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Abstract

In countless applications, we need to reconstruct a K-sparse signal x ∈ R
n from noisy

measurements y = Φx + v, where Φ ∈ R
m×n is a sensing matrix and v ∈ R

m is a noise

vector. Orthogonal least squares (OLS), which selects at each step the column that results

in the most significant decrease in the residual power, is one of the most popular sparse

recovery algorithms. In this paper, we investigate the number of iterations required for

recovering x with the OLS algorithm. We show that OLS provides a stable reconstruction of

all K-sparse signals x in ⌈2.8K⌉ iterations provided that Φ satisfies the restricted isometry

property (RIP). Our result provides a better recovery bound and fewer number of required

iterations than those proposed by Foucart in 2013.

Mathematics subject classification: 94A12, 65F22, 65J22.

Key words: Sparse signal recovery, Orthogonal least squares (OLS), Restricted isometry
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1. Introduction

Compressed sensing (CS) has been attracted considerable attention in numerous fields [1–5].

The main task of CS is to recover a signal x ∈ R
n from

y = Φx+ v, (1.1)

where Φ ∈ R
m×n(m ≪ n) is a sensing matrix with ℓ2-normalized columns, x is a K-sparse

(i.e., ‖x‖0 ≤ K, where ‖x‖0 denotes the number of nonzero entries of x) signal, and v ∈ R
m is

a noise vector.

There are many algorithms ([6–12]) for recovering x from (1.1). One of the popular one

is the orthogonal least squares (OLS) [13–16] algorithm. It has been shown in [15] that OLS
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is computationally more expensive yet is more reliable than the orthogonal matching pursuit

(OMP) algorithm [17, 18], hence it has been attracted much attention in recent years. OLS

identifies the support of x by adding one index to the list at each iteration, and estimates the

coefficients of the sparse vector over the enlarged support. Specifically, it adds to the estimated

support an index which leads to the maximum reduction of the residual power in each iteration.

The vestige of the active list is then eliminated from y, yields a residual update for the next

iteration.

Denote Ω = {1, · · · , n} and T = supp(x) = {i|xi 6= 0, i ∈ Ω} as the support of K-sparse

signal x. Let Λ be a subset of Ω, |Λ| be the cardinality of Λ, and T \Λ = {i|i ∈ T, i /∈ Λ}.
Let xΛ ∈ R

n be the vector equal to x on the index set Λ and zero elsewhere. Throughout the

paper, we assume that Φ ∈ R
m×n is column normalized (i.e., ‖Φi‖2 = 1 for i = 1, 2, · · · , n)1) .

Let ΦΛ ∈ R
m×|Λ| be the submatrix of Φ with index of its columns in set Λ. For any matrix ΦΛ

of full column-rank, let Φ†
Λ = (Φ′

ΛΦΛ)
−1Φ′

Λ be the pseudo-inverse of ΦΛ, where Φ′
Λ denotes

the transpose of ΦΛ. PΛ = ΦΛΦ
†
Λ and P⊥

Λ = I − PΛ denote the orthogonal projection onto

span(ΦΛ) (i.e., the column space of ΦΛ) and its orthogonal complement, respectively. OLS is

mathematically described in Algorithm 1.1.

Algorithm 1.1. The OLS algorithm [19]

Input: Φ, y, maximum iteration number kmax.

Initialization: For r0 = y, k = 0, and S0 = ∅.
1: while k < kmax do

2: k = k + 1. 3: Choose the index sk that satisfies

sk = argmin
i∈Ω

‖P⊥
Sk−1∪{i}y‖22.

4: Let Sk = Sk−1
⋃{sk}, and calculate

xk = argmin
supp(u)=Sk

‖y−Φu‖2.

5: rk = y −Φxk = P⊥
Sky.

6: end while

Output: xk and Sk.

The performance analysis of OLS has been extensively studied. For example, Soussen et

al. showed that OLS is guaranteed to exactly recover the support of x in at most K iterations

when the exact recovery condition (ERC) is met [14]. Based on mutual coherence, Herzet et al.

addressed the exact recovery of x in the noiseless setting when some partial information of its

support is available [15]. Herzet et al. developed extended coherence-based sufficient conditions

for exact sparse support recovery with OLS [16]. Wen et al. [19] and Geng et al. [20] utilized the

restricted isometry property (RIP), which is defined as follows, to study the sufficient condition

of exact recovery of x with OLS. Using the RIP, the authors in [21–24] discussed the performance

of multiple OLS which is an extension of OLS.

Definition 1.1 ([25]). A measurement matrix Φ is said to satisfy the RIP of order K if there

exists a constant δ ∈ [0, 1) such that,

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 (1.2)

1) The behavior of OLS is unchanged whether columns of Φ are normalized or not ([31]).
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holds for all K-sparse vector x. The minimum δ satisfying (1.2) is defined as the restricted

isometry constant (RIC) δK .

It has been shown in [21] that OLS recovers any K-sparse signal in exact K iterations

provided that

δK+1 <
1√

K + 2
. (1.3)

The sufficient condition (1.3) has recently been improved to [19]

δK+1 <
1√

K + 1
. (1.4)

One can interpret from (1.3) and (1.4) that exact recovery with OLS can be ensured when δK+1

is inversely proportional to
√
K. Thus, these upper bounds will vanish when the sparsity K is

large.

While the above works focused on the scenario where the number of iterations is limited to

K [14], there are some works which investigate the behavior of OMP and OLS with more than

K iterations [11, 27–30]. For example, it has been shown that if OLS runs 6K iterations [29],

the stable reconstruction is guaranteed under

δ10K ≤ 1

6
. (1.5)

Note that running fewer iterations offers computational benefits, thus we aim to improve

(1.5) in this paper. Specifically, our result is shown in Theorem 2.1 that OLS stably recovers

any K-sparse vectors x from (1.1) in ⌈2.8K⌉ iterations.

The rest of this paper is organized as follows. Section 2 presents our main results. In Section

3, we provide some technical lemmas that are useful for our analysis and prove Theorem 2.1.

Finally, this paper is summarized in Section 4.

2. Sparse Recovery with OLS

Before presenting our main results, we obtain an important observations on the OLS algo-

rithm. As shown in Algorithm 1.1, in the (k+1)-th iteration (k ≥ 0), OLS adds an index sk+1

to Sk that results in the maximum reduction of the residual power, i.e.,

sk+1 = argmin
i∈Ω

‖P⊥
Sk∪{i}y‖22. (2.1)

From (2.1), we can observe that to find sk+1, we need to construct n− k different orthogonal

projections (i.e., P⊥
Sk∪{i}). But this implementation is computationally expensive. In order

to solve this problem, inspired by [31], Wang and Li [21] presented a cost-effective expression

alternative to (2.1) for the identification step of Algorithm 1.1. The result is listed in the

following Lemma 2.1.

Lemma 2.1 ([19, 21]). At the (k + 1)-th iteration, the OLS algorithm selects the index

sk+1 = argmax
i∈Ω

|〈Φi, r
k〉|

‖P⊥
SkΦi‖2

. (2.2)
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We can see from (2.2) that to find sk+1, we only need to compute one projection operator

(i.e., P⊥
Sk), hence it is much cheaper to find sk+1 based on (2.2) than that based on (2.1).

Numerical experiments indicate that the simplification indeed offers massive reduction in the

computational cost. Hence, Lemma 2.1 plays an important role in analyzing the number of

iterations of OLS.

Moreover, note that the identification rule of OLS is akin to the OMP rule. Specifically,

in the (k + 1)-th iteration, OMP picks an index corresponding to the column which is most

strongly correlated with the signal residual, i.e.,

sk+1 = argmax
i∈Ω

|〈Φi, r
k〉|.

Clearly, the rule of OLS differs from that of OMP only in that it has an extra normalization

factor (i.e., ‖P⊥
SkΦi‖2). Thus, the greedy selection rule in OLS can also be viewed as an

extension of the OMP rule. This arguments has been verified (see [14, 21, 31]). However, this

property shows that the rule of OLS coincides with that of OMP only in the first iteration

(because S0 = ∅ leads to ‖P⊥
S0Φi‖2 = ‖Φi‖2). For the subsequent iterations, it does make a

difference since ‖P⊥
SkΦi‖2 ≤ ‖Φi‖2, ∀ k ≥ 1. In fact, as will be seen later, this factor makes the

analysis of OLS different and more challenging than that of OMP.

Let

λ > − 4

(1− δ2
k+K+⌊λθk⌋

)(1 − δk+K+⌊λθk⌋)
log

(

1

2
−
√

δk+K+⌊λθk⌋

2(1 + δk+K+⌊λθk⌋)

)

, (2.3)

η = exp
(

−
λ(1 − δ2k+K+⌊λθk⌋)

4

(

1− δk+K+⌊λθk⌋

)

)

, (2.4)

ξk = 2

(

1− 2
((1 + δk+K+⌊λθk⌋)(1 − η)η

1− δk+K+⌊λθk⌋

)
1
2

)−1

− 1. (2.5)

In the following, we introduce our main results.

Theorem 2.1. Let θk = |T \Sk| be the number of remaining support set after running k (k ≥ 0)

iterations of OLS, if Φ obeys the RIP of the order k + K + ⌊λθk⌋, then the residual of OLS

satisfies

‖rk+⌈λθk⌉‖2 ≤ ξk‖v‖2, (2.6)

where λ and ξk ≥ 1 are constants which are defined in (2.3) and (2.5), respectively. They

depend only on δk+K+⌊λθk⌋.

Proof. See Section III. �

From Theorem 2.1, we observe that after running k(k ≥ 0) iterations, OLS requires at most

⌈λθk⌉ additional iterations to ensure that the condition (2.6) is fulfilled, and the ℓ2-norm of

residual is upper bounded by the product of a constant and ‖v‖2.
In particular, when k = 0, θ0 = |T \S0| = K, hence we can obtain the following corollary

which shows that the ℓ2-norm of residual falls below ξ0‖v‖2:

Corollary 2.1. Let Φ satisfies the RIP of order ⌊(λ+1)K⌋, then the residual of OLS satisfies

‖r⌈λK⌉‖2 ≤ ξ0‖v‖2, (2.7)

where ξ0 is defined as (2.5) when k = 0.
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In the following, we give some remarks.

Remark 2.1. It has been shown that ‖r6K‖2 is upper bounded by the product of a constant

and ‖v‖2 provided that δ10K ≤ 1
6 [29]. By the relation λ and δ⌊(λ+1)K⌋ in (2.3), and setting

k = 0, we get

λ > − 4

(1− δ2⌊(λ+1)K⌋)(1− δ⌊(λ+1)K⌋)
log(

1

2
−
√

δ⌊(λ+1)K⌋

2(1 + δ⌊(λ+1)K⌋)
). (2.8)

Let λ = 3 and solve the above inequality, we obtain

δ4K ≤ 0.001. (2.9)

Corollary 2.1 shows that ‖r3K‖2 is upper bounded by the product of a constant and ‖v‖2 when

(2.9) holds. Hence, compared to the results in [29], our result shows that OLS needs fewer

number of iterations for stable sparse signal recovery.

Remark 2.2. The authors in [19] showed that OLS can exactly recover all K-sparse x from

the samples y = Φx in K iterations if Φ satisfies (1.4). It is easy to see that (1.4) is inversely

proportional to K. The upper bound will vanish when K is large. Whereas, the upper bound

in (2.9) is an absolute constant and is independent of the sparsity K.

Let Φ be a random measurement matrix whose entries independent and identically follow

the Gaussian distribution N (0, 1
m ). Then by the proof of [26, Theorem 5.2], Φ satisfies the

RIP with δK ≤ ǫ with overwhelming probability if m = O(
K log n

K

ǫ2 ). Hence, to satisfy (1.4), the

number of required measurements is m = O(K2 log n
K ). Whereas, the proposed condition (2.9)

requires m = O(K log n
K ) which is significantly smaller than the previous result.

Remark 2.3. In [11, (12)], the authors proved that, in the noiseless case, OMP can accurately

recover all K-sparse signal within ⌈cK⌉ iterations where

c ≥ −4(1 + δ⌊(c+1)K⌋)

1− δ⌊(c+1)K⌋
log

(

1

2
−
√

δ⌊(c+1)K⌋

2(1 + δ⌊(c+1)K⌋)

)

. (2.10)

By setting δ⌊(c+1)K⌋ = 0 in (2.10), the authors in [11] claimed that OMP can uniformly recover

all K-sparse signals using at least 2.8K iterations.

From Corollary 2.1, set δ⌊(λ+1)K⌋ = 0, then we have

λ > 4 log 2 ≈ 2.77,

or,

λ ≥ 2.8.

So, our result is the same as [11] when δ⌊(λ+1)K⌋ = 0. However, our bound is smaller than

Wang’s result when δ⌊(λ+1)K⌋ > 0. Fig. 2.1 shows that the comparison between our bound and

Wang’s result [11].

Remark 2.4. In [29, Remark], the authors proved that

‖r6K‖2 ≤ C‖v‖2,
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Fig. 2.1. Comparison between the proposed bound and Wang [11].

where

C =

√

8(1+δ
(1+3⌈ 3

ρ2
⌉)K

)

(1−δ
(1+3⌈ 3

ρ2
⌉)K

)exp(⌈ 3
ρ2

⌉ρ2(1−δ
(1+3⌈ 3

ρ2
⌉)K

))
+
√

2
1− 1

exp(⌈ 3
ρ2

⌉ρ2(1−δ
(1+3⌈ 3

ρ2
⌉)K

))

1−
√

8(1+δ
(1+3⌈ 3

ρ2
⌉)K

)

(1−δ
(1+3⌈ 3

ρ2
⌉)K

)exp(⌈ 3
ρ2

⌉ρ2(1−δ
(1+3⌈ 3

ρ2
⌉)K

))

,

and

ρ2 = 1−
δ2
(1+3⌈ 3

ρ2
⌉)K

1− δ(1+3⌈ 3
ρ2

⌉)K

.

By (2.5), it is easy to see that ξk > C when λ = 3. Note that the residual power of OLS

is non-increasing, this result is not surprising because it performs only 3K iterations while it

performs 6K iterations in [29].

The following theorem shows that the ℓ2-norm of the recovery error can also be upper

bounded by the product of a constant and ‖v‖2.

Theorem 2.2. If Φ obeys the RIP of the order ⌈(λ+ 1)K⌉, then

‖x⌈λK⌉ − x‖2 ≤ (1− δ⌈(λ+1)K⌉)
− 1

2 (ξ0 + 1)‖v‖2,

where λ and ξ0 are defined in (2.3) and (2.5), respectively.

Proof. See Appendix A. �

Remark 2.5. In [29], the authors proved that the norm of the recovery error is upper bounded

by the product of a constant and ‖v‖2 after at most 12K iterations, provided that δ20K ≤ 1
6 .

By Theorem 2.2, using the relation λ and δ⌊(λ+1)K⌋, our result shows that the norm of

the recovery error is upper bounded by the product of a constant and ‖v‖2 after at most 3K

iterations (set λ = 3), provided that δ4K ≤ 0.001.
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3. Proof of Theorem 2.1

Proof. The main idea of our proof is inspired by [30]. Here, we first denote F k = T \Sk and

θk = |F k|. For notational convenience, assume that xi is arranged in descending order of their

magnitudes, i.e., |x1| ≥ |x2| ≥ · · · ≥ |xθk |. Now, we define the subset F k
j of F k as

F k
j =















∅, j = 0,

{1, 2, · · · , 2j − 1}, j = 1, · · · , ⌊log2 θk⌋,
F k, j = ⌊log2 θk⌋+ 1.

(3.1)

For constant τ > 1, let L ∈ {1, 2, · · · , ⌊log2 θk⌋ + 1} be the minimum positive integer

satisfying

‖xFk\Fk
0
‖22 < τ‖xFk\Fk

1
‖22, (3.2)

‖xFk\Fk
1
‖22 < τ‖xFk\Fk

2
‖22, (3.3)

· · · ,
‖xFk\Fk

L−2
‖22 < τ‖xFk\Fk

L−1
‖22, (3.4)

‖xFk\Fk
L−1

‖22 ≥ τ‖xFk\Fk
L
‖22. (3.5)

Then we have

‖xFk\Fk
j
‖22 < τL−1−j‖xFk\Fk

L−1
‖22, for j = 0, 1, · · · , L− 2. (3.6)

Note that the last set F k
⌊log2 θk⌋+1(= F k) may have no more than 2⌊log2 θk⌋+1 − 1 elements.

It is also noted that if (3.5) holds true for all L ≥ 1, then we ignore (3.2)–(3.4) and simply take

L = 1. Besides, note that L always exists because

‖xFk\Fk

⌊log2 θk⌋+1

‖22 = 0

so that (3.6) holds true at least for L = ⌊log2 θk⌋+ 1.

In consideration of the selection rule of OLS viewed as an extension of the OMP rule, we will

prove Theorem 2.1 by using mathematical induction in θk. In fact, the mathematical induction

has been proposed in [30]. Being here, θk stands for the number of remaining indices after k

iterations of OLS. We first select θk = 0, and then no more iteration is needed, i.e., T ⊆ Sk,

then we have

‖rk‖2 = ‖y −Φxk‖2 = min
supp(u)=Sk

‖y −Φu‖2 ≤ ‖y −Φx‖2 = ‖v‖2 ≤ ξk‖v‖2.

Now we suppose that the conclusion holds up to θk − 1, where θk ≥ 1 is a positive integer.

Then, we need to prove that (2.6) holds true, that is,

‖rk+⌈λθk⌉‖2 ≤ ξk‖v‖2. (3.7)

In order to prove (3.7), we will choose a decent amount of support indices in F k, which must

be selected within a specified number of additional iterations. Then the number of remaining

support indices is upper bounded.
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Now we define that

ki =

i
∑

j=1

⌈
λ|F k

j |
4

⌉, i = 1, · · · , L. (3.8)

According to the definition of F k
j , we have |F k

j | ≤ 2j − 1 for j = 1, · · · , L, and then

ki ≤ kL =

L
∑

j=1

⌈
λ|F k

j |
4

⌉ ≤
L
∑

j=1

⌈λ(2
j − 1)

4
⌉

(a)

≤ ⌈λ2L−1⌉ − 1, (3.9)

where (a) is according to [11, (A.18)]. Let

k′ = ⌈λ2L−1⌉ − 1 (3.10)

be a specified additional iterations after running k iterations of OLS.

Now if we suppose that the number of remaining support indices satisfies

θk+k′

= |F k+k′ | ≤ θk − 2L−1 (3.11)

after running k + k′ iterations. Then the inequality (3.7) holds when we requires at most

⌈λθk+k′⌉ additional iterations. Thus, our proof is completed. In the following, we will explain

it. In fact, being here, the total number of iterations of OLS is

k + k′ + ⌈λθk+k′⌉ ≤ k + ⌈λ2L−1⌉ − 1 + ⌈λ(θk − 2L−1)⌉
(a)

≤ k + ⌈λθk⌉, (3.12)

where (a) follows from ⌈a⌉+ ⌈b⌉ − 1 ≤ ⌈a+ b⌉.
Since the residual power of OLS is non-increasing (i.e., ‖ri‖2 ≤ ‖rj‖2 for i ≥ j, see Lemma

C.1), we obtain

‖rk+⌈λθk⌉‖2 ≤ ‖rk+k′+⌈λθk+k′
⌉‖2 ≤ ‖rk+k′‖2. (3.13)

It follows from (3.11) that the index number of remaining support is no more than θk − 1,

i.e.,

θk+k′

= |F k+k′ | ≤ θk − 2L−1 ≤ θk − 1.

From the induction hypothesis, we have

‖rk+k′+⌈λθk+k′
⌉‖2 ≤ ξk‖v‖2. (3.14)

Then we combine (3.13) with (3.14) and have

‖rk+⌈λθk⌉‖2 ≤ ‖rk+k′+⌈λθk+k′
⌉‖2 ≤ ξk‖v‖2.

In summary, it remains to prove that (3.11) holds true. By the definition of F k
j in (3.1), we

have

F k
L−1 = {1, 2, · · · , 2L−1 − 1}

and

|F k \ F k
L−1| = |{2L−1, 2L−1 + 1, · · · , θk}| = θk − 2L−1 + 1.
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Then (3.11) can be rewritten as

θk+k′

= |F k+k′ | < |F k\F k
L−1|. (3.15)

Since xFk\Fk
L−1

consists of |F k\F k
L−1| smallest non-zero elements (in magnitude) of xFk ,

instead of proving it directly, we show that a sufficient condition of (3.15) is true. That is,

‖xFk+k′ ‖2 < ‖xFk\Fk
L−1

‖2. (3.16)

Hence, we need to prove that the inequality (3.16) holds true.

By the result in Proposition D.1 (see Appendix D), i.e.,

‖xFk+k′ ‖2 < α‖xFk\Fk
L−1

‖2 + β‖v‖2, (3.17)

where α and β are defined in (D.1) and (D.2), respectively.

It follows from (2.3) that α < 1. Then we discuss two cases in the following.

If β‖v‖2 < (1− α)‖xFk\Fk
L−1

‖2, it is easy to see that (3.16) holds true.

If β‖v‖2 ≥ (1− α)‖xFk\Fk
L−1

‖2, it follows from (3.13) that

‖rk+⌈λθk⌉‖2 ≤ ‖rk+k′+⌈λθk+k′
⌉‖2 ≤ ‖rk+k′‖2

(a)
<
√

4η(1− η)(1 + δk+K+⌊λθk⌋)‖xFk\Fk
L−1

‖2 + ‖v‖2
(b)
= α

√

1− δk+K+⌊λθk⌋‖xFk\Fk
L−1

‖2 + ‖v‖2

≤ α
√

1− δk+K+⌊λθk⌋ ×
β

1− α
‖v‖2 + ‖v‖2

(c)
= (

2

1− α
− 1)‖v‖2 = ξk‖v‖2,

where (a) follows from (D.12), (b) is from (D.1), (c) follows from (D.2). Here, ξk has been

defined in (2.5). Then we can prove that (3.7) directly holds true. �

4. Conclusion

In this paper, we evaluate the performance of OLS when the number of iterations exceeds

the sparsity K of the signal x. Compared to the state-of-the-art results, our results reduce

the required number of iterations for stable sparse signal recovery. This advantage provides

computational benefits as well as relaxations in the measurement size and the sparsity range of

the sparse signals need to be recovered.

Appendix A

Proof of Theorem 2.2.

Proof. Since r⌈λK⌉ = y −Φx⌈λK⌉ = Φ(x− x⌈λK⌉) + v, we have

‖x⌈λK⌉ − x‖2 = ‖x− x⌈λK⌉‖2
(a)

≤ (1− δ⌈(λ+1)K⌉)
− 1

2 ‖Φ(x− x⌈λK⌉)‖2

= (1 − δ⌈(λ+1)K⌉)
− 1

2 ‖r⌈λK⌉ − v‖2
(b)

≤ (1− δ⌈(λ+1)K⌉)
− 1

2 (‖r⌈λK⌉‖2 + ‖v‖2)
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(c)

≤ (1 − δ⌈(λ+1)K⌉)
− 1

2 (ξ0‖v‖2 + ‖v‖2) = (1− δ⌈(λ+1)K⌉)
− 1

2 (ξ0 + 1)‖v‖2,

where (a) is based on the RIP and |T ∪ S⌈λK⌉| ≤ K + ⌈λK⌉ = ⌈(λ + 1)K⌉, (b) uses the norm

inequality, (c) is from Corollary 2.1. �

Appendix B

Lemma B.1 ([19]). Suppose that Λ ⊆ Ω and Φ ∈ R
m×n satisfies the RIP of order |Λ| + 1.

Then, for any i ∈ Ω\Λ,

‖P⊥
ΛΦi‖2 ≥

√

1− δ2|Λ|+1.

Lemma B.2. According to (2.2) and the third step in Algorithm 1.1, we have

|〈Φsk+1 , rk〉| ≥ ε max
1≤s≤n

|〈Φs, r
k〉|. (B.1)

where ε =
√

1− δ2
k+K+⌊λθk⌋

.

Proof. The proof of Lemma B.2 is similar to that of [29, Theorem 2]. But Lemma B.2

improves [29, Theorem 2] which shows that the parameter is

ε =

√

1−
δ2
k+K+⌊λθk⌋

1− δk+K+⌊λθk⌋

.

According to the proof of [29, Theorem 2], for any s /∈ Sk, we have

|〈Φsk+1 , rk〉|2
‖P⊥

SkΦsk+1‖22
(a)
= max

i/∈Sk

|〈Φi, r
k〉|2

‖P⊥
SkΦi‖22

≥ |〈Φs, r
k〉|2

‖P⊥
SkΦs‖22

(b)

≥ |〈Φs, r
k〉|2,

where (a) follows from Lemma 2.1, (b) is based on ‖P⊥
SkΦs‖2 ≤ 1. Thus we get

|〈Φsk+1 , rk〉|2 ≥ ‖P⊥
SkΦsk+1‖22|〈Φs, r

k〉|2
(a)

≥ (1− δ2|Sk|+1)|〈Φs, r
k〉|2

(b)

≥ (1− δ2k+K+⌊λθk⌋)|〈Φs, r
k〉|2, (B.2)

where (a) follows from Lemma B.1, (b) follows from |Sk| ≤ k and the monotonicity of the RIP.

For s ∈ Sk, since |〈Φs, r
k〉|2 = 0, (B.2) also holds. Hence (B.1) is established. �

Appendix C

Lemma C.1 ([29]). Note that the third step in Algorithm 1.1. The residual decreases at each

iteration.

‖rk+1‖22 = ‖rk‖22 −
|〈Φsk+1 , rk〉|2
‖P⊥

SkΦsk+1‖22
.



Required Number of Iterations for Sparse Signal Recovery via Orthogonal Least Squares 11

Lemma C.2. Let Φ ∈ R
m×n be a matrix with ℓ2-normalized columns. For the (ℓ + 1)-th

(ℓ ≥ k) iteration of OLS, let ν be the vector such that,

ν =

{

xU , U = T ∩ Sk ∪ F k
j ,

0, U = Ω\(T ∩ Sk ∪ F k
j ),

(C.1)

where j ∈ {1, · · · , ⌊log2 θk⌋+ 1}. When ε =
√

1− δ2
k+K+⌊λθk⌋

, we have

‖rℓ‖22 − ‖rℓ+1‖22 ≥
ε2

|F k
j |

(1− δ|Fk
j ∪Sℓ|)× (‖rℓ‖22 − ‖ΦxFk\Fk

j
+ v‖22). (C.2)

Proof. From Lemma C.1, we have

‖rℓ‖22 − ‖rℓ+1‖22 =
|〈Φsℓ+1 , rℓ〉|2
‖P⊥

SℓΦsℓ+1‖22
(a)

≥ |〈Φsℓ+1 , rℓ〉|2
(b)

≥ ε2 max
1≤s≤n

|〈Φs, r
ℓ〉|2 = ε2‖Φ′rℓ‖2∞,

where (a) follows from ‖P⊥
SℓΦsℓ+1‖2 ≤ 1, (b) is from Lemma B.2. Now, we only show that

‖Φ′rℓ‖2∞ ≥
1− δ|Fk

j ∪Sℓ|

|F k
j |

(‖rℓ‖22 − ‖ΦxFk\Fk
j
+ v‖22). (C.3)

Note that supp(Φ′rℓ) = Ω\Sℓ. Then we have

‖Φ′rℓ‖∞ = ‖(Φ′rℓ)Ω\Sℓ‖∞
(a)

≥ 〈(Φ′rℓ)Ω\Sℓ , νΩ\Sℓ〉
‖νΩ\Sℓ‖1

=
〈Φ′rℓ, ν〉
‖νΩ\Sℓ‖1

(b)

≥ 〈Φ′rℓ, ν〉
‖νFk

j
‖1

(c)

≥ 〈Φ′rℓ, ν〉
√

|F k
j |‖νΩ\Sℓ‖2

(d)
=

〈Φ′rℓ, ν − xℓ〉
√

|F k
j |‖νΩ\Sℓ‖2

, (C.4)

where (a) is from Hölder’s inequality, (b) is true since (C.1) and ‖νΩ\Sℓ‖1 = ‖νT\Sℓ‖1 ≤ ‖νFk
j
‖1,

(c) follows from the norm inequality (‖ω‖1 ≤
√

‖ω‖0‖ω‖2), and (d) is true since supp(Φ′rℓ) ∩
supp(xℓ) = ∅.

We observe further that

〈Φ′rℓ, ν − xℓ〉 = 〈rℓ,Φ(ν − xℓ)〉 = 1

2
(‖Φ(ν − xℓ)‖22 + ‖rℓ‖22 − ‖rℓ −Φ(ν − xℓ)‖22)

(a)
=

1

2
(‖Φ(ν − xℓ)‖22 + ‖rℓ‖22 − ‖ΦxFk\Fk

j
+ v‖22)

(b)

≥ ‖Φ(ν − xℓ)‖2
√

‖rℓ‖22 − ‖ΦxFk\Fk
j
+ v‖22

(c)

≥
√

1− δ|Fk
j ∪Sℓ|

√

‖rℓ‖22 − ‖ΦxFk\Fk
j
+ v‖22‖ν − xℓ‖2

≥
√

(1 − δ|Fk
j ∪Sℓ|)(‖rℓ‖22 − ‖ΦxFk\Fk

j
+ v‖22)‖(ν − xℓ)Ω\Sℓ‖2

(d)
=
√

(1 − δ|Fk
j ∪Sℓ|)(‖rℓ‖22 − ‖ΦxFk\Fk

j
+ v‖22)‖νΩ\Sℓ‖2, (C.5)

where (a) is according to

rℓ = y −Φxℓ = Φ(x− xℓ) + v
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= Φ(x− ν + ν − xℓ) + v = Φ(ν − xℓ + xFk\Fk
j
) + v = Φ(ν − xℓ) +ΦxFk\Fk

j
+ v,

(b) is true since we only consider ‖rℓ‖22 − ‖ΦxFk\Fk
j
+ v‖22 ≥ 0 and use a2 + b2 ≥ 2ab (when

‖rℓ‖22 −‖ΦxFk\Fk
j
+ v‖22 < 0, (C.3) holds trivially, i.e., ‖Φ′rℓ‖2∞ ≥ 0), (c) uses the condition of

RIP and supp(ν − xℓ) = (T ∩ Sk ∪ F k
j ) ∪ Sℓ ⊆ F k

j ∪ Sℓ, (d) is due to (xℓ)Ω\Sℓ = 0.

Finally, plugging (C.5) into (C.4) and have

‖Φ′rℓ‖∞ ≥ 〈Φ′rℓ, ν − xℓ〉
√

|F k
j |‖νΩ\Sℓ‖2

≥

√

1− δ|Fk
j ∪Sℓ|‖νΩ\Sℓ‖2

√

|F k
j |‖νΩ\Sℓ‖2

√

‖rℓ‖22 − ‖ΦxFk\Fk
j
+ v‖22

=

√

1− δ|Fk
j ∪Sℓ|

|F k
j |

√

‖rℓ‖22 − ‖ΦxFk\Fk
j
+ v‖22.

This completes the proof. �

Appendix D

Proposition D.1 Let Φ ∈ R
m×n be a matrix with ℓ2-normalized columns. Let θk = |F k| =

|T \Sk| be the index number of remaining support set after running k (k ≥ 0) iterations of

OLS. Let xFk+k′ and xFk\Fk
L−1

be two truncated vectors of x, where k′ is defined in (3.10) and

L ∈ {1, 2, · · · , ⌊log2 θk⌋+ 1}. Then we have

‖xFk+k′ ‖2 < α‖xFk\Fk
L−1

‖2 + β‖v‖2,

where

α =

√

4η(1− η)(1 + δk+K+⌊λθk⌋)

(1− δk+K+⌊λθk⌋)
, (D.1)

β =
2

√

1− δk+K+⌊λθk⌋

, (D.2)

and η is defined in (2.4).

Proof. According to Lemma C.2 (see Appendix C), let

βℓ =
ε2

|F k
j |

(1 − δ|Fk
j ∪Sℓ|). (D.3)

(C.2) can be rewritten as

‖rℓ+1‖22 − ‖ΦxFk\Fk
j
+ v‖22 ≤ (1− βℓ)(‖rℓ‖22 − ‖ΦxFk\Fk

j
+ v‖22).

Using 1− βℓ ≤ e−βℓ , we have

‖rℓ+1‖22 − ‖ΦxFk\Fk
j
+ v‖22 ≤ exp(−βℓ)(‖rℓ‖22 − ‖ΦxFk\Fk

j
+ v‖22). (D.4)

For ℓ′ > ℓ ≥ k, we also have

‖rℓ′‖22 − ‖ΦxFk\Fk
j
+ v‖22 ≤ exp(−βℓ′−1)(‖rℓ

′−1‖22 − ‖ΦxFk\Fk
j
+ v‖22), (D.5)
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· · · ,
‖rℓ+2‖22 − ‖ΦxFk\Fk

j
+ v‖22 ≤ exp(−βℓ+1)(‖rℓ+1‖22 − ‖ΦxFk\Fk

j
+ v‖22). (D.6)

Thus, from (D.4)-(D.6), we have further

‖rℓ′‖22 − ‖ΦxFk\Fk
j
+ v‖22 ≤

ℓ′−1
∏

η=ℓ

exp(−βη)(‖rℓ‖22 − ‖ΦxFk\Fk
j
+ v‖22)

(a)

≤ exp(−(ℓ′ − ℓ)βℓ′−1)(‖rℓ‖22 − ‖ΦxFk\Fk
j
+ v‖22), (D.7)

where (a) follows since βη is non-increasing.

Let ℓ′ = k + ki and ℓ = k + ki−1, i = 1, · · · , L. By (D.7), we have

‖rk+ki‖22 − ‖ΦxFk\Fk
j
+ v‖22

(a)

≤ exp(−ε2(ki − ki−1)

|F k
j |

(1− δ|Fk
j ∪Sk+ki−1|))(‖rk+ki−1‖22 − ‖ΦxFk\Fk

j
+ v‖22)

(b)

≤ exp(−ε2(ki − ki−1)

|F k
i |

(1− δ|Fk
i ∪Sk+ki−1|))(‖rk+ki−1‖22 − ‖ΦxFk\Fk

j
+ v‖22)

(c)

≤ exp(−λε2

4
(1− δ|Fk

i ∪Sk+ki−1|))(‖rk+ki−1‖22 − ‖ΦxFk\Fk
j
+ v‖22)

(d)

≤ exp(−λε2

4
(1− δK+k+⌊λθk⌋))(‖rk+ki−1‖22 − ‖ΦxFk\Fk

j
+ v‖22), (D.8)

where (a) is due to (D.3), (b) is from j ≤ i, (c) is true since (3.8), (d) is because

|F k
i ∪ Sk+ki−1|

(3.9)

≤ |T ∪ Sk+⌈λ2L−1⌉−1−1| ≤ |T ∪ Sk+⌊λ2L−1⌋|
(3.12)

≤ |T ∪ Sk+⌊λθk⌋| ≤ K + k + ⌊λθk⌋, (D.9)

and the monotonicity of the RIP.

From (2.4), (D.8) can be rewritten as

‖rk+ki‖22 ≤ η‖rk+ki−1‖22 + (1− η)‖ΦxFk\Fk
j
+ v‖22,

where i = 1, · · · , L. Note that k0 = 0. Then we have

‖rk+kL‖22 ≤ η‖rk+kL−1‖22 + (1− η)‖ΦxFk\Fk
j
+ v‖22, (D.10)

· · · ,
‖rk+k1‖22 ≤ η‖rk‖22 + (1− η)‖ΦxFk\Fk

j
+ v‖22. (D.11)

From (D.10)–(D.11), we get

‖rk+kL‖22 ≤ ηL‖rk‖22 + (1− η)
L
∑

j=1

ηL−j‖ΦxFk\Fk
j
+ v‖22

(a)

≤ηL‖ΦxFk + v‖22 + (1 − η)

L
∑

j=1

ηL−j‖ΦxFk\Fk
j
+ v‖22
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≤ηL(‖ΦxFk‖2 + ‖v‖2)2 + (1− η)

L
∑

j=1

ηL−j(‖ΦxFk\Fk
j
‖2 + ‖v‖2)2

(b)

≤ηL(
√

1 + δ|Fk|‖xFk\Fk
0
‖2 + ‖v‖2)2 + (1− η)

L
∑

j=1

ηL−j(
√

1 + δ|Fk\Fk
j |‖xFk\Fk

j
‖2 + ‖v‖2)2

(c)

≤ηL(
√

1 + δθk‖xFk\Fk
0
‖2 + ‖v‖2)2 + (1− η)

L
∑

j=1

ηL−j(
√

1 + δθk‖xFk\Fk
j
‖2 + ‖v‖2)2

(d)
<ηL(

√

(1 + δθk)τL−1‖xFk\Fk
L−1

‖2 + ‖v‖2)2

+ (1 − η)

L
∑

j=1

ηL−j(
√

(1 + δθk)τL−j−1‖xFk\Fk
L−1

‖2 + ‖v‖2)2

=((τη)L + (1− η)

L
∑

j=1

(τη)L−j)
1 + δθk

τ
‖xFk\Fk

L−1
‖22 + (ηL + (1 − η)

L
∑

j=1

ηL−j)‖v‖22 + 2((
√
τη)L

+ (1 − η)

L
∑

j=1

(
√
τη)L−j)

√

1 + δθk

τ
‖xFk\Fk

L−1
‖2‖v‖2,

where (a) is due to ‖rk‖22 ≤ ‖ΦxFk + v‖22 which is from Proposition 1 in [30], (b) holds due

to the RIP, (c) is according to |F k\F k
j | < |F k| = θk for j = 1, · · · , L, (d) is from (3.6) (i.e.,

‖xFk\Fk
j
‖2 <

√
τL−1−j‖xFk\Fk

L−1
‖2). Since

(τη)L <
1− η

1− τη
(τη)L = (1− η)

∞
∑

j=L

(τη)j , ηL = (1− η)

∞
∑

j=L

ηj ,

(
√
τη)L <

1− η

1−√
τη

(
√
τη)L = (1 − η)

∞
∑

j=L

(
√
τη)j

when τ > 1, τη < 1, and η < 1, then we have

‖rk+kL‖22 < ((1− η)

∞
∑

j=L

(τη)j + (1− η)

L−1
∑

j=0

(τη)j)
1 + δθk

τ
‖xFk\Fk

L−1
‖22 + ((1 − η)

∞
∑

j=L

ηj

+ (1− η)

L−1
∑

j=0

ηj)‖v‖22 + 2((1− η)

∞
∑

j=L

(
√
τη)j

+ (1− η)

L
∑

j=1

(
√
τη)L−j)

√

1 + δθk

τ
‖xFk\Fk

L−1
‖2‖v‖2

=(1− η)
∞
∑

j=0

(τη)j
1 + δθk

τ
‖xFk\Fk

L−1
‖22 + (1− η)

∞
∑

j=0

ηj‖v‖22

+ 2(1− η)
∞
∑

j=0

(
√
τη)j

√

1 + δθk

τ
‖xFk\Fk

L−1
‖2‖v‖2

=
1− η

1− τη
× 1 + δθk

τ
‖xFk\Fk

L−1
‖22 + ‖v‖22 +

2(1− η)

1−√
τη

√

1 + δθk

τ
‖xFk\Fk

L−1
‖2‖v‖2

(a)
<

1− η

1− τη
× 1 + δθk

τ
‖xFk\Fk

L−1
‖22 + ‖v‖22 + 2

√

1− η

1− τη

√

1 + δθk

τ
‖xFk\Fk

L−1
‖2‖v‖2
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=(

√

(1− η)(1 + δθk)

τ(1 − τη)
‖xFk\Fk

L−1
‖2 + ‖v‖2)2

(b)
=(
√

4η(1− η)(1 + δθk)‖xFk\Fk
L−1

‖2 + ‖v‖2)2

(c)

≤(
√

4η(1− η)(1 + δK+k+⌊λθk⌋)‖xFk\Fk
L−1

‖2 + ‖v‖2)2,

where (a) is from

( 1− η

1−√
τη

)2

−
(

√

1− η

1− τη

)2

=
(1− η)2(1− τη) − (1− η)(1 −√

τη)2

(1 −√
τη)2(1− τη)

=
−η(1− η)(

√
τ − 1)2

(1 −√
τη)2(1− τη)

< 0,

(b) chooses τ = 1
2η , (c) follows from θk = |T \Sk| ≤ |T ∪ Sk+⌊λθk⌋| ≤ K + k + ⌊λθk⌋ and the

monotonicity of the RIP. Note that

k + kL
(3.9)

≤ k + ⌈λ2L−1⌉ − 1
(3.10)
= k + k′,

and ‖rk‖2 is always non-increasing for k ≥ 0, then we have

‖rk+k′‖2 ≤ ‖rk+kL‖2 <
√

4η(1− η)(1 + δK+k+⌊λθk⌋)‖xFk\Fk
L−1

‖2 + ‖v‖2. (D.12)

On the other hand, we have

‖rk+k′‖2 = ‖y −Φxk+k′‖2 = ‖Φ(x− xk+k′

) + v‖2 ≥ ‖Φ(x− xk+k′

)‖2 − ‖v‖2
(a)

≥
√

1− δ|T∪Sk+k′ |‖x− xk+k′‖2 − ‖v‖2 ≥
√

1− δ|T∪Sk+k′ |‖xFk+k′ ‖2 − ‖v‖2
(b)

≥
√

1− δK+k+⌊λθk⌋‖xFk+k′ ‖2 − ‖v‖2, (D.13)

where (a) is due to the RIP, (b) follows from (D.9) and the monotonicity of the RIP. By relating

(D.12) and (D.13), we obtain

‖xFk+k′‖2 ≤ 1
√

1− δK+k+⌊λθk⌋

(‖rk+k′‖2 + ‖v‖2)

<

√

4η(1− η)(1 + δK+k+⌊λθk⌋)

(1− δK+k+⌊λθk⌋)
‖xFk\Fk

L−1
‖2 +

2
√

1− δK+k+⌊λθk⌋

‖v‖2

= α‖xFk\Fk
L−1

‖2 + β‖v‖2, (D.14)

where α and β has been defined in (D.1) and (D.2), respectively. �
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