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Abstract. We propose a class of up to fourth-order maximum-principle-preserving
and mass-conserving schemes for the conservative Allen-Cahn equation equipped with
a non-local Lagrange multiplier. Based on the second-order finite-difference semi-
discretization in the spatial direction, the integrating factor Runge-Kutta schemes are
applied in the temporal direction. Theoretical analysis indicates that the proposed
schemes conserve mass and preserve the maximum principle under reasonable time
step-size restriction, which is independent of the space step size. Finally, the theoretical
analysis is verified by several numerical examples.
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1 Introduction

The classical Allen-Cahn (AC) equation was proposed by Allen and Cahn [1] in 1979 to
describe the phenomenological model of the inverse phase boundary motion in crystals.
As an important class of phase field models, the AC equation has been widely applied
in image processing [2], mean curvature motion, materials science [3, 4], and so on. In
recent years, many studies have been conducted on the classical AC equation [5–8].

The classical AC equation is considered as a well-known prototypical gradient flow

∂tu(x,t)=ε2∆u(x,t)+ f (u(x,t)), x∈Ω, t>0, (1.1)

where Ω=[a,b]⊆R is the bounded domain. The parameter ε>0 and u usually represent
the interfacial width and the difference between the concentrations of two mixtures’ com-
ponents, respectively. The symbol ∆ denotes the usual Laplacian operator and f (u) is the
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negative derivative of a polynomial double-well potential, i.e., f (u)=−F′(u). Consider
the initial and periodic boundary conditions

u(x,0)=u0(x), x∈Ω, (1.2a)
u(a,t)=u(b,t), t≥0. (1.2b)

The L2 inner product and norm are denoted as

〈 f ,g〉=
∫

Ω
f gdx, ‖ f ‖=

(∫
Ω
| f |2dx

) 1
2
,

respectively. The L∞ norm is defined as

‖ f ‖L∞=max
x∈Ω
| f (x)|.

The energy functional of the classical AC equation is defined as

E[u]=
ε2

2
〈∇u,∇u〉+〈F(u),1〉=

∫
Ω

(ε2

2
|∇u(x,t)|2+F(u(x,t))

)
dx, (1.3)

where
F(u)=

1
4
(u2−1)2, f (u)=−F′(u)=u−u3.

By taking the L2 inner product of Eq. (1.1) with ∂tu(x,t), we obtain

d
dt

E[u(x,t)]=−
∫

Ω
|∂tu(x,t)|2dx≤0, ∀t>0. (1.4)

Thus, the classical AC equation satisfies the energy dissipation law. By taking the L2

inner product of Eq. (1.1) with 1, we have

d
dt

∫
Ω

u(x,t)dx=ε2
∫

Ω
∆u(x,t)dx+

∫
Ω

f (u(x,t))dx, ∀t>0. (1.5)

It can be proven that the classical AC equation can not conserve the mass unless∫
Ω

f (u)dx=0.

In this paper, by introducing a Lagrange multiplier

λ=
1
|Ω|

∫
Ω

f (u(x,t))dx,

the conservative modification of the classical AC equation is expressed as [30]

∂tu(x,t)=ε2∆u(x,t)+ f̄ (u(x,t)), x∈Ω, t>0, (1.6)
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where

f̄ (u(x,t))= f (u(x,t))− 1
|Ω|

∫
Ω

f (u(x,t))dx= f (u(x,t))−λ(t). (1.7)

It is well-known that the classical AC equation satisfies the maximum-principle-
preserving (MPP) property, i.e., if the initial value satisfies ‖u0‖L∞≤ β, then the solu-
tion satisfies ‖u(t)‖L∞≤ β [9]. In recent years, the development of high-order accurate
structure-preserving algorithms has been a hot topic, including the dissipation of en-
ergy, conservation of mass, and preservation of maximum principle. The first- and
second-order MPP scheme are constructed by using the exponential time difference
(ETD) method in the temporal direction. By introducing a Lagrange multiplier, Li [10]
obtained the AC equation with mass conservation. Then, the second-order stable differ-
ence scheme of the mass-conserved AC equation is constructed by using the exponential
difference method in the temporal direction. Besides, MPP can be obtained uncondi-
tionally. Du [11, 12] exploited the ETD method to construct the first- and second-order
discrete MPP schemes. According to the nonlinear parabolic equation, an MPP scheme
that can effectively solve the radiation diffusion and nonlinear heat wave problem was
constructed by Peng [13]. Liao [14] presented a second-order MPP time-stepping scheme
for the time-fractional AC equation with nonuniform time steps. Moreover, a space-
time related Lagrange multiplier was first introduced by Kim [15] to the AC equation to
strengthen the conservation of mass. Then, Kim applied an operator splitting method in
the spatial direction to obtain the semi-discrete scheme. Meanwhile, by employing the
Crank-Nicolson (CN) method, the second-order full-discrete form was obtained. In order
to construct the MPP discrete scheme for the generalized AC equation with a nonlinear
mobility, Shen [16] first combined the central finite difference method for approximating
the diffusion term with the upwind scheme for the advection term in the spatial direction.
Then, they adopted the standard semi-implicit scheme in the temporal direction. Besides,
a second-order scheme [17] that can both conserve mass and boundary for the Keller-
Segel equation was obtained. Furthermore, there are lots of other studies of MPP [18–22].
In addition to the MPP, the energy dissipation is also a important physical property for
the conservative AC equation. There exists many works denoted to the energy stable nu-
merical scheme, for example, implicit method [23], the convex splitting method [24], lin-
ear stabilized method [25], invariant energy quadratization method [26], scalar auxiliary
variable method [27], Lagrange multiplier [28] and cut-off post-processing method [29].

The exponential time integrators have been widely investigated recently [30–33].
To handle the stiff nonlinear part well regardless of homogeneous or inhomogeneous
boundary conditions, Ju [34] combined the stabilized ETD method with the fast Fourier
transform (FFT) in the spatial direction. Kassam [35] proposed an improved fourth-order
Runge-Kutta (RK) method for solving stiff nonlinear partial differential equations. Mean-
while, the application and comparison of the KdV equation and the classical AC equa-
tion were conducted by using the time-splitting method and other factors. After this, the
strong stability preserving (SSP) integrating factor Runge-Kutta (IFRK) method was first
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proposed by Iserwood [36]. The problem that implicit and implicit-explicit methods have
strict requirements on the time step was solved, and the calculation efficiency is greatly
improved. Then, Zhang [37] used the IFRK method to propose a class of high order
maximum principle preserving schemes for solving the AC equation and Ju [38] studied
the fully-discrete maximum bound principle (MBP)-preserving IFRK method instead of
the SSP property for a class of semilinear parabolic equations. Nevertheless, the current
studies of the AC equation with mass conservation or MPP can achieve third-order ac-
curacy in the temporal direction by applying the stabilized IFRK method [39]. Aiming
at this problem, a scheme with unconditional mass conservation and MPP is proposed
in this paper, and the proposed scheme can achieve a high degree of convergence in the
temporal direction.

The rest of this paper is arranged as follows. In Section 2, the conservative AC equa-
tion which is obtained by adding a Lagrange multiplier can achieve MPP and conserve
mass unconditionally. In Section 3, the finite difference method is exploited in the spa-
tial direction and the IFRK method is applied in the temporal direction to construct the
full-discrete scheme of the conservative AC equation. It is proved that the high-order
full-discrete scheme can achieve MPP and conserve mass unconditionally. In Section 4,
the correctness of the full-discrete scheme is verified by 1D, 2D, and 3D experiments.
Some concluding remarks are presented in Section 5.

2 Preliminaries

Different from the classical AC equation (1.1), the conservative AC equation (1.6) can not
only keep energy dissipation and satisfy MPP, but also preserve the conservation law of
mass. In this section, we introduce the properties of the conservative AC equation.

Theorem 2.1. The conservative AC equation (1.6) satisfies the energy dissipation law

d
dt

E[u(x,t)]≤0, ∀t>0. (2.1)

Proof. By taking L2 inner product of Eq. (1.6) with ∂tu(x,t), the following energy dissipa-
tion law is obtained

d
dt

E[u(x,t)]=
〈

δE
δu

,∂tu(x,t)
〉
=−

∫
Ω
|∂tu(x,t)|2dx≤0, ∀t>0. (2.2)

Thus, we complete the proof.

Theorem 2.2. The conservative AC equation (1.6) preserves the mass conservation law

d
dt

M=0, ∀t>0, (2.3)

where M := 〈u,1〉.
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Proof. Taking the L2 inner product with 1 on both sides of Eq. (1.6), we have

d
dt

∫
Ω

u(x,t)dx=ε2
∫

Ω
∆u(x,t)dx+

∫
Ω

f̄ (u(x,t))dx, (2.4)

where ∫
Ω

∆u(x,t)dx=0 (2.5)

can be deduced based on the periodic boundary conditions. Meanwhile,∫
Ω

f̄ (u(x,t))dx=0, (2.6)

so we can get

d
dt

∫
Ω

u(x,t)dx=0, (2.7)

which is equivalent to
d
dt

M=0, ∀t>0.

It indicates that the conservative AC equation can conserve mass unconditionally.

Assumption 2.1 ([40]). There exists a constant β>0 such that

∀ω∈ [−β,β], f (β)≤ f (ω)≤ f (−β). (2.8)

Theorem 2.3 ( [40]). For the conservative AC equation (1.6), if Assumption 2.1 holds and the
initial value satisfies ‖u(x,0)‖L∞≤β for any x∈Ω, we have ‖u(x,t)‖L∞≤β for any x∈Ω.

We choose the polynomial double-well potential function

F(u)=
1
4
(u2−1)2, f (u)=−F′(u)=u−u3. (2.9)

Let f ′(u)≥ 0, we can deduce that f (u) is monotonically nondecreasing function while
u∈ [−

√
3

3 ,
√

3
3 ]. Therefore

f
(
−
√

3
3

)
≤ f (u)≤ f

(√3
3

)
, u∈

[
−
√

3
3

,

√
3

3

]
. (2.10)

By calculation and the plot of f (u) shown in [10], we can obtain

f
(2
√

3
3

)
≤ f (u)≤ f

(
− 2
√

3
3

)
, u∈

[
− 2
√

3
3

,
2
√

3
3

]
. (2.11)

In combination with the Assumption 2.1, we can know that f satisfies β∈ [ 2
√

3
3 ,+∞).
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3 High order maximum-principle-preserving and
mass-conserving schemes

Many methods have been proposed in previous studies to solve the conservative AC
equation, such as the ETD1, ETDRK2, and CN schemes. However, these methods can
only preserve the maximum principle up to second-order accuracy in the temporal di-
rection. Thus the calculation efficiency is reduced. In this section, by using the finite
difference method in the spatial direction and the IFRK method in the temporal direc-
tion, we propose a class of high-order scheme for the conservative AC equation. It is
proved that the full-discrete scheme allows the AC equation to conserve mass and admit
maximum principle. Before discretizing the conservative AC equation, let us introduce
some preliminaries.

Lemma 3.1 ([10]). Under Assumption 2.1, when u(x,t)∈ [−β,β], x∈Ω, we have

f (β)≤λ(t)≤ f (−β), (3.1)

where integral term λ(t) is independent of x.

Then, set the constant τ̄ as

τ̄≤
(

max
|ξ|≤β
| f ′(ξ)|

)−1
. (3.2)

Lemma 3.2. Under Assumption 2.1 and the choice of a constant τ̄, we have

‖ξ+ τ̄ f̄ (ξ)‖L∞≤β, τ̄≤
(

max
|ξ|≤β
| f ′(ξ)|

)−1
, (3.3)

for any ξ(x)∈C(Ω) with ‖ξ‖L∞≤β.

Proof. Above all, let’s define

g(ξ)=
1
τ̄

ξ(x)+ f (ξ).

It can be deduced that for any ξ(x)∈C(Ω) with ‖ξ‖L∞≤β, it holds that

0≤ g′(ξ)=
1
τ̄
+ f ′(ξ(x))≤ 2

τ̄
, ∀x∈Ω, (3.4)

which indicates that the function g(ξ) is a monotonically nondecreasing function. Thus,

g(−β)≤ g(ξ)≤ g(β), (3.5)

which is equivalent to

−β

τ̄
+ f (−β)≤ 1

τ̄
ξ(x)+ f (ξ)≤ β

τ̄
+ f (β), ∀x∈Ω. (3.6)
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From Lemma 3.1, we have

− f (−β)≤−λ(t)≤− f (β). (3.7)

Therefore,

−β

τ̄
≤−β

τ̄
+ f (−β)−λ(t)≤N(ξ)≤ β

τ̄
+ f (β)−λ(t)≤ β

τ̄
, (3.8)

where
N(ξ)=

1
τ̄

ξ(x)+ f (ξ)−λ(t)=
1
τ̄

ξ(x)+ξ(x)−ξ(x)3−λ(t),

so that ∥∥∥ 1
τ̄

ξ(x)+ξ(x)−ξ(x)3−λ(t)
∥∥∥

L∞
≤ β

τ̄
. (3.9)

Then

‖ξ(x)+ τ̄(ξ(x)−ξ(x)3−λ(t))‖L∞≤β, (3.10)

which is equivalent to

‖ξ(x)+ τ̄ f̄ (ξ)‖L∞≤β, (3.11)

where
τ̄≤

(
max
|ξ|≤β
| f ′(ξ)|

)−1
.

This completes the proof.

3.1 Finite difference semi-discretization

Let the mesh size h = b−a
N , the grid points Ωh = {xj|xj = a+ jh, j = 0,1,··· ,N−1}, VN =

{v|v=(vj), xj∈Ωh}⊂RN , equipped with discrete l2 inner product, l2 norm, and l∞ norm
which is defined as

〈u,v〉=h
N−1

∑
j=0

ujvj, ‖u‖2
l2= 〈u,u〉, ‖u‖l∞= max

i=0,···,N−1
|ui|, ∀u,v∈VN . (3.12)

Then, the central finite difference discretization of ∂xx is denoted as

D2=
1
h2


−2 1 1
1 −2 1

...
...

...
1 −2 1

1 1 −2


N×N

.

Define L=ε2D2, I∈RN×N is the identity matrix and 1=[1,1,··· ,1]T∈RN .
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Lemma 3.3 ([39]). For any τ>0, it holds that ‖eτL‖∞=1.

Lemma 3.4. For the matrix L, the following equality holds:

〈eτLun,1〉= 〈un,1〉, ∀τ≥0. (3.13)

Proof. Using the symmetry of L that

〈eτLun,1〉=1T ·eτLun =1T(eτL)T ·un = 〈un,eτL1〉= 〈un,1〉, ∀τ≥0. (3.14)

This completes the proof.

Then, the spatial semi-discretization in 1D is expressed as

ut =ε2D2u+ f̄ (u), x∈Ωh, t>0. (3.15)

Theorem 3.1. The semi-discrete conservative AC Eq. (3.15) preserves the mass conservation law,
i.e.,

d
dt

M=0, ∀t>0, (3.16)

where M := 〈u,1〉.
Proof. By taking the l2 inner product with 1 on both side of the Eq. (3.15) and using the
periodic boundary condition, the semi-discrete mass conservation law is obtained

d
dt
〈u,1〉=

〈
ε2D2u,1

〉
+
〈

f̄ (u),1
〉

, (3.17)

where 〈
ε2D2u,1

〉
=0 (3.18)

can be deduced based on the periodic boundary conditions. Meanwhile,〈
f̄ (u),1

〉
=0, (3.19)

so we can obtain
d
dt
〈u,1〉=0, (3.20)

which is equivalent to
d
dt

M=0, ∀t>0.

It shows that the semi-discrete conservative AC Eq. (3.15) satisfies the mass conservation
law.

Theorem 3.2 ( [10]). It shows that for the semi-discrete conservative AC Eq. (3.15) with the
initial value u0=u0(x) and ‖u0‖l∞≤β, the solution u to the semi-discrete system (3.15) satisfies
the maximum principle

‖u(t)‖l∞≤β, ∀t≥0. (3.21)
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3.2 Integrating factor Runge-Kutta time integration

Consider the Lawson transformation of unknown

v(t)= e−Ltu(t). (3.22)

Through this transformation, the equivalent semi-discrete system can be obtained if and
only if v solves

vt = e−Lt f̄ (e−Ltv), ∀t≥0, (3.23)

where v(0)=u(0)=u0. Think about the s-stage and p-th order explicit RK scheme defined
by the Butcher table

c A
bT =

c0 0
c1 a1,0 0
...

...
...

. . .
cs−1 as−1,0 ··· 0

b0 b1 ··· bs−1

,

where

ai,j =0, (i≤ j),
s−1

∑
i=0

bi =1, ci =
s−1

∑
i=0

ai,j, (i=0,1,··· ,s−1),

and the Butcher coefficients are constrained by certain accuracy and stability require-
ments. Then, applying the RK method to problem (3.23) yields the IFRK scheme:

un,i = eciτLun+τ
i−1

∑
j=0

ai,je(ci−cj)τLf̄n,j, i=0,1,··· ,s−1, (3.24a)

un+1= eτLun+τ
s−1

∑
i=0

bie(1−ci)τLf̄n,i, (3.24b)

with un,0=un, f̄n,i = f̄ (un,i).

Theorem 3.3. The full-discrete conservative AC Eq. (3.24b) preserves the mass conservation law,
i.e.,

Mn+1=Mn = ···=M0, ∀t≥0, (3.25)

where Mi = 〈ui,1〉 is the discrete global mass at time ti with i=1,··· ,s.

Proof. Above all, the properties of f̄n,j holds〈
f̄n,j,1

〉
=0. (3.26)
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After that, taking l2 inner product with 1 on both sides of the Eq. (3.24a) and combining
with Lemma 3.4, we have

〈un,i,1〉=
〈

eciτLun,1
〉
+

〈
τ

i−1

∑
j=0

ai,je(ci−cj)τLf̄n,j,1

〉

=
〈

un,eciτL1
〉
+

〈
τ

i−1

∑
j=0

ai,jf̄n,j,e(ci−cj)τL1

〉

=〈un,1〉+τ
i−1

∑
j=0

ai,j
〈
f̄n,j,1

〉
=〈un,1〉, i=1,··· ,s. (3.27)

Thus,

Mn+1=Mn = ···=M0, ∀t≥0.

This completes the proof.

Next, we will prove that the discrete maximum principle holds for a special class of
IFRK schemes under a certain time step constraint. For

αi,j≥0,
i−1

∑
j=0

αi,j =1, ∀i=1,··· ,s,

we present the IFRK scheme in the Shu-Osher form [42]
un,0=un,

un,i =
i−1

∑
j=0

e(ci−cj)τL(αi,jun,j+βi,jτf̄n,j), i=1,··· ,s,

un+1=un,s,

(3.28)

where

as,j =bi, j=0,··· ,s−1, (3.29a)

βi,j = ai,j−
i−1

∑
k=j+1

αi,jak,j, i=1,··· ,s, j=0,··· ,i−1. (3.29b)

Theorem 3.4. In fact, when the coefficients αi,j and βi,j satisfy

αi,j≥0,
i−1

∑
j=0

αi,j =1, (3.30a)

βi,j≥0, βi,j =0 if αi,j =0, (3.30b)
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with the monotonic increasing abscissas ci,j, i.e., 0 = c0≤ c1≤ ··· ≤ cn = 1, this class of IFRK
method is also called the SSP-IFRK method, which satisfies the MPP under the SSP condition on
the time step size [36]. So if the explicit full-discrete IFRK system in the Shu-Osher form (3.28)
with the initial value satisfying ‖u0‖l∞≤β, then the numerical solution un satisfies the maximum
principle when the time step size τ satisfies

τ≤min
i,j

∣∣∣ αi,j

βi,j

∣∣∣τ̄, τ̄≤
(

max
|ξ|≤β
| f ′(ξ)|

)−1
(3.31)

for i=1,··· ,s, j=0,··· ,i−1.

Proof. We prove this by mathematical induction. Assuming ‖un‖l∞≤β, we will show that
‖un+1‖l∞≤β. When τ satisfies the condition (3.31), we can prove the following conclusion
by using Lemma 3.2 and combining Eq. (3.13) with Eq. (3.26)

‖un,i‖l∞=
∥∥∥ i−1

∑
j=0

e(ci−cj)τL(αi,jun,j+βi,jτf̄n,j)
∥∥∥

l∞

=
∥∥∥ i−1

∑
j=0

(αi,jun,j+βi,jτf̄n,j)
∥∥∥

l∞

=
i−1

∑
j=0, αi,j 6=0

αi,j

∥∥∥ui,j+
βi,j

αi,j
τf̄n,j

∥∥∥
l∞

≤β, i=1,··· ,s. (3.32)

This completes the proof.

3.3 Error estimate

Consider the 1D problem, by using the definition of the p-th order (1≤ p≤ s) RK scheme,
we can derive the following convergence result.

Theorem 3.5. Given T>0, assume that u(t)∈Cp[0,T] is the exact solution of the semi-discrete
scheme (3.15) and un is the numerical solution of the full-discrete IFRK system (3.24a)-(3.24b),
respectively. Suppose the initial value is smooth in [0,T] and satisfies ‖u0‖l∞≤ β, under the
condition of Theorem 3.4, the error estimate can be written as

‖u(tn)−un‖l∞≤C1(eAstn−1)τp for tn≤T, (3.33)

for any τ>0, where the constant C1>0 is independence of τ and

A=max
|ξ|≤β
| f̄ ′(ξ)|.
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Proof. Denote the reference functions Un,i, which possess Un,0=u(tn) and Un,s =u(tn+1),
thus we can obtain

Un,i = eciτLu(tn)+τ
i−1

∑
j=0

ai,je(ci−cj)τL f̄ (Un,j), i=0,1,··· ,s−1, (3.34a)

Un,s = eτLu(tn)+τ
s−1

∑
i=0

bie(1−ci)τL f̄ (Un,i)+Rs, (3.34b)

where the truncation error Rs satisfies

‖Rs‖l∞≤Csτ
p+1,

with the constant Cs depends on the Cp[0,T]-norm of the u, the Cp[−β,β]-norm of f , s, T,
‖L‖l∞ and p, but is independent of τ.

Let en=u(tn)−un and en,i=Un,i−un,i for i=0,1,··· ,s−1, hence the following equations
can be obtained by subtracting Eq. (3.24a) from Eq. (3.34a) and subtracting Eq. (3.24b)
from Eq. (3.34b), respectively,

en,i = eciτLen+τ
i−1

∑
j=0

ai,je(ci−cj)τL( f̄ (Un,j)− f̄ (un,j)), i=0,1,··· ,s−1, (3.35a)

en+1= eτLen+τ
s−1

∑
i=0

bie(1−ci)τL( f̄ (Un,i)− f̄ (un,i))+Rs. (3.35b)

By noting ai,j≤ ci≤1 and using Lemma 3.3, we can derive

‖en,i‖l∞≤‖en‖l∞+τ
i−1

∑
j=0
‖ f̄ (Un,j)− f̄ (un,j)‖l∞

≤‖en‖l∞+τA
i−1

∑
j=0
‖en,j‖l∞

≤‖en‖l∞+τA
i−1

∑
j=0

(1+τA)j‖en‖l∞

=(1+τA)i‖en‖l∞ , i=0,1,··· ,s−1, (3.36a)

‖en+1‖l∞≤‖en‖l∞+τ
s−1

∑
i=0
‖ f̄ (Un,i)− f̄ (un,i)‖l∞+‖Rs‖l∞

≤‖en‖l∞+τA
s−1

∑
i=0
‖en,i‖l∞+Csτ

p+1

≤‖en‖l∞+τA
s−1

∑
i=0

(1+τA)i‖en‖l∞+Csτ
p+1

=(1+τA)s‖en‖l∞+Csτ
p+1. (3.36b)
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By induction, it can be arranged as

‖en‖l∞≤ (1+τA)sn‖e0‖l∞+Csτ
p+1

n−1

∑
k=0

(1+τA)sn. (3.37)

Thanks to ‖e0‖l∞= 0, therefore we use the geometric sequence summation formula to
calculate ∑n−1

k=0 (1+τA)sn, and then utilize Taylor expansion to get

‖en‖l∞≤C1(eAstn−1)τp, (3.38)

where C1=Cs/As, tn =τn. This completes the proof.

Noting that the second-order finite discretization for 2D and 3D Laplace operators
can be directly obtained by using Kronecker products, and the resulting differentiation
matrices satisfy Lemma 3.2 and 3.3. Thus the preservation of maximum principle, con-
servation of mass and error estimate can be similarly proved. To save space, we omit
them.

4 Numerical simulations

In this section, we carry out some numerical experiments to demonstrate the performance
of the IFRK scheme presented in Section 3. First, the convergence rates of the proposed
full-discrete scheme (3.28) in both temporal and spatial directions are verified using a 1D
example. Afterwards, we verify the preservation of maximum principle and conserva-
tion of mass by three examples. Finally, we present a 3D simulation example to show ef-
fectiveness of the proposed IFRK method. In this paper, the following RK schemes [36,42]
are used

RK(1,1) :
0 0

1
, RK(2,2) :

0 0 0
1 1 0

1
2

1
2

,

RK(3,3) :

0 0 0 0
2
3

2
3 0 0

2
3

2
9

4
9 0

1
4

3
16

9
16

, RK(4,4) :

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

.

According to the condition (3.31), the maximum time steps for different IFRK methods to
satisfy MPP are calculated, and the results are listed in Table 1.

In addition, the mass errors are computed by using

Mass Error= |Mn−M0|.
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Table 1: The maximum time steps for different IFRK schemes.

RK schemes RK(1, 1) RK(2, 2) RK(3, 3) RK(4, 4)
min

i,j

∣∣ αi,j
βi,j

∣∣ 1 1 3
4

2
3

τmpp
1
3

1
3

1
4

2
9

4.1 Example 1

Let us consider the following initial value

u(x,0)=0.05sin(x), x∈ [0,2π], t>0. (4.1)

First, by setting ε=0.01 and choosing T=1, NX=28, τ=2−10 as the reference solution,
the convergence order of different IFRK methods listed in Table 2 shows that fourth-
order accuracy can be obtained in the temporal direction through selecting different τ
values as dt, dt

2 and dt
4 , where dt= 2−3. Then, choosing T = 1, NX = 212, τ = 2−10 as the

reference solution, the spatial precision is obtained and listed in Table 3. Besides, it can
be seen from Table 3 that second-order accuracy in the spatial direction is maintained by
using the finite difference method with the spatial grid from being refined from 26 to 28

uniformly.
Let T = 100 and set the time step τ as 2

9 and 1.5. From left to right, Fig. 1 shows
numerical solutions of u, evolutions of infinite norms ‖u‖l∞ , and mass errors by using
RK(1, 1), RK(2, 2), RK(3, 3) and RK(4, 4), respectively. It can be seen from the left column
of Fig. 1 that the numerical solutions are relatively stable when τ takes a small time step as
2
9 . However, when τ takes a time step of 1.5 which is lager than τmpp, solutions obtained

Table 2: Temporal accuracy test of the IFRK, dt=2−3.

dt IFRK(1, 1) 5.216e-03 - 7.295e-03 - IFRK(2, 2) 2.194e-04 - 3.064e-04 -
dt/2 2.743e-03 0.927 3.833e-03 0.928 5.750e-05 1.932 8.031e-05 1.932
dt/4 1.408e-03 0.962 1.967e-03 0.963 1.472e-05 1.966 2.056e-05 1.966

dt IFRK(3, 3) 6.560e-06 - 9.037e-06 - IFRK(4, 4) 1.706e-07 - 2.386e-07 -
dt/2 8.614e-07 2.929 8.614e-07 2.929 1.121e-08 3.927 1.568e-08 3.927
dt/4 1.397e-08 2.964 1.923e-08 2.964 7.158e-10 3.970 1.001e-09 3.970

Table 3: Spatial accuracy test of the finite difference method.

NX RK Order l2 Error Order l∞ Error Order RK Order l2 Error Order l∞ Error Order
26 IFRK(1, 1) 1.078e-08 - 1.013e-08 - IFRK(2, 2) 1.078e-08 - 1.013e-08 -
27 2.693e-09 2.001 2.531e-09 2.001 2.694e-09 2.001 2.532e-09 2.001
28 6.713e-10 2.004 6.309e-10 2.004 6.716e-10 2.004 6.311e-10 2.004
26 IFRK(3, 3) 1.078e-08 - 1.013e-08 - IFRK(4, 4) 1.078e-08 - 1.013e-08 -
27 2.694e-09 2.001 2.532e-09 2.001 2.694e-09 2.001 2.532e-09 2.001
28 6.716e-10 2.004 6.311e-10 2.004 6.716e-10 2.004 6.311e-10 2.004
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Figure 1: Solutions of u (left column), evolutions of ‖u‖l∞ (middle column) and mass errors (right column) by
using different RK methods. Parameters: ε=0.01, NX=128, T=100.
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by RK(1, 1), RK(2, 2), and RK(3, 3) show a large oscillation, while the solution obtained
by RK(4, 4) has better stability. Meanwhile, the middle column of Fig. 1 shows that when
τ is set as 2

9 , all the RK methods achieve MPP; when τ is set as 1.5, neither RK(1, 1) nor
RK(3, 3) can achieve MPP. Although RK(2, 2) can satisfy MPP, it fluctuates greatly. By
contrast, RK(4, 4) also satisfies MPP, but it is more stable. So, it can be seen from the
right column of Fig. 1 that regardless of the size of the time step and the selection of the
RK method, the mass error can reach machine accuracy, which verifies the conservation
of mass. Hence, the fourth-order IFRK scheme can be considered as a good attempt to
preserve the MPP and mass conservation law.

4.2 Example 2

In two dimensions, the following initial value is set for the conservative AC equation

u(x,y,0)=cos(2πx)cos(2πy), (x,y)∈ [−0.5,0.5]2, t>0. (4.2)

Let ε=0.01 and NX=NY=128. It can be seen from Fig. 2 that the solution is mixed

(a) T=0 (b) T=100

(c) T=200 (d) T=600

Figure 2: Solutions computed by using RK(4, 4) scheme at T = 0,100,200,600. Parameters: ε= 0.01, NX =
NY=128, τ= 2

9 .



X. Chen, X. Qian and S. Song / Adv. Appl. Math. Mech., 15 (2023), pp. 159-181 175

0 50 100 150 200
t

0

0.5

1

1.5
||u

|| l∞

τ=2/9
τ=1/3
τ=1.5
u=2*sqrt(3)/3

(a) RK(1, 1)

0 50 100 150 200
t

0

0.5

1

1.5

||u
|| l∞

τ=2/9
τ=1/3
τ=1.5
u=2*sqrt(3)/3

(b) RK(2, 2)

0 50 100 150 200
t

0

0.5

1

1.5

||u
|| l∞

τ=2/9
τ=1/3
τ=1.5
u=2*sqrt(3)/3

(c) RK(3, 3)

0 50 100 150 200
t

0

0.5

1

1.5

||u
|| l∞

τ=2/9
τ=1/3
τ=1.5
u=2*sqrt(3)/3

(d) RK(4, 4)

Figure 3: Evolutions of ‖u‖l∞ by using different RK methods. Parameters: ε=0.01, NX=NY=128, T=200.

together at T = 0, and the numerical solution becomes clearer over the time. Finally,
the solution reaches a stable state when T = 600. Evolutions of ‖u‖l∞ and mass errors
under different time steps by employing RK(1, 1), RK(2, 2), RK(3, 3), and RK(4, 4) are
demonstrated in Fig. 3 and Fig. 4, respectively. The Fig. 3 presents evolutions of ‖u‖l∞

under different time steps. It can be seen that when τ ≤ 2
9 , the scheme satisfies MPP.

However, it is clear that RK(1, 1) cannot achieve MPP when the time step increases to 1.5.
Even though infinite norms of ‖u‖l∞ by using RK(2, 2) and RK(3, 3) remain within the
black line, the infinite norm of RK(3, 3) oscillates significantly. In comparison, RK(4, 4) is
a more stable scheme that satisfies MPP, but the the infinite norm is not as good as that
under small time steps. Therefore, it is verified in this example that the RK(4, 4) scheme is
the most stable scheme that can preserve the maximum value, and the MPP is achieved
at certain step sizes. Besides, the Fig. 4 shows the mass conservation property can be
preserved with different time steps. Thus, it can be seen that the stability of mass is not
affected by time steps. That is, the full-discrete scheme of the constructed conservative
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Figure 4: Mass errors by using different RK methods. Parameters: ε=0.01, NX=NY=128, T=200.

AC equation can satisfies the conservation law of mass.

4.3 Example 3

We consider the following three-dimensional initial value

u(x,y,z,0)=cos(2πx)cos(4πy)cos(6πz), (x,y,z)∈ [0,1]3, t>0. (4.3)

Set ε=0.05, NX=NY=NZ=64. Numerical solutions of u and mass errors by employ-
ing RK(4, 4) under different time steps for a long period of time are presented in Fig. 5
and Fig. 6, respectively. First, the snapshot of the numerical solution shown in Fig. 5 is
blurry at first, and the solution are mixed. Then, the solution becomes clearly separated
until T=100. As shown in Fig. 6, the evolution of ‖u‖l∞ within the range of the black line
is almost smooth, and the mass error still reaches the machine precision. As a result, the
proposed scheme by using RK(4, 4) for the conservative AC equation can describe the
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(a) T=0 (b) T=50

(c) T=80 (d) T=100

Figure 5: Solutions computed by using RK(4, 4) scheme at T=0,50,80,100. Parameters: ε=0.05, NX=NY=
NZ=64, τ= 2

9 .

evolution of the numerical solution well. Besides, it can achieve MPP and conserve mass.

5 Conclusions

In this paper, we have developed a stable and high order MPP scheme for solving the con-
servative AC equation. The mass-conserving AC equation is constructed by introducing
a Lagrange multiplier. And then, the finite difference method and the IFRK method are
respectively applied in the spatial direction and the temporal direction. The proposed
scheme (3.28) has three main advantages. Above all, it is well-known that the explicit
method enjoys less computation for solving partial differential equations, so the new
scheme (3.28) has high calculation efficiency due to the application of the explicit IFRK
method. The second point, the proposed scheme of the conservative AC equation can sat-
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Figure 6: Evolution of ‖u‖l∞ (a) and mass error (b) by using RK(4, 4) scheme. Parameters: ε=0.05, NX=
NY=NZ=64, τ= 2

9 , T=100.

isfy MPP and conserve mass simultaneously, and it can be calculated steadily over a long
period. Last but not least, the proposed scheme can reach up to fourth-order accuracy in
the temporal direction. Moreover, the theoretical analysis result is verified by 1D, 2D and
3D experiments. Compared with different IFRK schemes, the fourth-order scheme can
be generalized to construct a higher order mass conservative scheme steadily.

An immediate future work could be consider the Allen-Cahn equation with Peng-
Robinson equation of state. This problem was first studied in [43] and has been recently
studied by Huang [44]. So we want to apply IFRK method to this equation to obtain the
high order mass-preserving and MPP scheme.
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