo(x,0)), (x,0)eTXR, (1.2)

where p=p(x,t) and u=u(x,t) are the fluid density and velocity associated with
the dense phase (fluid) respectively, and f = f(x,v,t) denotes the distribution
function associated with the dispersed phase (particles). The system (1.1) can
be viewed as the compressible Navier-Stokes equations (1.1a)-(1.1b) for the fluid
and the Vlasov-Fokker-Planck equation (1.1c) for the particles coupled each other
through the drag force term «(p)(#—v). The pressure P(p) and the viscosity co-
efficient y(p) are given by

P(p)=Ap", p(p)=po+ppP, (13)
and the drag force coefficient «(p) is chosen to be
k(p) =xop, (1.4)

where the constants A, g, 11,%0,7, and p satisfy
A>0, up>0, u1>0, x>0, ¥>1, B=>0.

Without loss of generality, we take A =g =1 =xp=1 in the present paper.
There are a lot of important progress on the analysis of the global existence
and dynamical behaviors of solutions for fluid-particle systems [5,10,11,13,14,17—
20,22,25,27-31,36]. Among them, for incompressible NS-VFP equations, He [20]
and Goudon et al. [17] proved the global regularity and exponential decay rate
of classical solutions in spatial periodic domain, and Chae et al. [10] showed the
global existence of weak solutions in spatial whole space. For compressible NS-
VEP system with constant drag force coefficient, the global existence of weak
solutions to three-dimensional initial boundary value problem with the adia-
batic constant y > % was obtained by Mellet and Vasseur [36], the global well-
posedness of strong solutions to Cauchy problem was established either for two-
dimensional large initial data in [22] and for three-dimensional small initial data
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in [11, 25] respectively, and the nonlinear time-asymptotical stability of planar
rarefaction wave was investigated by Li et al. [30]. As for compressible NS-
VFP system with density-dependent drag force coefficient, Li et al. [31] got the
global existence and time-decay estimates of strong solutions around the equi-
librium state in both spatial periodic domain and spatial whole space, and Li et
al. [29] analyzed the Green function and pointwise behaviors of strong solutions
to three-dimensional Cauchy problem. In addition, the compressible NS-VFP
equations can be approximated by some macroscopical two-phase models as the
fluid-dynamical limits, the readers can refer to [9,15,30,35] and references therein.

In the present paper, we study the existence, uniqueness, regularity, and large
time behavior of global weak solution to the IVP (1.1)-(1.4) for general initial data,
as a continuation of the previous works [27,28].

First, we give the definition of global weak solutions to the IVP (1.1)-(1.4) as
follows:

Definition 1.1. (p,u,f) is said to be a global weak solution to the IVP (1.1)-(1.4) pro-
vided for any T >0 that

p€L®(0,T;L"(T)),
VPuel®(0,T;LX(T)), +/pulp)ux € L?(0,T;L3(T)), (1.5)
flogfeL®(0,T;LY(TxR)), |v|>f€L®(0,T;LY(T xR)),

the Egs. (1.1a)-(1.1c) are satisfied in the sense of distributions, and the following entropy
inequality holds for a.e. t € [0,T|:

/( olul>+ P ) xtdx—|—/ < |v|2+flogf) (x,0,t)dvdx
—I—// |ux| (x,7T)dxdt

2
</ (; |”;((JJ| o 1) dx—l—/ (%fo|z;’2—|—fologfo) (x,0)dvdx. (1.6)

Denote by n and nw the macroscopical density and momentum related to the
moments of the solution f to (1.1c) as

n(x,t)::/ f(x,v,t)do, nw(x,t):z/ vf (x,0,t)dv (1.7)
R R
with the initial values

n(x,O):no(x)::/]Rfo(x,v)dv, nw(x,O):jo(x)::/]vao(x,v)dv.
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For p€[1,00], k,1>0, and (v):=(1+ |ZJ|2)%, define

{LZP(TXIR):{( 0)!€LP(TXR) | 18]l 7o) =10 gl r(rxm) <0},
Hf(TxR):={(v)'g € H(TxR) | ||g||Hk 1xr) = 10 &ll (1) <00}

We have the following global existence of weak solutions to the IVP (1.1)-(1.4) for
general initial data:

Theorem 1.1. Suppose that the initial data (po,my, fo) satisfies

0<po e L™(T),
0 0 in {xeT|po(x)=0}, —GLZ (T), (1.8)

VPo
0<foeLINL™(T xR).

Then the IVP (1.1)-(1.4) admits a global weak solution (p,u, f) in the sense of Defini-
tion 1.1 satisfying for any T >0 that

0<p(x,t)<ps, ae (xt)€Tx][0,T], (1.9a)
ng(x,v,t)§eP+T||f0||Loo(TX]R), ae. (x,0,t)eTxRx[0,T], (1.9b)

1
ess[su}p(tz||u(t)||H1(T)+Hf(t)HL%(TxR))+H\/ﬁfv||L2(0,T;L2(T><]R))gCT/ (1.9¢)
teo,T

where p > 0 is a constant independent of the time T >0, and Cr >0 is a constant
dependent of the time T > 0.
Moreover, the conservation laws of mass and momentum hold for t € [0,T]:

(/Tp(x,t)z/jrpo(x)dx, (1.10a)
TX]Rf(x,v,t)dvdx / Hdx= /Tno (1.10b)
\/T(pu—l—nw)(x,t)dx /(mo+]o)(x)dx, (1.10¢)

and (p,u) converges to (pg,u(t)) as t— oo:

tim (11(p—20) (1) l1rr) + | (VA=) (0 12m)) =0, pelLeo),  (L11)

where the asymptotical states py and 1 (t) are given by

0= /T oo(x)dx, T(t):= % (1.12)
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Then, we study the regularity and uniqueness of the global weak solution
(p,u,f) given by Theorem 1.1, and analyze the large time behavior of (p,u,f) to
the equilibrium state

(P_O'”C'Mn_o,uc (),

where u, is the constant

i Jx(mo+jo) (x)dx (113)

Jr(po+10) (x)dx’

M, (v) is the global Maxwellian

e T, (1.14)

and 7 is the constant

n_O::/Tno(x)dx. (1.15)

Theorem 1.2. Suppose that the initial data (po,my, fo) satisfies

infpo(x) >0, po€ H'(T), ™ e H\(T), 0<foel? NL™(TxR), (1.16)
X

00

where ko > 5 is a constant. Then the global weak solution (p,u,f) to the IVP (1.1)-(1.4)

given by Theorem 1.1 is unique. In addition to the properties (1.9)-(1.11), it holds for
any T >0 that
(p(x,t)>p->0, ae (xt)eTx[0,T], sup [lo(t)llm ) <Co (1.17a)
te[0,T]
1wl 20,1502 0m) + 11t 20,7502 (m)) + va||L2(o,T;L,§0(1er)) <Cr, (1.17b)
1
ess sup<||u(t) e oy +22 [ (t) ||H2(T)> <Cr, (1.17¢)

\

te[0,T]

1
t 2| fo(t % tH| foo x
ess sup (Ilf( Nz mory H2 1 foOllz aamy F el foo®llz rar)

3
+t2||(fxrfvw)(t)||L% —Z(TX]R)> <Cr, (1.17d)
0

where p_ >0 and Cy >0 are two constants independent of the time T >0, and Ct >0 is
a constant dependent of the time T > 0.
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Furthermore, the solution (p,u, f) satisfies

tim (| (0—75) ()l (11t ) (D) 2y ) =0, (1.180)
tim (| (=) ()]l 3¢y | (n(0— 1)) (Dl 3y ) =0, (1.18b)
tim |(f ~ Moz ) (8) 1) =01 (1180)

Remark 1.1. Different from the compressible Navier-Stokes-Vlasov system [28],
the Vlasov-Fokker-Planck equation (1.1c) has the regularizing effect (1.17d) due
to hypoellipticity of the nonlinear Fokker-Planck operator v0y — 00, (v+0y).

Remark 1.2. The distribution function f lacks the uniform-time integrability un-
der the assumptions of Theorem 1.2 since the term flogf in entropy for (1.1)
may not be controlled by its dissipation, which is essentially different from the
compressible Navier-Stokes-Vlasov model [27]. To have the large time behavior
(1.18c), we employ the ideas by Bouchut and Dolbeault [4] to prove the L (T xR )-
convergence of f°(x,v,t):= f(x,v,t+s) for t € (0,1) to the unique limit My, as
s — o0. It should be noted that the compactness lemmas in [4,16] could not be ap-
plied here due to the non-smooth coefficients in (1.1c). Indeed, because (/f°)y is
uniformly bounded in L?(0,1;L?(T xR)), we can apply the techniques developed
by Arsénio and Saint-Raymond [2] to obtain the strong convergence of f° in all
variables.

Remark 1.3. By (1.17) and Theorem 1.1, one can prove that the IVP (1.1)-(1.4)
admits a unique global classical solution subject to regular initial data.

Remark 1.4. By Theorem 1.2 and similar arguments as used in [28], we are able
to establish the global well-posedness of the IVP (1.1)-(1.4) in spatial real line.

The rest part of the paper is arranged as follows. In Section 2, we establish the
a-priori estimates for the compressible NS-VFP system (1.1). The uniqueness of
the weak solution will be proved in Section 3. Then, we analyze the large time
behavior of global solutions in Section 4. In Section 5, we show the convergence of
approximate sequence to the corresponding weak solution to the IVP (1.1)-(1.4).

2 The a-priori estimates

2.1 Basic estimates

First, by (1.1), we have the following properties:
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Lemma 2.1. Let T >0, and (p,u, f) be any regular solution to the IVP (1.1)-(1.4) for
t€ (0,T]. Then it holds

d d d
%/Tp(x,t)dx—o, T TX]Rf(x,v,if)dvdx—a/qrn(x,t)dx—o, (2.1)

Z/ (pu+nw)(x,t)dx=0, (2.2)

%( [ (GolP+ 25 ) e+ /M (310 7-+ s <x,v,t>dvdx)
:—/T(y(pﬂux]z)(x,t)dx—/m (ol (=) /F—=2(v/F)o?) (x,0,)dodx,  (2.3)

where n and nw are defined by (1.7).
Then, applying the similar arguments as used in [28], we can show

Lemma 2.2. Let T >0, and (p,u, f) be any regular solution to the IVP (1.1)-(1.4) for
t€ (0,T]. Then under the assumptions of Theorem 1.1, it holds

(o(x,t)>0, f(x,0,6)>0, (x,0t)eTxRx]|0,T], (2.4a)
SE)PT Vo) O llz )+ 1F Ol rmy 1 (Flog /) (Ol (xxr)) <C, - (2.4b)
te

I/ #(0)uxllr2i0,mr20my) + VO (1 =0)/ F=2(V/Fo) 1201121 xr) SC - (2:4c)
()| o (w0 S\lux()HLz y+C, tel0,T], (2.4d)
\p(x,t)§p+, (x,t)ETX[O,T], (2.4e)

where C >0 and p4 are two constants independent of the time T > 0.
Next, we have the time-dependent estimates of the distribution function f:

Lemma 2.3. Let T >0, and (p,u,f) be any regular solution to the IVP (1.1)-(1.4) for
t€(0,T]. Then under the assumptions of Theorem 1.1, it holds

f(xlv/t)SeP+T||f0||L°°(T><]R)/ (x,’(J,t)GTXRX [O,T], (25a)
ts‘;% IF Ol Ly rxr) TIVOSoll20 712 xR) < Cr/ (2.5b)
€o,

sup ([[n(t)|| s+ [[nw(t) || 2 (1)) <Cr, (2.5¢)
te[0,T]

where the constant p is given by (2.4e), and Ct >0 is a constant dependent of the time
T>0.
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Proof. First, we multiply (1.1c) by pf*~! for any p € [2,00) and integrate the re-
sulting equation by parts over T X R to obtain

IO gy PP DI VEFE ) Oy
<(p=Dlle@ =)l £ (¢ )HLP TxR)’

which together with (2.4e) and the Gronwall inequality implies

Vo foll 20,702 (T xR)) < Cr” (2.6a)
1-1 1
Sl[,lp} Hf(t)HLP(Tx]R) §6p+THf0HLOO€TX]R) HfOHLpl(TX]R)- (2.6b)
te|0,T

We get (2.5a) after taking the limit in (2.6b) as p — co. Then multiplying Eq. (1.1c)
by (v)® with (v) := (1+|v|? )2 integrating the resulting equation by parts over
T xR, and applying the Gronwall inequality, we derive

<eCp+(T+HMHLl(o,T;Loo(T))) ||f0||L§(T><]R) <Cr, (2.7)

sup || f(8)]l 1 (m ) <
te[0,T]

where one has used the estimates (2.4).
We are going to estimate n and nw. For any R >0, it is easy to verify

o) < (/{|ng}+/{|sz}) of (xoit)de

1
<2 f (1) o) R2+ 3 [ [0 F (0,81 @9

R= (/]R|v|3f(x,v,t)dv)%

in (2.8) and making use of (2.5a) and (2.7), we obtain

Choosing

sup [lnw(t)|2(ry < sup (2] f(8) = (rxw) +1)7 £ )HLl xRy <Cre (29)
t€[0,T] t€[0,T]

Similarly, one has
sup [}(8)]| s r) < sup (2IF(E) o remy +1) £ (2 )||L1 xRy <Cr (210)
t€[0,T] t€[0,T]

The combination of (2.6a), (2.7), and (2.9)-(2.10) gives rise to (2.5b)-(2.5c). The
proof of Lemma 2.3 is complete. O
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The estimates (2.4) and (2.5) are not enough to obtain the compactness of the
density p in the framework of Lions [34]. To overcome the difficulty caused by the
density-dependent viscosity coefficient ji(p), we need to establish the additional
L(0,T;L™)-estimate of the effective viscous flux p? — u(p)uy

Lemma 2.4. Let T >0, and (p,u, f) be any regular solution to the IVP (1.1)-(1.4) for
t€ (0,T]. Then under the assumptions of Theorem 1.1, it holds

1
s?p}tz ()| gy + 107 = ()il Lo 0,751 (my) < Cr, - PE[LF) (2.11)
tel0, T

for Ct >0 a constant.

Proof. Multiplying (1.1b) by u; and integrating the resulting equation by parts
over T, we have

2 3

2dt”< ) (t) LZ(T)HI(\fPut Mz Z (2.12)

where [ l.l,iz 1,2,3, are given by

I = / ((pnw—pun—puiy )uy ) (x,t)dx,
T
= / (0" uxt) (x,)dx,

=3 / V)i liex[2) (x, £)dx.

We deal with the terms I! (i=1,2,3) as follows. One deduces by (2.4e) and (2.5¢)
that

1< 4 1 (/B () 2y (I 8) 2y + 1Ol (02
ot () 2y 108 o)
< I (WBu) (D12 )+ Crll () ey (1 142D ) +C

OOI*—\

Since it holds

~ [ (@ wnax=n [ ((57-uto) ["Zsas) ) ()
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T 1
_7/ ( /p ds(pu+puny — pnw—i—pnu)) (x,t)dx

el )

derived from the Egs. (1.1a)-(1.1b), we obtain by (2.4) and (2.5b) that

L= ;t/(pmx)(x t)dx — /T((p7),gux)(x,t)dx

<& [, t)dx+—||<fuf><t>||izm
+Cllux ()72 ) +Crllu(®)|[7 () +Cr-

It follows from the Gagliardo-Nirenberg inequality, (1.1b), (2.4e), and (2.5c) that

103 (8) ¢y < (e (p)ax =) (D)l ooy + (D oo (2.13)
< Crll(vpue) ()l 2 )+ Crllu ()| o (1) (12 (8) | 21y +1) +Cr-

Similarly to the estimate of I 1 one deduces by (1.1a)-(1.1b), (2.4)-(2.5), and (2.13)
that

==L [ (Pl Pun) (e )tx—E [ (P i) (1)
s—nwu»( )y Cr (e (0 gy + 180) Py 1) 1 (8) [y +

Substituting the above estimates of I! (i=1,2,3) into (2.12), multiplying the re-
sulting inequality by t, and then integrating it over [0,¢], we obtain

_t||ux 2/ T|| put “LZ dr
1 t
SE/O T||ux(r)HLZ(T)dT—H/T(P’Yux)(x,t)dx—/0 r/ (07 1y ) (x,T)dxdT
t
+CT/O <1+||M(T)||%°°(T)+||ux(T)||%2(T))T||ux( )13z ndt+Cr,

which together with the Gronwall inequality, (2.4), and (2.13) gives rise to

S?P]tH”x +/ | (vut)(T )||‘E2(T)+Hux(T)\&m(T))dTSCT. (2.14)
telo,T



146 H.-L.Liand L.-Y. Shou / Commun. Math. Res., 39 (2022), pp. 136-172

By (1.1b), (2.4e), (2.5), (2.14), and the Gagliardo-Nirenberg inequality, we have

T
/ 10" = (@) ) () [y
<c/ (" = u(p)ux) (1)

P

P
2y | (s + puey —przo-+ pum) (8) .
)

+ 107 = (o)) (DI ) )t
: 5[ = 2 2 :
<Cr s?p}(tf||ux<t>||m) ( | (/P 01 )+ (1) mm)dt)
te[0,T
T s
(/ t 4Pdt) +cT(/O I (/Pu) (D1 ) (/ ; 4pdt) +Cr
<Cr
provided pe [1,%). Due to (2.4) and (2.14), it also holds
sup #u(t) 3 g) <Cr.
t€[0,T)
The proof of Lemma 2.4 is complete. O

2.2 Higher-order estimates

We are ready to establish the higher-order estimates of the solution (p,u, f).

Lemma 2.5. Let T >0, and (p,u, f) be any regular solution to the IVP (1.1)-(1.4) for
t€ (0,T]. Then under the assumptions of Theorem 1.2, it holds

(p(x,t)>pr>0, (x,t)eTx][0,T], (2.15a)

S‘Elp} (0, 1) () g2 ¢y + el L2 0,712 (m)) NNt 220, 7502 (0)) S Cr - (2.15b)
te[0,T

sup [|f(H)llr2 (xxw)+lfollzor2 (rxr)) <Crs (2.15¢)
te[0,T] 0 0

sup t%H(uxx,ut)(t)HLz(T) <Cr, (2.15d)
\ t€[0,T]

where pr >0 and C >0 are two constants.
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Proof. Repeating the same arguments as used in [28], we can show (2.15a)-(2.15b),
the details are omitted here. Then we multiply (1.1c) by (v)?%0 f and integrate the
resulting equation by parts over T xR to get

FIFOI: o+ 1PN O:
<Cll ) ry (1 O ) IO 1

which together with (2.4), (2.15a), and the Grénwall inequality leads to (2.15¢).
In addition, due to (2.15¢) and the fact kg —2> %, it also holds

sup || [ [oP(-,0,t)do
l’E[O,T} R LZ(']F)
1
1 2
S(/mmdv) ;E)%||f(t)HLﬁo(qer>§CT. (2.16)

Differentiating the Eq. (1.1b) with respect to ¢, we obtain

o (e Atttz ) = (p(0)uxt )x oty
= —p¢ (e +utty) — purtiy — (07 )xt + ((,”(P))WX)X
+pt(nw—nu) —pun;+p(nw);. (2.17)
One deduces after a direct computation that

2

L2 (1) 1] () o

:§||(\/;mt ||L2 212, (2.18)

)+t|| (vorus) ()72

where Il-z,iz 1,2,3, are given by

7=t [ ((—prla-taine) —prtte— (074 (o) )+l —m) ) (e ),
Izzt/jr(puntut)(x,t)dx,
I%z—tA(p(nw)tut)(x,t)dx.
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It holds by (2.4) and (2.15b) that
B=t [ (=t~ + e
_ (H(P)) [Uxllyt +p¢(nw— nu)ut) (x,t)dx

i moo,

By virtue of (2.13), (2.15b), and the fact n; = —(nw),, we have

+Cr (1 ()l ) e (0 22y +Cr

I%:t/qr (o (uxus+ung ) nw+pxuuy ) (x,£)dx
< f(H“x(f) [ zoo () [l () | 2 () 11 () | Lo 0y [ () [ 22 ()

Fllox (Ol 2yl (E) [ o gy 22 (£) ||L2(T)> [n2o(8) 2 )

<t (o

Similarly, it is easy to verify

(nw)t:—</]R]v|2fdv> +oun—pnw,

X

which together with (2.4), (2.15b), and (2.16) yields

132:1‘/T (/]R|U]2f(X,U,f)dU) (put)x(x,t)dx—t/T((pun—pnw)put)(x,t)dx

<t (o

Substituting the above estimates of I? (i =1,2,3) into (2.18) and applying the
Gronwall inequality, we obtain

sup Hut ()72 ) < Cr- (2.19)
te[0,T]

By (1.1b), (2.4), (2.15b), and (2.19), it also holds

LZ(T)+CT(1+||ux<t>||m>)tuut<t>||izm+cp

+Crt]|us (£)[22p) +Cr-

L(Tr)

1
sup £2 ||ux (£) || p2(m)
te[0,T]

< sup £3|(pus+putix+ (p7)x — prw+pnu) (£) | 2ry <Cr. (220)
te[0,T]
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The combination of (2.19)-(2.20) gives rise to (2.15d). The proof of Lemma 2.5 is
complete. O

Inspired by [12,21,38], we have the following hypoellipticity estimates of the
distribution function f for the Vlasov-Fokker-Planck equation (1.1c):

Lemma 2.6. Let T >0, and (p,u, f) be any regular solution to the IVP (1.1)-(1.4) for
t€(0,T]. Then under the assumptions of Theorem 1.2, it holds

2 2 2
ti}(l)PT] (tva(t) HLI%O_Z(TX]R) ] foo (1) HL%O_z(TX]R)

O (Fefoor) 2 my) <Cr (2.21)

ko—2
where Cp >0 is a constant.

Proof. First, we differentiate the Vlasov-Fokker-Planck equation (1.1c) with re-
spect to v to obtain

(fo)e+o(fo)x+ (P(”_U)fv _P(fv)v)vzpfv+fx~ (2.22)

Multiplying (2.22) by (v)2(*k0=2) £, integrating the resulting equation by parts over
T xR, and then making use of (2.4e) and (2.15), we have

1d 2 2
3l BO ma IR O 1

-2

<Crlf®; IOl malbOls mw, @)
from which we infer

N (O A, ROV SI01 —

SCrlfo®R; Oz malsOl; w29

Similarly, due to the equation

(fx)e+o(fe)x+ (P(”_U)fx_P(fX)v)v =- (Px(”_v)f“'PMXf_Pva)vz (2.25)

one has

1d
3 il O e IV Ol
<CrllfO g +Crlpe ) Ollim)

xSug“(<U>k0_1f/<U>k0_2fv)(x/t)||L2(IR)vax(t)“Ll% (TxR)" (2.26)
xe 0
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To overcome the difficulties caused by the loss of one velocity weight v and the
low regularity of p, on the right-hand side of (2.26), we need

sup [ (0)250=1) £2(x v t)dv

xeT/R
< 2(ko—1) 2 / 2(ko—1)
< /T @R dvdxr2 [ (@)X (£ f]) (0, )dod

<2 (U)Zkofz(x,v,t)dvdx—l—/ (0)2k0=2)| £, 12 (x,0,t)dvdx, (2.27)
TxR TxR

where one has used the fact

Suglg(XN <llglrr) +lgxllaery forany geW(T).
xe

Similarly, we get for any 1 € (0,1) that

sup | (@ 02002 £ (x,0,t)dv (2.28)

xeT

g<1+1) / (0)200=2)| £,12 (x,0, ) dodx +1 / (0)200=2)| £, [2(x,0,t)dvdx.
) JTxR TxR

We combine (2.26)-(2.28) together to have
E% fo(t) ||L%0_2(j[‘><]R) + H (\/[_)fvx) (t) HLI%O—z(TX]R)

gcT||fx<t>||§%0_z(TXR)+cT<uf<t>||Lio<m>+( ) £z comy

Q
NI— —

+||fx( )||L2 ,(TxR) +1?2 ||fvx( )||L2 (TR ) ||fvx( )||L2 ,(TxR)”
from which we derive

(Pl Oy rewy) HEIVBR) O (2.29)

2 2
<Crt ||fx(t)||L%0Z(TX]R)"'CT(”f(t)HL%O(Tx]R)_"( 17;) | fo(t )||L2 ,(TXR)

3
+ | fx )HLZ "JF><]R)+772t2||fo( )HLZ L(TxR )tZvax( )||L2 L(TXR)"
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To obtain the dissipation 2| fx(t) ||?£]%0 it follows by (2.22) and (2.25) that

H(TxR)”

%(fvfx)+v(fvfx)x+|fx|2
=—fx (P(”_U)f_va)w_fv (P(”—U)f—va)vx- (2.30)

Multiplying (2.30) by #2(v)2(k0=2) and integrating the resulting equation by parts
over T X R, we obtain

%(tZ/TXR<v>2(k0—Z) (fvfx)(x,v,t)dvdx) +t2‘|fx(t)‘|i,% (TxR)
<Cr(If Ol e 1Ol ma 21 u®lz mm)
< (A Olliz e HE 1 for Oz rm))- (2.31)

Introducing

1 1

L (t) 2t||fv(t)HL%072(']rX]R)+217 t ||fx(t)||L]%072(']l"><]R)
—1—1721,‘2/1r R(ZJ)z(kO_z)(fvfx)(x,v,t)dvdx,

D)= (Vofor) ONIT2 gy P PENEf) O gy
PRI, | 1y

for the constant 7€(0,1) to be determined, we obtain from (2.24), (2.29), and (2.31)
that

L1+

SCT||fv(t)||%%0_2(qrx]1{)+t‘|fv( )HLZ L(TXR) | f(t )HLZ L(TXR)
FCrP P fe() (TXR)+CT(||f<t>HLz e HIEOlz ey
ROz ) TP for (Ol Txm)nztzufwmup (TxR)
+cT(||f<>uLz Tl HE @l ma)

<t (ntlfe@lliz eyt 1 for Ol rar ) (232)
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It is easy to verify

L1 2 343 2
062 (1374 ) (1HOR; a0 PP UEOR, ),
D(t) = min{Lor} (Hlfeo 2 g PP O gy 239
242 2
HPEIAOI )

(

\

where the constant p > 0 is given by (2.15a). Then for any 7 € (0,1), one has by
(2.32)-(2.33) that

L1841 (1)

C
<CrfolIs ramy oy Mol rmy/ DI +CrnDI (1)
1

IFOl_er 10, rm)+ Dﬂ(t))n% Di()

+Cr

1
<Cry2D'(t)+Cr <1+—§> ||fv(t)||i1% 71(TX]R)—I—CT||f(t)||%% (TXR) (2.34)
172 0 0

Since it follows L7(0) =0, we choose 7 =min{1,1/4C%} and make use of (2.15)
and (2.32)-(2.34) to get

sup (MR rm AR ) .39

t€[0,T)
T 2 3 2 2 2
+ 0 (twa(t)HL,%O_Z(TX]R)—i_t vax(t)HL,%O_z(TX]R)—i_t ||fx(t)||L%O_2(TX]R))dtSCT-

Finally, differentiating (2.22) thrice with respect to v and multiplying the re-
sulting equation by 3, we have

(t3fvvv) t o (t3fvvv) x + (p(u - U)t3fUUU —-p (t3fvvv) ZJ)‘U
= (3t2fvv +3t3pfm) +3t3fxv)v-
Similarly to (2.22)-(2.26), one can show

T
2
sup £ | fouu(t) 22 (TX]R)§CT/ | (31 foo+ 3820 foo+38 fro) (1) || 12 xr)
tE[O,T] k072 0 k072



H.-L.Liand L.-Y. Shou / Commun. Math. Res., 39 (2022), pp. 136-172 153

T
< CT/O (tZnyv(t)Hil%O_Z(TX]R)—i—t3‘|fxv(t)Hil%O_Z(TXm)dtﬁ Cr.  (2.36)

By the Gagliardo-Nirenberg inequality, we also have

sup #| foo(t )||L2 ,(TxR)
te[0,T]

1 1
1 2/(.3 2
éngHOwﬁ<mp ) (Blfen®liz mam) <Cro @37)
te|0,T

The combination of (2.35)-(2.37) leads to (2.21). The proof of Lemma 2.6 is com-
plete. O

3 Uniqueness

Proposition 3.1. Let T >0, and (p;,u;, fi), i =1,2, be two weak solutions to the IVP
(1.1)-(1.4) on [0,T] in the sense of Definition 1.1 satisfying (1.5),(1.9), and (1.17).
Then it holds (p1,u1, f1) = (p2,uz, f2) a.e. in (x,v,t) €T xR x[0,T].

Proof. We first estimate (p; —p2). It is easy to verify

(p1—p2)t+ ((o1 —p2)u1) , = —p2x (1 —ti2) —p2 (U1 — i) (3.1)

Multiplying (3.1) by (p1—p2) and integrating the resulting equation by parts over
T, we have

> o) () gy
<Cr(ll(m =) (B)ll20m) + 1| (/P10 =102)) (B2 )
<101 =p2) (Oll2x) + Crlluze )l g )l o1 —=p2) () B2y, (B2

where one has used (1.17) and the fact

[ (1 —u2) (#) | oo ()
<l 2oy + YD ONem oy (o)

||P0||Zl(qf)
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By (3.2), we obtain

d
I o1=p2) (1) 2
< Cr (Il =12)x(B)l 2wy + | (VT (11 =142)) (1) 2 )
() 12w | (01— 2) (D) 12y,
which together with the Gronwall inequality leads to
(o1 =p2) (D)l 2y
1
<crt( sup]HW(ul—uz))(r)HLzW||<u1—uz>x||Lz<o,t;Lz<T>>). G4

Tel0t

To estimate (17 —uy), noticing that it holds

01 (11 —u2) e +p1u1 (1 —uz)x — [p(o1) (1 —u2)x] 401 /}Rﬁdv(m —1up)
=— (01 —p3) ,— (01— p2) (s +1ugtiny) — p1 (1 —uz iy + [(1(01) — i (02) 1t |
+ [ (p1=p2)(0—1w)fudo+ [ pa(o—1) (i~ fo)d, @5)

we multiply (3.5) by (u1 —uy) and integrate the resulting equation by parts over
T x [0,¢] to derive

t 2
%H(\/{Tl(ul—uz))(t)Hiz(T)—i—/o (\/ H(Pl)(ul—uz)x) (T) LZ(T)dT
t 4
+ VB =) [ dT= 11 6

where If’,iz 1,...,4, are given by

B= [ [ (0] -3 —2)2) (v 0y,
Ig:—/ot/T ((01—p2) (ua +uiatiny) (ug —tiz) +p11ine |ur — iz |*) (x,7)dxd,
Ig:/)tA(—(V(Pl)—V(PZ))MZx(ul—Mz)x-l-(m—pz)(u1—uz)(v—uz)fl)(x,r)dxdr,

Iff:/ot/TX]R(pz(v—uz)(fl—fz)(ul—uz))(x,v,r)dxdvdr.
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By (1.9) and the Young inequality, one has
t
3
B<C [ or-p) Ozt 555 [, 1 = 1)(0) By
For the term IS, it follows from (1.17) and (3.3) that
3 g 2
Bcr [ (14 a0 )+ 12 )
x (u<ﬂu1—uz>><r>uiz o (01 =02) (D)2 )T

100/ o= 12)2 (D) iz

Due to (1.9), (1.17), and (3.3), it also holds
t
B<cr [ (+lm@lliem) (1/p1n =) (Ol )+ (o1=p2) (02 ) ) a7

100/|| 11 =12)x (7))
Finally, the term I} can be estimated as follows:
t
IE’SC/O (L {2 (O ooy ) [H (1 =42) () [0 o) | = F2) (O 1 ey 4T
t
<cr [ (||(f<u1—uz>)< 2@+ (=) (O ) ) 4

100/|| i = 12)x(0) |2y

Substituting the above estimates of Il-3 (i=1,2,3,4) into (3.6), we get

sup (B =) O ey + [t =) (0) B e

< [ (14 ) By 2Oy
< (11 (Vo1 (m =142)) (0 By 1 (01 = 2) (7)) )
+ [ 1= O gt 67
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We are ready to estimate (f; — f>). It can be verified by (1.1c) that

(i=f)et+o(fi=fo)xt o1 (11 —=0) (fi— f2) —p1(fi— f2)o],
= —p1(u1 —u2) foo — (01 —p2) (U2 =) fou + (01 —P2) f2+ (P1 — P2) f200- (3.8)

Applying Lemma 3.1 below to the Eq. (3.8) for b(s) =b°(s) = (s? —1—52)% satisfying

<1, (B(s) =2 (2+62) I 20

(1(3)) | = |s(s*+0?)

for any J >0, we obtain

(B’ (r—f2),+o(b°(fi—f2) 4 (o1 (1 —0)bs (1= f2)] , = [V (i —f2)]
<|=p1(u1—u2) foo — (01— p2) (2 = 0) f2o + (01 — p2) f2+ (01— P2) f2vo |- (3.9)

Since it follows b°(s) — |s| as § — 0, we choose the text function 1’ (x,v,t) € D(T x
R x (0,T)) in (3.9) satisfying ¢°(x,v,t) = (v) as § — 0 and employ the dominated
convergence theorem to have

3
i=1
where If‘, i=1,2,3, are given by

1= [ orn =)= ) ey
Ig:/ot“(Pl(ul_u2)f22)+(P1_PZ)(MZ_U)f2U_(Pl_P2)f2) (Ol rxr)47T
B= [ 10162 ) (O s
It follows from (1.9a) that
t<ps [ (i () lmmy+ DI = 2O e
Due to (1.17), (3.4) and the fact kg—2> 3, we have

4 % t 1 %
15 §P+/0 \|(\/P_1(u1—u2))(7)||L2(1r) </]RW‘7IU) Hfzv(T)||L,30(1er)dT
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+/0t”(p1_p2 (O)ll2 ey (L 12 (0) || o ()

(T)
1
2

1
* </]Rmd ) f20 (D)l 2. ()T

[ e =p2)iaer) (o) 10l rate

<Cr s?p}||(\/,0_1(u1—uz))( Ol 2my +Crll (w1 —u2) x| 120 5,22(1))-
|0t

For the key term I}, we make use of (1.17d), (3.4) and the fact kg—3 > % to obtain

1 [ o) Olizen) ( f, ramte) Moz crsrote
< ( sup i1||(p1—p2)(~c)||L2(T)) < sup 7| faoo (T )||Lz Tx]R)) /Otild’f

T€(0,t] T2 T€[0,4] T2
<Cr SI?P]H(\/P_l(ul—uz))( M2y +Crll (w1 —u2)xl 1200 ,02(T))-
T€|0,t

Substituting the above estimates of I (i =1,2,3) into (3.10) and applying the
Gronwall inequality, we have

sup || (f1=f2) (Dl rxr)

T€[0,1]
<Cr sup (it =1a)) (i +Crllan =)l orimy, G
T€|0,t

which together with (3.4)-(3.5) leads to
sup [|(v/p1(u1—u2))(7) ||%2(71") + [ (1 —u2)x ||7£2(0,t,-L2(1r))

7€[0,¢]

! 2
<Cr [ (1112 (O )+ 12 g )
( sup H(\/ﬁ(ul—”2))(W)\|%2(qp)+H(“l—”Z)xH%z(o,T;Lz(qr)))dT- (3.12)

wel0,t]
The combination of (1.17), (3.4), (3.11)-(3.12), and the Gronwall inequality gives
rise to (p1,u1, f1) = (p2,uz, f2) a.e. in T xR x [0,T]. The proof of Proposition 3.1 is
complete. O
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Similarly to [7], we can show the following result about the renormalized so-
lutions for Fokker-Planck equations with variable coefficients:
Lemma 3.1. For any T >0, assume
fEL®(0,T;LINL*® (T xR)), f,€L?(0,T;L*(TxR)),
peL®(0,T;L®(T)), uelL?(0,T;L*(T)), GeL'(0,T;LY(TxR)).
If f solves the equation
fitvfat(o(u=0)f) —pfoo=G in D' (TxRx(0,T)),

then f is a renormalized solution, i.e., for any b(s) € C2(R), it holds

(b(f)),+0(0(f) + (p(u=2)b(f)) ,— (0b(f)) ,, +o (b (f) =V (f)f)
+b"(AIfo|*=V ()G in D'(TxRx(0,T)).

4 Long time behavior

In this section, we study the large time behavior of global solutions to the IVP
(1.1)-(1.4).

Proposition 4.1. Let (p,u, f) be any global weak solution to the IVP (1.1)-(1.4) in the
sense of Definition 1.1 satisfying (1.9)-(1.10) for any T >0. Then under the assumptions
of Theorem 1.1, it holds

tim (| (0—p0) ()l (o) + | (V=) (Dllp2r) ) =0, pE[lie0), (1)

where py and Uu(t) are given by (1.13).

The proof of (4.1) is based on relative entropy estimates for the compressible
Navier-Stokes equation (1.1a)-(1.1b), please refer to [27,28] for details.

Proposition 4.2. Let (p,u,f) be any global weak solution to the IVP (1.1)-(1.4) in the
sense of Definition 1.1 satisfying (1.9)-(1.10) for any T >0. Then under the assumptions
of Theorem 1.2, it holds

{p(xi) >p-, (%) eTX[0,T], 42)

supye (o7 10x(8) [ 2(1) <C,
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where p— >0 and C >0 are two constant independent of the time T > 0. Moreover, we
have

tim (1|(0—=0) (8) [ o)+ | (=10 ) (B) [ 2y + | (mi =) (1)) =0, i=1,2, (4.3)

where the constants py and u. are given by (1.12) and (1.13) respectively, and m;(t),

i=1,2, are defined by
-1
— [ putxtyax( [ poydx) 44
[ putenax( [ oot ) 44a)

mz(t)::Arnw(x,t)dx (/Tno(x)dx) _1. (4.4b)

Proof. Repeating the arguments as in [28] with few modifications, we can show
the uniform estimates (4.2). To get (4.3), we first prove |(my—m;y)(t)]*> € L' (R ).
Indeed, a straightforward computation yields

| [vo(=o)vF-2/Po) | 0] L
> - ||| emm) VF 4 (= m2) o/ F - (ma =) F=2(V/ P (1)
=0 | (VP =m0 ) (0 32 gy +o- N =m2) ORI O s
o[ ((m2=2) v F=2(VFo) D) |21y
20 (mi=mo)(t) [ (f(u=m)) (x,0,t)dodx
+20- [NV F(u=m)((m2—0)v/F~ (v/Fo)| (x,0,)dodx,

TxR

2

2

L2(TxR)

which together with (2.1) and the fact || (u—m1 ) (#)|| (1) < [|x () || 12(1) glves rise
to

|[Vetu=o)vF=2/P) O] aop.r
> 3. ol cm1 ) sy + 2 oy ) 1)

+ (2 =) V=2V Do) O 2 ey
Therefore, we have

[y 1) e < 2(3p- HnoHLl +1)

110l (m)




160 H.-L.Liand L.-Y. Shou / Commun. Math. Res., 39 (2022), pp. 136-172

< (Has Oy + [ [P =0) VF =2V 0 [Fap )t <0 43
Next, it can be verified by (1.1b)-(1.1c) that

3 =) (1)
=Cilmz=m)(t) [ (pV/F(u=0)V/F-2(V/F)o) (xot)dodz,  (46)

where the constant C; >0 is given by

_lleollrmy + lImoll 1)
leollpremy ol prery

Cll

For any 0 <s <t < oo, we integrate (4.6) over [s,] to derive

—_

| (mq —ma) (1)
1 1 t
(=) (8)P+03 1y o) € | (10m1=mz) ()

+[[ (VA=) F=2(v/F)o) Ol fgcm) )T (47)

and thence integrate (4.7) with respect to s over [t—1,¢] to have

2l —m) (52

1 t 1 1
<5 [ Jm=ma)(s)Pds+0% ol o Co [ (10m1—ma) ()

2
<

N

t—1
+ | (VB=2) v F=2(v/F)) O 2 my ) 4T 48)

Due to (1.6) and (4.5), the right-hand side of (4.8) tends to 0 as t — oo. Thus, it
follows
lim |(1my — o) (£)[* =0. 4.9)
—00

Finally, it holds by the conservation laws (1.10) that

my (f) /T 00(x)dx+m(t) /T o (x)dx = /T (mo+jo) (x)dx,
which leads to

(o —ma) (1) = ff(ﬁjof(’zifj;)d’“ (m2—u) (1), (@.10)
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where the constant u, is given by (1.13). One deduces by (4.9)-(4.10) that

lim (| (my — )| +| (ma —uc) (£)])

t—o0

< Tim (|3 —m2) (1) 2|2 — ) (1)) =0. @i
Combining (4.1)-(4.2) and (4.11) together, we have

tim || (=) (8) 2

T t—oo

, 1
< lim (—% H(Vo(u=m1)) () 2¢r)+] (m1—uc) (£) !) =0.
p*
It follows from (1.9a), (4.1), and the Gagliardo-Nirenberg inequality that

1 1
tim (o= 70) (8) 1 x) < V2im [ (6132 ) | (0 ~F0) (D] 2 ) =0

The proof of Proposition 4.2 is complete. O

Furthermore, the time convergence of the distribution function f to the global
Maxwellian My, (v) is proved based on the ideas inspired by [4] and the com-
pactness tool developed in [2].

Proposition 4.3. Let (p,u, f) be any global weak solution to the IVP (1.1)-(1.4) in the
sense of Definition 1.1 satisfying (1.9)-(1.10) for any T >0. Then under the assumptions
of Theorem 1.2, it holds

i (= Mg ) ()| 3 (2. =0, (4122)
tim (| (n=70) ()| 2 ¢+ | (=) (Ol r) ) =0, (412b)

where the global Maxwellian Mg, (v) is denoted through (1.14), and the constants 1,
and 7y are given by (1.13) and (1.15) respectively.

Proof. For any (x,v,t) € T xR x (0,1) and s >0, define
p°(t,x):=p(x,t+s), u’(xt):=u(xt+s), f°(x0t):=f(x,0t+s),
so that it satisfies

(f)e+o(f)xtp’ (=) f* = (f*)o] ,=0. (4.13)
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By (1.6), (1.9a), (1.10), and (4.2), we have

([lo* Oy = loollaery, 1Ol rsr) = ol
0<p-<p*(x,t) <py <oo,

4.14
SUpP;>o (||fs||L°°(0,1,-L§(1rx]R))Jr ||fslogfs||L°°(0,1;L1(T><]R)) (314
+||us||L2(0,1;H1(T))+H(us_v)\/]Ts_z(\/]TS)UHLZ(O,LLZ(TXJR))) < o0.
Thence, one deduces from (2.4d), (4.1), (4.3), and (4.14) as s — oo that
p°=pg in L®(0,1;L*(T)),
(4.15)
ut—u, in L?(0,1;HY(T)) < L2(0,1;L®(T)).

By (4.14) and the fact

1
_4/0 /TX]R((uS_v)\/jTS(\/F)v)(x,v,t)dvdxdt:—2Hn0||L1(T),
we have

| =0}V F =2V Fhel 0020w
s 5|2 ] :
=H(M _v)\/jTHLz(O,1,-L2(TxR))+4H(\/]T)UHLZ(O’LLZ(TXR))_ZHnO“Ll(T)

which implies
S‘iIO’H(\/ fS)UHLZ(O,l;LZ(Tx]R)) <. (4.16)
5>

We are ready to establish the strong L!(T x R)-compactness of f°(x,v,t) for
a.e. t€(0,1). It follows from (4.13) and Lemma 3.1 for any é € (0,1) and s € (0,00)
that

(V) it+o(v 1 40)x+[0° (0 =0) (V[ +0)]o—[0°(V f*+6)o]o
ps(fs+25) p ’(fs) ’2_0 II'ID/(]R3) (417)

2/ 46 4(fs46)?

In order to employ Lemma 4.1 below, we prolong (p°,u®,f*) to be zero outside
(0,1) xR x (0,1):

(0% (x,1) ( )f (x,0,1))
{ (ps 1), £ (x,0,)), (x50, €(0,1)xRx(0,1),
0, (x,0,t) & (0,1) x R x (0,1)
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for any (x,0,t) € R3. According to the uniform estimates (4.14) and Dunford-
Pettis criterion, there is a limit f* satisfying f°€L*(0,1;L}(TxR)) and (\/f®),€
L%(0,1;L*(T xR)) such that it holds as s — oo,

fifo in L'(R?) ae. t€R, (4.18a)
(7) ~(/7), v

where j?"/" is given by

fe(x,0,t), (x0,t)e€(0,1)xRx(0,1),

f°°(x,v,t):={0’ (x,0,t) ¢ (0,1) x Rx (0,1).

Denote

697 (t%,0) =1y F(x0 )16, $>0, €(01), r>0,  (419)

where 1, <, € D(R) stands for the cut-off function satisfying 1, <, =1 for |o| <r
and 1<, =0 for |o| >2r. Obviously, %" has compact support in (—2r,2r) x
(0,1) x (0,1), and we obtain by (4.17) that

2

(05°7)i+0(857)o = (1= 3% —3%,) 2 (1-33,) 2 (87" +85°) in D'(R®)  (4.20)

with

N

(1-93,) 233, (¢e°7),

(I-0%,) =

)
8;’5 = (I_a%t_a'»zcx)
8;'5 = (I_a%t_a'»zcx)

X <_ (1‘U|§”)Uﬁs (JS_U) V ]?S_'_é_ (1|U‘§7’)vvﬁs J}Vs—‘_é
[ /= 1y <, 0 (F428)  11y1<,0°| (F5)o?
_2(1|v\§r)z;ps (\/ fS‘HS) _ lel=rP i )—I- ol <0 |(f%) | )

v 24/ f46 4(f°+9)

N

\
Note that the operator (I—9% —02,—02,)~ % maps L'(R®) to LP®(R?) (i.e., the

weak LF(R%) space) for p € (1,00) and s € (0,3) satisfying 1 —% = 3, and it holds
181l La(r3) < ClIg || Lpo (r3) for 1< g <p provided that g has compact support. Thus,
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one deduces by (4.14) that
,0 _9 — 2 i~ 48,0,
18571, 3 o, G lI(T=03 =202 (1=03) 3 (F00) | 5

<C||(1-93-82,—82,) "2 (0°6%") ||

L8 "*(R3)
<Crlle* 8 || 11 oy

1
S Cr |||OS || L°°(0,1;L°°(T)) ||fS || 2°°(O,1;L1 (TX]R)) S Cr/ (421)

where C, >0 denotes a sufficiently large constant only dependent of r > 0. Simi-
larly, it follows by (4.14) and (4.16) that

<Crllo* (0,150 () (17 20,1200 (1)) +1)

% (1P o1 ey HI VP o iz 0200w
_1
+ (Vo012 0wy ) Cr (4.22)

18512 g,

Due to the uniform estimate (4.16), the sequence 8%°" given by (4.20) is locally

strongly compact with respect to v in L (R®). Thus, we make use of Lemma 4.1
below, (4.14), (4.16), (4.18a), and (4.21)-(4.22) to derive

0% =1\ fP+6 in Li (R, 6€(0,1), r>0, as s—oo,
which implies for any ¢ € (0,1) and r >0 that

1\U|§r‘/fs+5_>1|v\§r\/foo+5 in L%(TX]RX(O,l)), as Ss—oo. (423)

In addition, we have

IV = el rxrx(01))
< Hl\vlsr(\/fs‘i'é_ Ve +6) HLl(Tx]Rx(O,l))+ H \/]Ts_l\vlér \% fs+5HL1(T><]R><(O,1))
+H1IU\§r\/foo+5_ VfooHLl(qrlex(o,l))' (4.24)

To control the right-hand side of (4.24), we deduce by (4.14) and (4.18)-(4.19) that

H \/JTS_llv\ér \% fs+5HL1(T><]R><(O,1))
= H (1_1\v|§r)\/j?s+1\v|§r(\/ﬁ_ \% fs+5) HLl(Tx]RX(O,l))
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1 o 5
S ’ H <U>\/fSHL1(O,1;L1(T><]R))+ H1|Z,<r \/jTSJr \/m

LY(TxRx(0,1))

1
1 1 2 1 C2
< — S S| 2 < '
< ( /]R de) 1o sy~ Cr VO S CrVE+2, (425)

where C; >0 stands for a constant uniformly in 5,4, and 7, and C, >0 is a constant
only dependent of r > 0. Similarly, it holds

/T C
H foo_1|v\§r V f°°+5HL1(TX]RX(O/1)) < Cr\/g‘i‘ 72 (4.26)

Substituting (4.25)-(4.26) into (4.24) and using (4.23), we obtain

lim |77

C
< lim lim lim (czr% 2 (VFF =TT |, 5 g +CrVE+ 72) o,

F—005—()S—>00

L' (R%)

which gives rise to
fP—=f* ae in TxRx(0,1), as s—oo. (4.27)
By virtue of (4.18), (4.27), and [6, p. 468], we have
fo(x,0,t) = f®(x,0,t) in L}(TxR), ae. tc(0,1), as s—oco.  (428)

We are going to show f*(x,v,t) = My, (v). By (1.6), (1.9a), and (1.10b), we
have

Jim lp° (" =)= (Fellisor ey
= lim [lo(u—0)f=pfollL1(s 54101 (TxR))
1 1 .
S.Oi ||f0||£1(1f><]R) tlgg H \/ﬁ((u—v) \/?_ (\/?)U) HLZ(S,S-Fl;LZ(TX]R)) =0. (4.29)

Due to (4.13), (4.15), (4.18), and (4.29), the limit f* satisfies

_Jo—ucl?

(f®)o—(uc—0v)fC=e T(e%’czfﬂv:o in D'(TxRx(0,1)), (4.30a)
(f*)e+o(fC)x=0 in D'(TxRx(0,1)). (4.30b)
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With the help of (4.30a), we deduce that exists a function
§°=g"(x,t)€L®(0,1;L}(T))

satisfying

goo(x/t):e%f“(x,v,t). (4.31)

And by virtue of (4.30b) and (4.31), we have for any ¢ €D (T x(0,1)) and € D(R)
that

/01 /TX]RgOO (x,1) (e (x,t) +odx (x,1)) x (v)dvdxdt =0. (4.32)

By a density argument, (4.32) indeed holds for any x € S(R). Thus, we choose
x(v) —¢ " and x(0) —=ve~1I* in (4.32) to derive

e (x,t)=g7(x,t)=0 in D(T x(0,1)),

which together with (1.10b) shows ¢g* = \/”20—” Thus, we conclude that the unique
formula of f is My, (v).

Finally, we claim (4.12a). Indeed, if f*(t) does not converge to My ,,, in L (T x
R) for any ¢t € (0,1) as s — oo, then there are a constant § >0, a time ¢y € (0,1), and
a sufficiently large subsequence s; such that we have

1% = Mg ) (to) |1 (r ) >0/
which contradicts (4.28). In addition, it holds

tin || (n=75) (62 () < Jim | (F = Mg ) (Dll s gy =0. (439

t—o0

One concludes from (1.7)-(1.6) and (4.12a) that
tim || (120 ~7g12e) () | 1
1 1
< Jim o2+ Mg 1) (O g |~ M) (Ol gy =0 (439
The combination of (4.12a) and (4.33)-(4.34) gives rise to
tim || (20 e (8) | 1

< tlggo (H (nw—"nguc) () ||L1(T)+ |ucl||(n—ng)(t) ||L1(T)> =0.

The proof of Proposition 4.3 is complete. O
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We need the following lemma, which implies the strong compactness in all
variables of the distribution function for the Vlasov-Fokker-Planck equation (1.1c)
provided that this sequence is strongly compact with respect to velocity variable.

Lemma 4.1 ([2]). Let d>1,1<p<oo, a1 >0, 0<ay <1, and the nonnegative sequence
e LP(R? x RY x R) uniformly in n>0, be locally strongly compact with respect to v
in LP(R? x RY xR), and satisfy

(F)i40-Vaf'=(I-Dx) T (I-Ay) 7 g" in D' (R*xRYxR)

for ¢" € LP(RY x R x R) uniformly in n > 0. Then, the sequence f" is locally strongly
compact in L (R? x RY xR) (in all variables).

5 Proofs of main results

Proof of Theorem 1.1. Step 1: Construction of approximate sequence.
We regularize the initial data as follows:

(06.(x), 14 (x), f5(x,0))

(e
= (]f*po(x)—l—s, 1M
\/]f*po(x)-l—e

,]f*]é*(folv<g1)(x,v)) , 86(0,1), (51)

where J{(x) and J5(v) are the Friedrichs mollifier with respect to the variables x
and v, and 1,1 € D(R) is the cut-off function satisfying 1, .1 =1 for [v| <r
and 1, <1 =0 for |o] > 2e71. It is easy to verify that (p§,p5us, f5) satisfies the
assumptions (1.8) of Theorem 1.1 uniformly in e € (0,1).

We are able to obtain a local regular solution (p*,u%, f¢) for any e € (0,1) to the
IVP (1.1)-(1.4) for the initial data (5.1) in a standard way based on linearization
techniques [28], the details are omitted. Then, by Remark 1.3, we can extend the
local regular solution (p®,u%, f) to a global one.

Step 2: Compactness and convergence.

Let T > 0 be any given time. It follows from the a-priori estimates estab-
lished in Lemmas 2.2-2.3 and standard arguments as in [34] that there exist a limit
(p,u, f) such that up to a subsequence (still labeled by (p®,u*, f¢) here and in what



168 H.-L.Liand L.-Y. Shou / Commun. Math. Res., 39 (2022), pp. 136-172

follows), it holds as ¢ — 0 that

((05,f9) = (p,f) in L®(0,T;L¥(T)) x L®(0,T;L¥(T xR)), (5.2a)
ut—u in L2(0,T;H'(T)), (5.2b)
"= p in C([0,T];LY,,(T))NC([0,T;H(T)), pe(l,e0), (520)
pu — pu in C([0,T]; L5, (T)) NC([0,T;H™H(T)), (5.2d)
Lof[uf P —plul*  in D(Tx(0,T)), (5.2¢)

where C([0,T]; Xyear) is the space of weak topology on X defined by
C ([0, T]; Xupeak) := {g; 0,T] =X | <g,¢>xx€C([0,T]) for any ¢ € X}

In addition, it follows from Lemmas 2.2-2.3, (1.1c), and the average compactness
lemma (for instance, refer to [26]) for any x(v) € D(IR) satisfying |x(v)|<C(1+]v|)
that

/IR Fox(v)do— /]R fx(@)do in L0, T;LY(T)), as e—0, (5.3)

which together with (2.5c) implies as e — 0 that

rns:z/]l{fsdvﬁn:/]Rfdv in L9(0,T;LP(T)),
ge[l,0), pellA),

ngw‘“—::/]RfsvdU%nw:/]Rfvdv in L7(0,T;LP(T)),

\ 1ello), pell?).

p
(0°)7 = p(p%) (u)x. By
,3) satisfying as ¢ — 0

(5.4)

Then, denote by G° the effect viscous flux as G* :=
Lemma 2.4, there is a limit G € LP(0,T;L®(T)) for p € (1
that

GG in LP(0,T;L™(T)).

Similarly to the arguments used in [23], one can prove the following inequality
holds for a.e. t€[0,T]:

T
Ll =pPGeax<cr [ (1+190lm) [ o =pPridxdt,  (55)

the details are omitted here. The combination of the Gronwall inequality, (2.4e),
and (5.5) gives rise to

p°—p in LP(0,T;LP(T)), as €0, pe[l,oo), (5.6)
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Owing to Lemma 2.3, (5.2a), (5.6), and integration by parts, we obtain

VOE(f)e—/ofs in L*(0,T;L*(TxR)), as e—0. (5.7)

By virtue of (5.2)-(5.6) and (5.7), one can show that the limit (p,u, f) indeed satis-
ties the Egs. (1.1) in the sense of distributions.

Step 3: The properties (1.5)-(1.6) and (1.9)-(1.11).
For any nonnegative function ¢ € D(0,T) and constant R >0, one deduces by
(2.4b) and (5.2¢) that

! 3
/0 ‘P(t)/jrxm<v> Ljyj<rf(x,0,t)dodxdt
< limsup OTQD(t)A ]R<U>3f€(xm,t)dvdxdt.

e—0

We take the limit as R — oo and apply the monotone convergence theorem to get
feL®(0,T;L3(T xR)). (5.8)

Therefore, it follows by Lemmas 2.2-2.3, (5.2), and (5.8) that (p,u, f) satisfies (1.9).
By (1.1c) and (2.4), it holds for any p € (1,3] that

sup [ @3 GO g

—sup [ w [ @ e e (0 ),

el <1
().

= 1(1rx]R)
2
dt

1 1 1

2
chgg(<1+||u€uLz<o,T;Lm O 7. A
&

which together with [33, Lemma C.1] yields for any p€(1,3) and g€ [0, % —1] that

(TxR)), as e—0. (5.9)

weak

(0)1f—=(0)7f in C([0,T);LY

Since we have 1€ L?(T) and (v)~
for (p,q)=(3,%) that

€ L>(TxR), one deduces by (5.2c) and (5.9)

. e _

ll_I)%/Tp (x,t)dx—/qrp(x,t)dx, Vte|0,T], 510
2 2 ’

li “5(0)5 f(x,v,t)dodx = ,0,t)dvdx, Vtel0,T].

tim [ (o) F )} (o tidvdx= [ flxododz, ie(oT]
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Similarly, it follows from ZJ<ZJ>_% € L3(TxR), (5.2d), and (5.9) for (p,q) = (3,Z)
that

lim/ psug(x,t)dx:/pu(x,t)dx, Vte0,T],
e—0 T

7 7
lim/r v(v)‘ﬁ<v>§f‘“‘(x,v,t)dvdx:/ vf(x,0,t)dvdx, Vtel0,T].
e—0JTxR TxR

According to (2.1)-(2.2) and (5.10)-(5.11), the conservation laws (1.10) hold for
any t € [0,T]. We conclude from (5.2)-(5.7), (5.9), and the lower semi-continuity
of the limit (p,u,f) that the entropy inequality (1.6) holds for a.e. t€[0,T]. By
Proposition 4.1, one has the long time behavior (1.11). The proof of Theorem 1.1
is complete. O

Proof of Theorem 1.2. Let (po,%, fo) satisfy (1.16), and (pf, uj, f;;) be given thro-

ugh (5.1) for e (0,1). Similarly, we can obtain an approximate sequence (p°,u*, f*)
and show its convergence to a global weak solution (p,u,f) to the IVP (1.1)-(1.4)
in the sense of Definition 1.1 as ¢ — 0. Thus, it follows from the a-priori estimates
established in Lemmas 2.5-2.6 that (p,u, f) satisfies the further properties (1.17).
In addition, this weak solution (p,u, f) is unique due to Proposition 3.1, and the
time convergence (1.18) can be derived by Propositions 4.2-4.3. The proof of The-
orem 1.2 is complete. O

(5.11)
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