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Abstract. Stochastic temperature distribution should be carefully inspected in the
thermal-failure design of heterogeneous solids with unexpected random energy excita-
tions. Stochastic multiscale modeling for these problems involve multiscale and high-
dimensional uncertain thermal parameters, which remains limitation of prohibitive
computation. In this paper, we propose a multi-modes based constrained energy min-
imization generalized multiscale finite element method (MCEM-GMsFEM), which can
transform the original stochastic multiscale model into a series of recursive multi-
scale models sharing the same deterministic material parameters by multiscale anal-
ysis. Thus, MCEM-GMsFEM reveals an inherent low-dimensional representation in
random space, and is designed to effectively reduce the complexity of repeated com-
putation of discretized multiscale systems. In addition, the convergence analysis is
established, and the optimal error estimates are derived. Finally, several typical ran-
dom fluctuations on multiscale thermal conductivity are considered to validate the
theoretical results in the numerical examples. The numerical results indicate that the
multi-modes multiscale approach is a robust integrated method with the excellent per-
formance.

AMS subject classifications: 65N12, 65N15, 80M10, 80M22
Key words: Stochastic multiscale heat transfer problems, uncertainty quantification, MCEM-
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1 Introduction

Heterogeneous solids are widely used in engineering practice, and are often exposed
to strong temperature changes, such as thermal protection systems for space aircraft [1]
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and thermal coating for microelectronic systems [2], etc. Under severe thermal condi-
tions, accurate and efficient prediction of the damage or fracture process of heteroge-
neous solids requires a comprehensive understanding of the uncertainty propagation of
temperature fields under a multiscale framework [3, 4], where stochasticity comes from
morphological randomness or material uncertainty [5], such as mismatches between the
micro components due to their dispersion and orientation, stochastic cracks or defects,
measurement errors or incomplete cognition of thermal expansion and conduction pa-
rameters [6]. Therefore, developing a new reliable and effective uncertainty quantifica-
tion method for multiscale heat transfer problem [7, 8] is of paramount importance and
practical significance, and this method can both capture all stochastic responds with high
efficient simulations and alleviate the computational cost.

Accounting for the uncertainty is a type of classic issue in the numerical computation
of random medium [9]. Due to the high-dimensional nature of the random space, many
theories have been developed to deal with the problems. Monte Carlo method and its
variants [10] are usually used to solve the governing equation of stochastic problems, in
which the uncertainty is sampled by use of the probability distribution function or the
random field, and then the corresponding stochastic problem is approximated by a series
of deterministic problems, statistical information of their exact solutions can be obtained
subsequently. Another typical methods are to approximate the physical quantities of in-
terest in the random space and physical space, respectively. These include the stochastic
Galerkin method [11, 12] and stochastic collocation method [13, 14], etc. The uncertainty
is generally represented in the random space through Wiener chaos expansion, general-
ized polynomial chaos expansion or collocation points. Here, the stochastic collocation
method combining the advantages of stochastic finite element method and Monte Carlo
sampling, has received wide attention, where the collocation points can be chosen with
full tensor product method [15] and Smolyak sparse grid method [13] etc. In [16–20],
the multi-modes Monte Carlo method is successfully applied to solve various impor-
tant stochastic problems. Through these methods, the computation saving is obtained by
the dimensinality reduction. It should be pointed out that the multiscale modeling and
computational method of stochastic heat conduction problem in the high-dimensional
uncertainty space is still extremely challenging due to their complex correlative nature.

Except for uncertainties of thermal conductivity, it is also necessary to consider its
multiscale features in heterogeneous solids. This leads to tremendous cost for solving
the stochastic multiscale heat transfer problem by use of traditional numerical meth-
ods. Therefore, numerous researchers have begun to pay attention to the design of the
multiscale models and computation methods, which can efficiently reduce the complex
fine-scale problems to coarse-scale problems, including homogenization method [21–24],
variational multiscale method (VMM) [25–28], upscaling method [29–31], heterogeneous
multiscale methods (HMM) [32], and multiscale finite element method (MsFEM) [33–39].
Moreover, when the uncertainties are integrated into the multiscale model, some at-
tempts have been made to deal with the coupling of the multiscale and uncertainty char-
acteristics of stochastic multiscale problem [26, 40–44]. [45] proposed a stochastic mul-



S. Zhang, Z. Yang and X. Guan / Adv. Appl. Math. Mech., 15 (2023), pp. 69-93 71

tiscale method to quantify the most significant input parameters influencing the ther-
mal conductivity of polymeric nano-composites with clay reinforcement. [46] presented
a new stochastic multiscale analysis approach to analyze the heat transfer performance of
heterogeneous materials with random structures at different length scales. [47] proposed
a hybrid machine learning method to predict the thermal conductivity of polymeric
nanocomposites. In [4], a probabilistic surrogate model had been proposed to quantify
the uncertainty in thermal conductivity computations due to molecular dynamics noise,
and its effect on the computation of the temperature distribution in heat conduction sim-
ulations. [3] developed a novel multiscale computational method for heat conduction
problems of composite structures with diverse periodic configurations in different sub-
domains. While most studies are based on deterministic approaches, there is a compara-
tively lower number of stochastic multiscale methods accounting for morphological and
material uncertainties simultaneously. Thus, it is necessary to design better algorithms
to solve the multiscale model of stochastic heat transfer problem, where uncertainties in
morphology and materials need to be taken into account for reliable predictions.

When the physical and mechanical analysis of heterogeneous solids (e.g., concerete
materials) are carried out in some applications, the CEM-GMsFEM [33,34] exhibits a very
important advantage that it is free of the assumption regarding the distinct separation of
the different length scales, where the relationship between aggregation diameters and
interface thicknesses must be considered. Moreover, the natural parallelization without
any special amendments, which only some independent problems solved with neigh-
boring subdomains, guarantees a substantial speed-up to the computations. Inspired
by the multi-modes methods, the primary objective of this paper is to develop and de-
sign a general stochastic multiscale framework and better algorithm to capture the in-
fluence of numerous uncertain geometrical and material parameters on the stochastic
temperature and heat flux distribution of heterogeneous solids. The main idea is to re-
formulate the original stochastic multiscale heat transfer problem to a series of recursive
multiscale model with same deterministic multiscale material parameters by use of the
multi-modes method [16, 17]. For each multiscale model with deterministic material pa-
rameters, CEM-GMsFEM is employed to reduced the computation cost. In particular,
in view of the same features of the coefficient matrix shared by all multiscale models
after multi-modes expansion, LU decomposition can be reused to effectively reduce the
complexity of repeated computation of discretized multiscale systems, which leads a sig-
nificant computation saving overall numerical method. In addition, incorporating the
merits of CEM-GMsFEM and multi-mode method, the convergence of MCEM-GMsFEM
is also established with linearly dependent on the mesh size and independent of contrast.

This paper is organized as follows. In Section 2, multi-modes multiscale analysis and
the formulae of MCEM-GMsFEM are proposed, and the corresponding numerical algo-
rithms are built. In Section 3, convergence analysis is established, and the optimal error
estimates are derived in detail. In Section 4, some numerical examples are demonstrated
to confirm the theoretical analysis, and some conclusions are given in Section 5.
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2 Multi-modes multiscale analysis

2.1 Governing equations

Consider a heterogeneous solid in domain D subjected to extrinsic and intrinsic random
excitations, and it is originally in equilibrium at a uniform temperature T0 on ∂D, where
D⊂Rd (d≥1) is a convex bounded polygonal domain with Lipschitz continuous bound-
ary ∂D. The heat flux q through a heterogeneous solid by conduction can usually be
described by Fourier’s law, which is stated by

q(x,ξ)=−κ(x,ξ)∇Tε(x,ξ) in D×Ω, (2.1)

where ξ ∈Ω, and x∈D is the cartesian coordinates. (Ω,F ,P) is a complete probability
space, and Ω is the sample space, F is the subspace of σ-algebra in Ω, P :F→ [0,1] is the
probability measure. The κ(x,ξ) is referred to as the thermal conductivity of the heteroge-
neous solids with multiscale and uncertain characteristics. The temperature Tε :D×Ω→R

is the real-valued random function defined on Ω. Fourier’s law presents a phenomeno-
logical linear relationship between q and∇Tε(x,ξ), which will be highly accurate provid-
ing that the characteristic length scale of the temperature gradient is significantly larger
than the microscopic length scale of the heterogeneous solids (i.e., the molecular length
scale). Practically most engineering applications will fall into this category, with the ex-
ception being heat transfer in highly nonequilibrium conditions (i.e., the heterogeneous
solids under laser heating).

From the first law of thermodynamics, a general heat transfer problem is given as:

ρc
∂Tε(x,ξ)

∂t
+∇·q(x,ξ)= f (x,ξ) in D×Ω, (2.2)

where f ∈ L2(L2(D),Ω) is the random source term, ρ and c is density and heat capacity.
The initial and boudary condition can be given by T(x,ξ) = T0. In this paper, the static
heat transfer problems will be considered, the similar results can be derived with the
same procedure for the general cases. Returning to Eq. (2.2), Fourier’s law is to eliminate
the heat flux, which results in

−div
(

κ(x,ξ)∇Tε(x,ξ)
)
= f (x,ξ) in D×Ω. (2.3)

2.2 Multi-modes expansion

Referring to [17], the random conductivity κ(x,ξ) can be decomposed to two parts, namely

κ(x,ξ) :=κ0(x)+εκ1(x,ξ), (2.4)

where κ0(x) ∈ L∞(D) is the deterministic coefficients with multiscale characteristics,
κ1(x,ξ) is the random fluctuation and ε represents the magnitude of the random fluc-
tuation. Then, some assumptions will be given as follows
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(1) For all ξ∈Ω, the conduction coefficient κ(x,ξ) satisfies

min
x∈D

κ(x,ξ)>κ

for some positive constant κ;

(2) The coefficient κ0(x) is positive and uniformly bounded, that is, there exist positive
constants κ0 and κ0, such that

κ0≤κ0(x)≤κ0, ∀x∈D;

(3) For a positive constant κ1>0, the κ1(x,ξ)∈L2(W1,∞(D),Ω) satisfies

‖κ1(x,ξ)‖W1,∞(D)≤κ1, ∀ξ∈Ω, (2.5)

where
‖T‖W1,∞(D) :=‖T‖L∞(D)+‖∇T‖L∞(D),

and the Sobolev space

W1,∞(D) :={T∈L∞(D) :‖T‖W1,∞(D)<∞}.

Here, L∞(D) is the set of bounded measurable functions equipped with the following
norm

‖T‖L∞(D) :=esssup
x∈D

|T(x)|. (2.6)

Let L2(D) be the Hilbert space of all square integrable functions. Then, L2 inner product
is defined by

(T,v)D =
∫

D
Tvdx, ∀T,v∈L2(D), (2.7)

and the corresponding L2 norm is given as

‖T‖2
L2(D) :=

∫
D
|T(x)|2dx. (2.8)

Let L2(],Ω) denote the space of all measurable function T : D×Ω→R such that

‖T‖L2(],Ω)=

(∫
Ω
‖T(x,ξ)‖2

]dP(ξ)
) 1

2

<∞, (2.9)

where ] can be taken as L2(D), H1(D) or H1
0(D).

Let E(T) denotes the expectation defined in the probability space (Ω,F ,P), which is
given by:

E(T) :=
∫

Ω
T(ξ)dP(ξ). (2.10)
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Then, the corresponding variational form of the problems (2.3) is given as∫
Ω

(
κ∇Tε,∇v

)
D

dP=
∫

Ω
( f ,v)DdP, ∀v∈L2(H1

0(D),Ω). (2.11)

Assume that Tε has the following multimodal expansion

Tε(x,ξ)=
∞

∑
n=0

εnTn(x,ξ), (2.12)

where {Tn}n≥0 are mode functions. Substituting Eq. (2.12) and Eq. (2.4) into Eq. (2.3),
and matching the coefficient of εn order terms, the following equations for {Tn}n≥0 can
be obtained by

−div
(

κ0(x)∇T0(x,ξ)
)
= f (x,ξ) in D×Ω,

−div
(

κ0(x)∇Tn(x,ξ)
)
=div

(
κ1(x,ξ)∇Tn−1(x,ξ)

)
in D×Ω for n≥1.

(2.13)

Furthermore, the boundary conditions for each mode function {Tn}n≥0 is given by

Tn(x,ξ)=0 on ∂D for n≥0. (2.14)

From Eq. (2.13), it is not difficult to find that the mode functions {Tn}n≥0 satisfy a family
of heat transfer equations, which have the same deterministic forms in left sides and
similar boundary conditions. Especially, the only differences are the random source terms
in the right sides, which have a recursive relation for the modal function Tn defined by the
previous mode function Tn−1. Under approximation of the finite terms, these important
features will greatly alleviate the computational cost of randomness, that is

Tε
N(x,ξ)=

N−1

∑
n=0

εnTn(x,ξ). (2.15)

Moreover, considering multiscale properties of the mode functions {Tn}n≥0, how to effi-
ciently compute the mode functions in multiscale physical space is another challenge. A
natural and inexpensive approach is to solve Eqs. (2.13) by multiscale method, which is
easily implemented and highly efficient.

2.3 Multiscale formulae of MCEM-GMsFEM

In this subsection, an effective multiscale formulae and algorithm of MCEM-GMsFEM
is designed to solve the heat transfer problem (2.3) with uncertain thermal conductivity.
Based on the multimode expansion of the solution of problems (2.3) and its finite terms
approximation (2.15), CEM-GMsFEM is implemented to solve the multiscale equations
governing each mode functions. Then, the Monte Carlo method is used to obtain the
expectation of the solution in the probability space, and the detailed algorithm is given.
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Figure 1: The fine grid, coarse grid Ki, oversampling domain Ki,1, and neighborhood ωi of the node xi.

Suppose the domain D (Fig. 1) is composed of a family of meshes T H, where

H= max
Ki∈T H

HKi

is the coarse mesh size and HKi is the diameter of coarse grid Ki. T H is the uniformly
partition of D, and is shape regular. N denotes the number of elements in T H. And Nc

denotes the number of vertices of all coarse grid. Let {xi}Nc
i=1 be the set of vertices in T H

and
ωi =

⋃{
Kj∈T H |xi∈Kj

}
be the neighborhood of the node xi. For each coarse block Ki, the oversampling region
Ki,m ⊂D is defined by enlarging Ki with several coarse grid layers. T h is a uniformly
refinement of T H, and h is the diameter of fine grid. Fig. 1 depicts the fine grid, the
coarse grid Ki, the oversampling domain Ki,1 and the neighbor domain ωi of the node
xi. The construction procedure of multiscale basis functions of CEM-GMsFEM can be
divided two steps. Firstly, the auxiliary multiscale space can be obtained by solving a
family of local spectral problems. Let V(Ki) = H1(Ki) for a coarse block Ki, and eigen-
pairs {λ(i)

j ,φ(i)
j }∈R×V(Ki) satisfy

ai(φ
(i)
j ,v)=λ

(i)
j si(φ

(i)
j ,v), ∀v∈V(Ki), (2.16)

where
ai(u,v)=

∫
Ki

κ∇u∇vdx, si(u,v)=
∫

Ki

κ̃uvdx, (2.17)

and

κ̃=κ
Nc

∑
j=1
|∇vj|2,
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{vj} is a set of partition of unity function in the coarse partition. Assume that the eigen-

functions satisfy the normalized condition si(φ
(i)
j ,φ(i)

j ) = 1, and let λ
(i)
j be arranged in

ascending order. The local auxiliary multiscale space can be defined as

V(i)
aux =span

{
φ
(i)
j |1≤ j≤Li

}
. (2.18)

Then, the global auxiliary space Vaux will be assembled from the all local auxiliary space
V(i)

aux.
Secondly, based on the global auxiliary space, the multiscale basis function ψ

(i)
j,ms ∈

H1
0(Ki,m) will be constructed by energy minimization problem with some constraints as

follows
ψ
(i)
j,ms =argmin

{
a(ψ,ψ)|ψ∈H1

0(Ki,m), ψ is φ
(i)
j -orthogonal

}
, (2.19)

where φ
(i)
j -orthogonal is defined as

s(ψ,φ(i)
j )=1, s(ψ,φ(i′)

j′ )=0, if j′ 6= j or i′ 6= i. (2.20)

Here,

s(u,v)=
N

∑
i=1

si(u,v), φ
(i)
j ∈Vaux and ψ∈H1

0(D).

Then, the multiscale space Vms can be defined as

Vms =span
{

ψ
(i)
j,ms|1≤ j≤Li, 1≤ i≤N

}
⊂H1

0(D). (2.21)

Based on the Eq. (2.13), for each sample ξ j (j=1,2,··· ,M) with i.i.d., the multiscale mode
functions {Tms

n }n≥0 satisfy the following variational problems:{ (
κ0(x)∇Tms

0 (x,ξ j),∇vms)
D =

(
f (x,ξ j),vms)

D, ∀vms∈ Vms,(
κ0(x)∇Tms

n (x,ξ j),∇vms)
D =

(
κ1(x,ξ j)∇Tms

n−1(x,ξ j),∇vms)
D, ∀vms∈ Vms for n≥1.

(2.22)

Suppose {Tms
n }n≥0 has the following formulations

Tms
n (x,ξ j)=

Nc

∑
k=1

yn
k (ξ j)ψk,ms(x), ψk,ms(x)∈Vms. (2.23)

Then, Eq. (2.22) can be rewritten the following matrix form{
AY0(ξ j)=F(ξ j),
AYn(ξ j)=G(ξ j)Yn−1(ξ j),

(2.24)

where

A=
(
alq
)
∈RNc×Nc, G(ξ j)=

(
g(ξ j)lq

)
∈RNc×Nc,

F=
(

fq
)
∈RNc, Yn∈RNc,
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and

alq =
∫

D
κ0∇ψl,ms(x)∇ψq,ms(x)dx, g(ξ j)lq =

∫
D

κ1(x,ξ j)∇ψl,ms(x)∇ψq,ms(x)dx, (2.25a)

fq(ξ j)=
∫

D
f (x,ξ j)ψq,ms(x)dx, Yn(ξ j)=

[
yn

1 ,yn
2 ,··· ,yn

Nc
]T, n≥1, (2.25b)

for all l=1,2,··· ,Nc, q=1,2,··· ,Nc, and {ψi,ms(x)}Nc
i=1∈Vms. Then, the expectation E(Tn)

for each mode function Tn is given by

E(Tn)=
1
M

M

∑
j=1

Tms
n (x,ξ j). (2.26)

From Eq. (2.15), the expectation E(Tε) can be approximated by finite truncated terms

SMTms
N =

N−1

∑
n=0

εnE(Tn)=
1
M

M

∑
j=1

N−1

∑
n=0

εnTms
n (x,ξ j), (2.27)

and the algorithm is summarized in Algorithm 1.

Algorithm 1: Computation procedure of MCEM-GMsFEM.
Input: f ,κ1,ε,H,M,N
Output: SMTms

N (x)
Set SMTms

N (x)=0 (initializing);
Generate the stiffness matrix A on Vms×Vms;
Compute and store the LU decomposition of A;
for j=1,2,··· ,M do

Obtain realizations κ1(x,ξ j) and f (x,ξ j);
Initialization Tms

N (x,ξ j)=0;
Compute Y0(ξ j) by the LU decomposition of A;
AY0(ξ j)=F(ξ j);
Set Tms

N (x,ξ j)←−Tms
N (x,ξ j)+Y0(ξ j);

for n=1,2,··· ,N−1 do
Compute Yn(ξ j) by the LU decomposition of A;
AYn(ξ j)=G(ξ j)Yn−1(ξ j);
Set Tms

N (x,ξ j)←−Tms
N (x,ξ j)+εnYn(ξ j);

end
Set SMTms

N (x)←−SMTms
N (x)+ 1

M Tms
N (x,ξ j).

end
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3 Convergence analysis

To derive the convergence and error estimates for the finite truncation of multi-modes
representation of Tε, the following Lemma is given.

Lemma 3.1. Let mode functions Tn ∈ L2(H1
0(D),Ω) be the solutions of problems (2.13), if f ∈

L2(L2(D),Ω), there holds

E‖∇Tn‖L2(D)≤C
1
κ0

(
κ1

κ0

)n

E‖ f ‖L2(D), ∀n≥0. (3.1)

Proof. With the help of the Lax-Milgram theorem and the elliptic regularity condi-
tion [48], the following estimation can be given

E‖∇T0‖L2(D)≤C
1
κ0

E‖ f ‖L2(D), (3.2)

where the constant C is independent of n and ε.
Moreover, the variation formulations of the second equations of problem (2.13) can

be written as (
κ0∇Tn,∇v

)
D =

(
−κ1∇Tn−1,∇v

)
D. (3.3)

Let v=Tn and based on Cauchy-Schwarz inequality, we have

κ0‖∇Tn‖2
L2(D)≤

(
κ0∇Tn,∇Tn

)
D =

(
−κ1∇Tn−1,∇Tn

)
D

≤
∣∣κ1
(
∇Tn−1,∇Tn

)
D

∣∣≤κ1‖∇Tn−1‖L2(D)‖∇Tn‖L2(D). (3.4)

Then, dividing both sides of Eq. (3.4) by ‖∇Tn−1‖L2(D) and taking the expectation, we
have

E‖∇Tn‖L2(D)≤
κ1

κ0
E‖∇Tn−1‖L2(D). (3.5)

Applying Eq. (3.5) n times, we get

E‖∇Tn‖L2(D)≤
(

κ1

κ0

)n

E‖∇T0‖L2(D). (3.6)

Combining with Eq. (3.2), we have

E‖∇Tn‖L2(D)≤C
1
κ0

(
κ1

κ0

)n

E‖ f ‖L2(D). (3.7)

This proof is completed.

From above Lemma, the convergence of the multi-modes expansion of the solution in
(2.3) can be obtained by the following theorem.
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Theorem 3.1. Let Tε
N be defined in Eq. (2.15), there holds

lim
N→∞

Tε
N =Tε in L2(H1

0(D),Ω). (3.8)

Proof. For any fixed positive integer p, we have

Tε
N+p−Tε

N =
N+p−1

∑
n=N

εnTn. (3.9)

With the help of Cauchy-Schwarz inequality and Lemma 3.1, we have

E
[
‖∇Tε

N+p−∇Tε
N‖2

L2(D)

]
≤ p

N+p−1

∑
n=N

ε2nE‖∇Tn‖2
L2(D)

≤p
ε2N(1−ε2p)

1−ε2 E‖∇Tn‖2
L2(D)=C(ε,N,p)E‖ f ‖2

L2(D), (3.10)

where

C(ε,N,p)=C
κ1

n

k0
n+1 p

ε2N(1−ε2p)

1−ε2 . (3.11)

Thus, for ε<1, there exists

lim
N→∞

E
[
‖∇Tε

N+p−∇Tε
N‖L2(D)

]
=0. (3.12)

Here, {Tε
N} is the Cauchy sequences in Banach space L2(H1

0(D),Ω), and there exists a
function Uε∈L2(H1

0(D),Ω) satisfies

lim
N→∞

Tε
N =Uε in L2(H1

0(D),Ω). (3.13)

By the definition of Tε
N , it is not difficult to find that Tε

N satisfies∫
Ω

(
κ∇Tε

N ,∇v
)

DdP

=
∫

Ω
( f ,v)DdP+

∫
Ω

εκ1

(
∇(−εN−1TN−1),∇v

)
D

dP, ∀v∈L2(H1
0(D),Ω). (3.14)

Based on Eq. (3.14), we have∣∣∣∫
Ω

εNκ1
(
∇TN−1,∇v

)
DdP

∣∣∣
≤εN |κ1|

∣∣∣∫
Ω

(
∇TN−1,∇v

)
DdP

∣∣∣
≤εN |κ1|‖∇TN−1‖L2(D)‖∇v‖L2(D)→0, (3.15)
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for N→∞ and ε<1. Then, from Eq. (3.15), we have∫
Ω

(
κ∇Tε

N ,∇v
)

DdP=
∫

Ω
( f ,v)DdP, N→∞. (3.16)

Thus, Uε is a solution to problem (2.3). By the uniqueness of the solution, we conclude
that

lim
N→∞

Tε
N =Tε.

That is to say the multimodal expansion (2.12) holds in L2(H1
0(D),Ω). This proof is com-

pleted.

Then, the convergence rate of Tε
N is given in the following theroem.

Theorem 3.2. Let Tε ∈ L2(H1
0(D),Ω) be the solution of problem (2.3), and Tε

N is defined in
Eq. (2.15), there holds

E‖∇Tε−∇Tε
N‖L2(D)≤C1εNE‖ f ‖L2(D), (3.17)

where the constant

C1=C
κ1

N

κκ0N

is independent of ε and the coarse mesh size H.

Proof. For Tε and Tε
N , we have∫

Ω

(
κ∇Tε,∇v

)
DdP=

∫
Ω
( f ,v)DdP, ∀v∈L2(H1

0(D),Ω), (3.18)

and ∫
Ω

(
κ∇Tε

N ,∇v
)

DdP

=
∫

Ω
( f ,v)DdP−

∫
Ω

εκ1
(
∇εN−1TN−1,∇v

)
DdP, ∀v∈L2(H1

0(D),Ω). (3.19)

Subtracting Eq. (3.19) from Eq. (3.18) yields∫
Ω

(
κ∇(Tε−Tε

N),∇v
)

D
dP=

∫
Ω

εκ1
(
∇εN−1TN−1,∇v

)
DdP. (3.20)

Then, define Rε
N =Tε−Tε

N and let v=Rε
N , we have

κ‖∇Rε
N‖2

L2(D)≤
(
κ∇Rε

N ,∇Rε
N
)

D

≤εNκ1‖∇TN−1‖L2(D)‖∇Rε
N‖L2(D)

≤εNκ1‖∇TN−1‖L2(D)‖∇Rε
N‖L2(D). (3.21)

Combining with Lemma 3.1, we have

E‖∇Rε
N‖L2(D)≤C

(εκ1)
N

κκ0N E‖ f ‖L2(D).

This completes the proof.
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Similar to the Lemma 3.1, the mode functions {Tms
n }n≥0 satisfy the following Lemma.

Lemma 3.2. Let Tms
n ∈ L2(H1

0(D),Ω) be the solutions of problems (2.22), if f ∈ L2(L2(D),Ω),
there holds

E‖∇Tms
n ‖L2(D)≤C

1
κ0

(
κ1

κ0

)n

E‖ f ‖L2(D), ∀n≥0. (3.22)

Next, the error estimates of MCEM-GMsFEM will be given in next theorem.

Theorem 3.3. Let mode functions Tn and Tms
n be the solutions of problems (2.13) and (2.22),

there holds
E‖κ0

(
∇Tε

N−∇Tms
N
)
‖L2(D)≤C2(ε,N)HΛ−

1
2 E‖ f ‖L2(D), (3.23)

where the constant C2(ε,N) is independent of κ0, and the coarse mesh size H.

Proof. The definition of Tε
N and Tms

N are shown as follows

Tε
N =

N−1

∑
n=0

εnTn, Tms
N =

N−1

∑
n=0

εnTms
n . (3.24)

In order to estimate E‖κ0(∇Tε
N−∇Tms

N )‖L2(D), we need consider Tn−Tms
n . For each mode

function Tn, define auxiliary function T̂n∈Vms as the solution of the following variational
form(

κ0∇T̂n(x,ξ j),∇v
)

D
=
(
−κ1(x,ξ j)∇Tn−1(x,ξ j),∇v

)
D

, ∀v∈Vms, and ∀n≥1. (3.25)

Then, for each fixed sample ξ j, Tn−Tms
n can be written as

Tn−Tms
n =Tn− T̂n+ T̂n−Tms

n .

By use of Lemma 1 in [33], we have

‖κ0
(
∇Tn−∇T̂n

)
‖L2(D)≤CHΛ−

1
2 ‖κ−

1
2

0

(
−κ1∇Tn−1

)
‖L2(D)

≤CHΛ−
1
2 κ0
− 1

2 κ1‖∇Tn−1‖L2(D). (3.26)

From Lemma 3.1, we deduce

E‖κ0(∇Tn−∇T̂n)‖L2(D)≤CHΛ−
1
2

κ1
n

κ0
n+ 1

2
E‖ f ‖L2(D). (3.27)

Moreover, for {Tms
n }n≥1∈Vms, we get(

κ0∇Tms
n (x,ξ j),∇v

)
D
=
(
−κ1(x,ξ j)∇Tms

n−1(x,ξ j),∇v
)

D
, ∀v∈Vms. (3.28)
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For any sample ξ j, combining Eq. (3.25) with Eq. (3.28), it follows that(
κ0(∇T̂n−∇Tms

n ),∇v
)

D
=
(
−κ1(∇Tn−1−∇Tms

n−1),∇v
)

D
, ∀v∈Vms. (3.29)

Let
v= T̂n−Tms

n ∈Vms,

based on Cauchy-Schwarz inequality and Lemma 3.2, there exists

E‖κ0(∇T̂n−∇Tms
n )‖L2(D)≤κ1E‖∇Tn−1−∇Tms

n−1‖L2(D). (3.30)

Under the relation of Eq. (3.30), we have

E‖κ0(∇T̂n−∇Tms
n )‖L2(D)≤κ1

nE‖∇T0−∇Tms
0 ‖L2(D). (3.31)

Combining (3.27) with (3.31), the following estimation is given

E‖κ0(∇Tε
N−∇Tms

N )‖L2(D)

≤
N−1

∑
n=0

εn
(

E‖κ0(∇Tn−∇T̂n)‖L2(D)+E‖κ0(∇T̂n−∇Tms
n )‖L2(D)

)
≤CHΛ−

1
2

κ1
n

κ0
n+ 1

2

N−1

∑
n=0

εnE‖ f ‖L2(D)+κ1
nE‖∇T0−∇Tms

0 ‖L2(D)

≤C2(ε,N)HΛ−
1
2 E‖ f ‖L2(D), (3.32)

where

C2(ε,N)=C
(

κ1
n

κ0
n+ 1

2

)
1−εN

1−ε
+Cκ1

nE‖∇T0−∇Tms
0 ‖L2(D). (3.33)

This completes the proof.

Then, the statistical error rate for the Monte Carlo method will be given in the next
theorem.

Theorem 3.4. Let SMTms
N be defined in Eq. (2.27), there holds

E‖E(∇Tms
N −∇SMTms

N )‖2
L2(D)≤

C
M

1−ε2N

1−ε2

(
1
κ0

(
κ1

κ0

)n)2

E‖ f ‖2
L2(D), (3.34)

where the constant C is independent of ε and M.

Proof. Define

E(Tms
N )=

N−1

∑
n=0

εnE(Tms
n ), SMTms

N =
N−1

∑
n=0

εn
[

1
M

M

∑
j=1

Tms
n (x,ξ j)

]
. (3.35)
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From the standard estimations for Monte Carlo method, we have

E‖∇E(Tms
N −∇SMTms

N )‖2
L2(D)

≤2
N−1

∑
n=0

ε2nE
(
‖∇(E(Tms

n )− 1
M

M

∑
j=1

Tms
n (x,ξ j)‖2

L2(D)

)
≤ 2

M

N−1

∑
n=0

ε2nE(‖∇Tms
n ‖2

L2(D)). (3.36)

By virtue of Lemma 3.2, it follows that

E‖∇E(Tms
N −∇SMTms

N )‖2
L2(D)≤

C
M

1−ε2N

1−ε2

(
1
κ0

(
κ1

κ0

)n)2

E‖ f ‖2
L2(D). (3.37)

This completes the proof.

Remark 3.1. The error order of standard Monte Carlo method is O(M
1
2 ), a large number

of samples will be chosen to improve the accuracy of the numerical results. Some im-
proved version of Monte Carlo method can be used to reduce the computation burden,
such as Multilevel Monte Carlo method, Multifielty Monte Carlo method, etc.

Finally, the total error of our proposed MCEM-GMsFEM can be divided three parts
as follows

E(Tε)−SMTms
N =

(
E(Tε)−E(Tε

N)
)
+
(

E(Tε
N)−E(Tms

N )
)
+
(

E(Tms
N )−SMTms

N

)
. (3.38)

Then, combining (3.17), (3.23) and (3.34), the following error estimate for the full algo-
rithm is given.

Theorem 3.5. Suppose the source term f∈L2(L2(D),Ω), and let SMTms
N be defined in Eq. (2.27),

there holds

E‖κ0(∇E(Tε)−∇SMTms
N )‖L2(D)≤C(εN+H+M−

1
2 )E‖ f ‖L2(D), (3.39)

where the positive constant C is independent of ε, the coarse mesh size H, N and M.

4 Numerical examples

In this section, some numerical examples are given to verify the efficiency and accuracy
of the proposed MCEM-GMsFEM. In the following two examples, the problems (2.3) are
considered in the spatial domain D = [0,1]2. The solutions SMTms

N of MCEM-GMsFEM
will be compared with the reference solutions E(Th) and MFEM solutions SMTh

N . The
reference solutions

E(Th)=
1
M

M

∑
i=1

Th(x,ξi)
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are given by use of stochastic finite element method, where h is fine grid size of uniform
partition over D. The solutions of multi-modes finite element method (MFEM) is defined
by

SMTh
N =

1
M

M

∑
i=1

N−1

∑
n=0

εnTh
n (x,ξi),

whose gird size is same to the reference solution. The Monte Carlo procedure with M=
103 samples ξi are carried out to compute the mean value. Then, based on Theorem 3.5,
the accuracy of the proposed MCEM-GMsFEM is defined by the relative L2 and energy
errors are defined as follows:

eL2 =
‖E(Th(x,ξ))−SMTms

N (x,ξ)‖L2(D)

‖E(Th(x,ξ))‖L2(D)

, (4.1a)

ea =
‖E(Th(x,ξ))−SMTms

N (x,ξ)‖a

‖E(Th(x,ξ)‖a
, (4.1b)

where energy norm is defined by

‖u‖2
a :=

∫
D

κ0(x)|∇u(x)|2dx. (4.2)

4.1 Validation of the theoretical results

In this example, some theoretical results for the convergence rate of MCEM-GMsFEM are
verified. The thermal conductivity k0(x) for the numerical tests are depicted in Fig. 2(a)
with the contrast ratio 104. Then, the fluctuation κ1(x,ξ) and source term f (x,ξ) are de-
fined as

κ1(x,ξ)=0.6+0.6
Mη

∑
i=1

Mη

∑
j=1

exp(−2)αi,j(x)Z1
i,j(ξ), (4.3a)

f (x,ξ)=exp(π)sin(2πx)cos(2πy)+
M f

∑
i=1

M f

∑
j=1

exp(ij)βi,j(x)Z2
i,j(ξ), (4.3b)

where Z1
i,j(ξ), (i, j = 1,2,··· ,Mη) is the uniform distribution in [0,1], and Z2

i,j(ξ), (i, j =
1,2,··· ,M f ) is the standard Gaussian distribution with i.i.d..

αi,j(x)=sin(ix1+ jx2), βi,j(x)=cos(iπx1)sin(jπx2), (4.4)

where Mη =10 and M f =5.
Figs. 2(b)-(d) demonstrate the numerical results of reference solutions E(Th), the fin-

inte element solution SMTh
N with multimode expantion, and the corresponding MCEM-

GMsFEM solutions SMTms
N , where the coarse mesh size is H=1/10, the truncation num-

ber N of multi-modes expansion is fixed to 5, the oversampling layer is m= 4, and the
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Figure 2: (a) Thermal conductivity k0(x), (b) the reference solution E(Th), (c) MFEM solution SMTh
5 and (d)

MCEM-GMsFEM solutionSMTms
5 computed for ε=0.1.

number of local multiscale basis functions is chosen as 4. Here, the 120×120 fine grid is
used for reference solution, and 10×10 coarse grid for the proposed MCEM-GMsFEM.
From above figure, it clearly shows that the difference between MCEM-GMsFEM solu-
tion and reference solution is small. In Fig. 3, the cross sections of solutions in Figs. 2(b)-
(d) on the line y= x is depicted. It can be found that the proposed MCEM-GMsFEM can
efficiently model heat transfer problems with multiscale uncertain material parameters.

Fig. 4 shows the convergence results of MCEM-GMsFEM under different numbers of

Table 1: Relative errors under different coarse grid size H, oversampling layer m with ε=0.1.

H Number basis per element m N eL2 ea
1/5 4 3 5 2.0087e−01 3.6030e−01
1/6 4 4 5 1.2885e−01 2.6240e−01
1/8 4 4 5 8.7953e−01 1.9683e−01

1/10 4 4 5 1.2708e−02 5.5169e−02
1/12 4 5 5 1.3205e−02 5.3185e−02
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Figure 3: Cross sections of E(Th), SMTh
5 and SMTms

5 which is plotted in Fig. 2 computed for ε=0.1, over the
line y= x.
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Figure 4: Relative errors under different numbers of local basis functions (a), different numbers of oversampling
layers (b).

local multiscale basis functions, oversampling layer m, where the truncation number N
of multi-modes expansion is fixed to 5. Some phenomena have been observed that the
relative L2 and energy errors rapidly decay with the numbers of local multiscale basis
functions and oversampling layer m increased. Therefore, we will select 4 basis functions
for each coarse grid in this example. Then, the influence of the coarse grid size H and
the fluctuation ε on the computation accuracy are presented in Tables 1 and 2. The rel-
ative error decreases as the coarse grid size H and the fluctuation ε decrease, which is
consistent with our theoretical analysis.

Table 2: Relative errors varying with the magnitude of random fluctuation ε where N=5, H=1/10.

ε ε=0.9 ε=0.8 ε=0.7 ε=0.5 ε=0.4
eL2 4.0153e−01 2.2688e−01 1.1896e−01 2.5766e−02 1.4265e−02
ea 3.9464e−01 2.2651e−01 1.2614e−01 5.6891e−02 5.3454e−02
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Figure 5: Plots of MCEM-GMsFEM relative errors and CεN with ε= 0.5 (Left), ε= 0.3 (Middle) and ε= 0.1
(Right).

In Fig. 5, the convergence rate of relative L2 and energy errors between the reference
solution E(Tε) and the MCEM-GMsFEM solution SMTms

N are demonstrated for the mode
number N=1,2,··· ,7. The error converges at a rateO(εN) as derived in Theorem 3.5. It is
easy to find that the relative error rapidly reduces when the number of modal functions
increases. Moreover, the relative error can be reduced by use of more mode functions for
relatively large ε.

4.2 Application to random fields

In this example, numerical experiment is carried out by use of

κ1(x,ξ)=exp
(
X(x,ξ)

)
,

where random fields X(x,ξ) in Eq. (2.4) is defined by exponential quadratic kernel as
follows

K(x,x′)=σ2exp
(
−‖x−x′‖2

2
2l2

x

)
(4.5)

with x and x′ are spatial coordinates in D, σ2 is the overall variance (σ is also known as
amplitude), lx is the length scale. For simplicity, the thermal conductivity are sampled
under the help of Karhunen-Loeve expansion (KLE)

X(x,ξ)=E(X)+
Nkl

∑
i=1

√
λibi(x)ξi, (4.6)

where E(X)=1, σ=0.2, and lx=0.5. The random variable ξi obeys the standard Gaussian
distribution with i.i.d., λi and bi(x) are the corresponding eigenvalues and eigenvectors.
Fig. 6(a) depicts the coefficient function k0(x) with the contrast ratio 104, and Figs. 6(b)-
(d) give three samples of random fluctuation k1(x,ξ) used in this example. The source
term f (x,ξ) is taken as

f (x,ξ)=6exp(x)exp(ξ1ξ2)cos(ξ3), (4.7)
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Figure 6: (a) Thermal conductivity k0(x), (b)-(d) Three samples generated by random fluctuation κ1(x,ξ).
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Figure 7: Contour of expectation for the reference solution E(Th), MFEM solution SMTh
5 and MCEM-GMsFEM

solution SMTms
5 with ε=0.1.

where ξi, (i=1,2,3) obey the Beta distribution B(1,1).
In Fig. 7, the contours of the reference solution E(Th), the MFEM solution SMTh

N ,
and MCEM-GMsFEM solution SMTms

N are demonstrated with N=5, where the reference
solution and MFEM solution are defined by the domain D partitioned uniformly with
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Figure 8: Contour of variance for the reference solution var(Th), MFEM solution var(Th
5 ) and MCEM-GMsFEM

solution var(Tms
5 ) with ε=0.1.
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Figure 9: Cross sections of E(Th), SMTh
5 and SMTms

5 which is plotted in Fig. 7 with ε=0.1, over the line y=x.

h=1/80, and the grid size of MCEM-GMsFEM is taken as H=1/8. The contours of their
variance are also drawn in Fig. 8. It is clear that MCEM-GMsFEM produces an accurate
approximation in comparison with the standard and multi-modes stochastic finite ele-
ment method. Fig. 9 plots the first five Monte Carlo sampling paths of the corresponding
three solution on y= x, and the mean value is shown in color blue, which is consistent
with our theoretical results.

In Tables 3 and 4, ε= 0.05, 0.1, 0.3, 0.5 are chosen for comparison under the relative
errors eL2 and ea. We observe that the MCEM-GMsFEM can accurately approximate the

Table 3: Relative errors eL2 varying with the magnitude of the random fluctuation ε and N.

ε N=3 N=4 N=5 N=6 N=7
0.05 2.9347e−03 1.5614e−03 1.3910e−03 1.4069e−03 1.4041e−03
0.1 2.2785e−02 7.3888e−03 2.2914e−03 1.6969e−03 1.3728e−03
0.3 6.0979e−01 5.4790e−01 5.0510e−01 4.8044e−01 4.6912e−01
0.5 2.7941 4.1654 6.3848 10.0723 16.3549
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Table 4: Relative errors ea varying with the magnitude of the random fluctuation ε and N.

ε N=3 N=4 N=5 N=6 N=7
0.05 2.0184e−02 1.9979e−02 1.9974e−02 1.9974e−02 1.9974e−02
0.1 3.0585e−02 2.1276e−02 2.0223e−02 2.0120e−02 2.0110e−02
0.3 6.1017e−01 5.4781e−01 5.0586e−01 4.8085e−01 4.7049e−01
0.5 2.7928 4.1631 6.3841 10.0755 16.3718

reference solution for ε=0.05, 0.1, 0.3 when the mode function number N increase. How-
ever, for ε=0.5, it is different to previous examples working for a large ε value, which is
similar to the test in Table 2. This is possibly a result of the tests in this example being car-
ried out with a relatively complicated random fluctuation parameter and some ensemble
method (see [49]) should be tried to improve the results in further research. In spite of
this, the fluctuation ε and mode function number N can be chosen to be relatively small
to obtain an accurate approximation, which will lead to great saving in the computation
time.

5 Conclusions

The objective of this paper is to design an effective stochastic multiscale method for solv-
ing heat transfer problem with uncertain multiscale thermal conductivity, which incor-
porate the merits of multi-modes method and CEM-GMsFEM. The multi-modes method
can transform the original stochastic multiscale problem into a series of recursive multi-
scale models sharing the same deterministic thermal conductivity by multiscale analysis
in random space. With the help of MCEM-GMsFEM and LU decomposition, MCEM-
GMsFEM provides an efficient procedure to obtain an approximation to stochastic mul-
tiscale systems. The optimal error order is derived in detail, and the efficiency and accu-
racy of MCEM-GMsFEM are verified by several numerical examples, which are consis-
tent with the theoretical results.
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