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Abstract

We propose a new least squares finite element method to solve the Stokes problem with

two sequential steps. The approximation spaces are constructed by the patch reconstruc-

tion with one unknown per element. For the first step, we reconstruct an approximation

space consisting of piecewise curl-free polynomials with zero trace. By this space, we min-

imize a least squares functional to obtain the numerical approximations to the gradient

of the velocity and the pressure. In the second step, we minimize another least squares

functional to give the solution to the velocity in the reconstructed piecewise divergence-free

space. We derive error estimates for all unknowns under both L2 norms and energy norms.

Numerical results in two dimensions and three dimensions verify the convergence rates and

demonstrate the great flexibility of our method.
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1. Introduction

The Stokes problem, which models a viscous and incompressible fluid flow, is a linearized

version of the full Navier-Stokes equation neglecting the nonlinear convective term. Reliable

and efficient numerical methods for the Stokes problem have been extensively studied in the

references. Among these methods, there were many efforts devoted to develop mixed finite

element methods based on the weak formulation of the Stokes problem. A key issue of classical

mixed finite element methods is the choice of element types. The pair of finite element spaces

are required to satisfy the stability condition, known as the inf-sup condition. We refer the

readers to [10,12,18] for some examples in classical mixed finite element methods.

The least squares finite element methods for the Stokes problem have been developed in [5–

8,16,20,28,31]. For these methods, least squares principle together with finite element methods

can offer the advantage of circumventing the inf-sup condition arising in mixed methods. Bochev

and Gunzburger developed a least squares approach based on rewriting the velocity-vorticity-

pressure formulation as a first-order elliptic system [8]. Cai and his coworkers developed the

least squares finite element method based on the L2 norm residual and C0 spaces for the Stokes
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problem, we refer to [5, 14–16] for more details. Liu et al. developed a hybrid least squares

finite element method based on continuous finite element spaces. This method attempts to

combine the advantages of FOSLS and FOSLL* [28]. The works introduced above are based

on conforming finite element spaces and such continuous least squares methods are general

techniques in numerical methods. We refer to [9] and the references therein for an overview of

least squares finite element methods. Based on discontinuous approximation, the discontinuous

least squares finite element methods have also been developed for many problems including the

Stokes problem, and we refer to [3, 4, 6, 7, 17,26] for more details.

In this paper, we propose a new least squares finite element method with the reconstructed

discontinuous approximation. The novelty is that we construct three specific approximation

spaces which allow us to solve the Stokes problem in two sequential steps. The sequential process

is motivated from the idea in [16,27] to define two least-squares-type functionals to approximate

unknowns sequentially. The feasibility of this method is based on new approximation spaces

which are obtained by solving local least squares problems on each element. In the first step,

we reconstruct an approximation space that consists of piecewise irrotational polynomials with

zero trace to approximate the gradient of the velocity. This space is an extension of the space

proposed in [24], which will also be used in this step to approximate the pressure. The functions

in both approximation spaces may be discontinuous across interior faces and we define a least

squares functional with the weak imposition of the continuity across the interior faces to seek

numerical solutions in approximation to the gradient and the pressure. In the second step, we

reconstruct a piecewise divergence-free polynomial space to approximate the velocity, which is

also a generalization of the space in [24]. We minimize another least squares functional, together

with the numerical gradient obtained in the first step, to solve the numerical solution for the

velocity. For the error estimate, we introduce a series of projection operators to derive the

convergence rates for all variables with respect to L2 norms and energy norms. We prove that

the convergence orders under energy norms are all optimal and the L2 errors for all variables

can only be proved to be sub-optimal. We conduct a series of numerical examples in two

dimensions and three dimensions to confirm our theoretical error estimates. In addition, we

observe that the L2 errors for all unknowns are optimally convergent for approximation spaces

of odd orders. Another advantage of our method is the implementation is quite simple. The

different types of the reconstruction can be implemented in a uniform way. We present the

details to the computer implementation of our method in Appendix 6.

The rest of our paper is organized as follows. In Section 2, we give the notation that

will be used in this paper. In Section 3, we introduce the reconstruction operators and the

corresponding approximation spaces. The approximation properties of spaces are also presented

in this section. In Section 4, we define two least squares functionals for sequentially solving the

Stokes problem with reconstructed spaces. We also prove the error estimates under L2 norms

and energy norms. In Section 5, we present a series of numerical results in two dimensions and

three dimensions to illustrate the accuracy and the flexibility of our method.

2. Preliminaries

We let Ω be a convex bounded polygonal (polyhedral) domain in Rd(d = 2, 3) with the

boundary ∂Ω. We denote by Th a set of polygonal (polyhedral) elements which partition the

domain Ω. We denote by E ih the set of interior faces of Th and by Ebh the set of the faces that

are on the boundary ∂Ω. Let Eh = E ih ∪ Ebh be the set of all d − 1 dimensional faces. Further,
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for any element K ∈ Th and any face e ∈ Eh we set hK as the diameter of the element K and

he as the size of the face e, and the mesh size is denoted by h = maxK∈Th hK . It is assumed

that the partition Th is shape-regular in the sense of that: there exist

• an integer N that is independent of h;

• a number σ > 0 that is independent of h;

• a compatible sub-decomposition T̃h into triangles (tetrahedrons);

such that

• every polygon (polyhedron) K in Th admits a decomposition T̃h|K which has at most N

triangles (tetrahedrons);

• for any triangle (tetrahedron) K̃ ∈ T̃h, the ratio hK̃/ρK̃ is bounded by σ where hK̃ denotes

the diameter of K̃ and ρK̃ denotes the radius of the largest disk (ball) inscribed in K̃.

The above regularity requirements have several consequences [13,23]:

M1 there exists a positive constant σv that is independent of h such that σvhK ≤ he for any

element K ∈ Th and any face e ⊂ ∂K;

M2 [trace inequality] there exists a constant C that is independent of h such that

‖v‖2L2(∂K) ≤ C
(
h−1
K ‖v‖

2
L2(K) + hK‖∇v‖2L2(K)

)
, ∀v ∈ H1(K); (2.1)

M3 [inverse inequality] there exists a constant C that is independent of h such that

‖∇v‖L2(K) ≤ Ch−1
K ‖v‖L2(K), ∀v ∈ Pk(K), (2.2)

where Pk(·) is the polynomial space of degree less than k.

For the sub-decomposition T̃h, we denote by Ẽh the collection of all d− 1 dimensional faces in

T̃h, and we decompose Ẽh into Ẽh = Ẽ ih ∪ Ẽbh where Ẽ ih and Ẽbh are the sets of interior faces and

boundary faces, respectively. From the regularity assumption, it is clear that Eh ⊂ Ẽh, E ih ⊂ Ẽ ih
and Ebh ⊂ Ẽbh.

Then we introduce the trace operators that are associated with weak formulations. Let e

be an interior face shared by two adjacent elements K+ and K−, and we let n+ and n− be

the unit outward normal on e corresponding to ∂K+ and ∂K−, respectively. For the scalar-

valued function v and the d dimensional vector-valued function q and d×d dimensional tensor-

valued function τ , we define v+ := v|e⊂∂K+ , v− := v|e⊂∂K− , q+ := q|e⊂∂K+ , q− := q|e⊂∂K− ,

τ+ := τ |e⊂∂K+ , τ− := τ |e⊂∂K− . The average operator {·} on e is defined as

{v} :=
1

2

(
v+ + v−

)
, {q} :=

1

2

(
q+ + q−

)
, {τ} :=

1

2

(
τ+ + τ−

)
.

The jump operator [[·]] on e is defined as

[[v]] := v+n+ + v−n−, [[n× q]] := n+ × q+ + n− × q−,
[[n⊗ q]] := n+ ⊗ q+ + n− ⊗ q−, [[n⊗ τ ]] := n+ ⊗ τ+ + n− ⊗ τ−,
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where ⊗ denotes the tensor product between two vectors. For any tensor τ̂ ∈ Rd×d, if O is an

operator on vector-valued functions, we expend O to act on τ̂ columnwise. For example, we let

τ̂ = (τ̂ 1, . . . , τ̂ d)(τ̂ i ∈ Rd), and n⊗ τ̂ is defined by

n⊗ τ̂ := n⊗ (τ̂ 1, . . . , τ̂ d) = (n⊗ τ̂ 1, . . . ,n⊗ τ̂ d)T ,

and ∇× τ̂ , ∇ · τ̂ are defined by

∇× τ̂ := ∇× (τ̂ 1, . . . , τ̂ d) = (∇× τ̂ 1, . . . ,∇× τ̂ d)T ,

∇ · τ̂ := ∇ · (τ̂ 1, . . . , τ̂ d) = (∇ · τ̂ 1, . . . ,∇ · τ̂ d)T .

For the boundary face e, the trace operators are defined as

{v} := v|e, {q} := q|e, {τ} := τ |e,
[[v]] := v|en, [[n× q]] := n× q|e, [[n⊗ q]] := n⊗ q|e, [[n⊗ τ ]] := n⊗ τ |e,

where n is the unit outward normal on e.

Hereafter, we let C and C with subscripts denote the generic positive constants that may

be different from line to line but independent of the mesh size h. For a bounded domain D, we

will use the standard notation and definitions for the Sobolev spaces L2(D), L2(D)d, L2(D)d×d,

Hr(D), Hr(D)d, Hr(D)d×d with r a positive integer, and we will also use their associated inner

products, semi-norms and norms. We define the space of divergence-free functions by

Sr(D) :=
{
v ∈ Hr(D)d | ∇ · v = 0 in D

}
,

and we further define the space of tensor-valued functions by

Ir(D) :=
{
τ ∈ Hr(D)d×d | ∇ × τ = 0, tr (τ ) = 0 in D

}
,

where tr (·) denotes the standard trace operator. For the partition Th, we will use the definitions

for the broken Sobolev spaces L2(Th), L2(Th)d, L2(Th)d×d, Hr(Th), Hr(Th)d, Hr(Th)d×d and

their corresponding broken semi-norms and norms. Moreover, for any space X ⊂ L2(Ω), we let

X/R consist of the functions in X that have zero mean value on Ω,

X/R :=

{
v ∈ X |

∫
Ω

vdx = 0

}
.

The incompressible Stokes problem we are studying in this paper reads: seek the velocity

fields u and the pressure p such that

− ν∆u+∇p = f , in Ω,

∇ · u = 0, in Ω,

u = g, on ∂Ω,

(2.3)

where f is a give source term and g is the boundary data and ν is the reciprocal of the Reynolds

number.

As being declared above, we will propose a new least squares finite element method, together

with the reconstructed discontinuous approximation, to solve the problem (2.3). We introduce
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a new inter-mediate variable U to substitute ∇u = (∇u1, . . . ,∇ud), thus one can reformulate

the problem (2.3) into an equivalent first-order system:

− ν∇ ·U +∇p = f , in Ω,

∇u−U = 0, in Ω,

∇ · u = 0, in Ω,

u = g, on ∂Ω.

(2.4)

In Section 4, we will go back to the Stokes problem and present the details of the sequential

least squares method to the first-order system (2.4) with the reconstructed spaces introduced

in Section 3.

3. Reconstructed Approximation Space

In this section, we define three types of reconstruction operators that will be used in numeri-

cally solving (2.4). The first one is the reconstruction operator which has been used in [23,25,26]

and the other two operators are extensions from the first one. The reconstruction procedure

includes two parts. The first part is to construct the element patch and this part is the same

for all reconstruction operators. Now we present the details of the construction to the element

patch. We begin by assigning a collocation point in each element. For each element K, we

specify its barycenter xK as its corresponding collocation point. Then for each element K we

aggregate an element patch S(K) which is a set of elements and consists of K itself and some

neighbour elements. Specifically, the element patch S(K) is constructed in a recursive strategy.

We first appoint a threshold value #S to control the cardinality of S(K). We let S0(K) = {K}
and construct a sequence of element sets St(K)(t ≥ 1) recursively:

St+1(K) =
⋃

K̃∈St(K)

⋃
K̂∈N (K̃)

K̂, t = 0, 1, 2, . . .

where N (K̃) denotes the set of elements face-neighbouring to K̃. This recursion ends when the

depth t satisfies that the cardinality of St(K) is greater than #S. We compute the distances

between the collocation points of all elements in St(K) and the point xK . We choose the #S

smallest distances and gather the corresponding elements to form the element patch S(K).

By this recursive strategy, for any element K the cardinality of S(K) is always #S. After

constructing the element patch, for element K we denote by I(K) the set of the collocation

points to the elements in S(K):

I(K) :=
{
xK̃ | ∀K̃ ∈ S(K)

}
.

Then we will define three reconstruction operators to approximate the functions in Hr(Ω),

Sr(Ω) and Ir(Ω)(r ≥ 2), respectively.

3.1. Reconstruction for Scalar-valued Functions

We denote by Uh the piecewise constant space associated with Th:

Uh :=
{
vh ∈ L2(Ω) | vh|K ∈ P0(K), ∀K ∈ Th

}
.
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We will define a reconstruction operator Rm from the space Uh onto a subspace of the piecewise

polynomial space [23]. Given a piecewise constant function g ∈ Uh, we will seek a polynomial of

degree m (m ≥ 1) on every element. For each element K ∈ Th, we solve the following discrete

least squares problem to determine a polynomial RmKg of degree m:

RmKg = arg min
q∈Pm(S(K))

∑
x∈I(K)

|q(x)− g(x)|2

s.t. q(xK) = g(xK).

(3.1)

We follow [23, Assumption B] to make the assumption to ensure the problem (3.1) has a unique

solution.

Assumption 3.1. For any element K ∈ Th and any polynomial q(x) ∈ Pm(S(K)), we have

that

q|I(K) = 0 implies q|S(K) = 0. (3.2)

The Assumption 3.1 is actually a geometrical assumption which rules out the case that the

points in I(K) are lying on an algebraic curve (surface) of degree m and requires the value of

#S shall be greater than dim(Pm(·)).
Then the reconstruction operator Rm is defined in a piecewise manner:

(Rmg)|K = (RmKg)|K , for any element K ∈ Th.

We note that the polynomial RmKg is linearly dependent on g. Hence, the operator Rm maps

Uh onto a subspace of the piecewise polynomial space, which is denoted by Umh = RmUh. For

any smooth function q ∈ C0(Ω), we define q̃ ∈ Uh such that

q̃(xK) = q(xK), ∀K ∈ Th,

and we extend the operator Rm to act on the smooth function by defining Rmq := Rmq̃.
In addition, we outline a group of basis functions of Umh . For any element K, we define the

characteristic function wK(x) ∈ Uh as

wK(x) =

{
1, x ∈ K,
0, otherwise,

and we denote λK as λK = RmwK .

Lemma 3.1. The functions {λK} (∀K ∈ Th) are linearly independent.

Proof. For any λK(x), the constraint in (3.1) implies that

λK(xK̃) =

{
1, K̃ = K,

0, K̃ 6= K.
(3.3)

We assume that there exist coefficients {aK} (∀K ∈ Th) such that∑
K∈Th

aKλK(x) = 0, ∀x ∈ Ω. (3.4)
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For any element K, let x = xK in (3.4) and by (3.3) one see that aK = 0, which shows that

{λK} are linearly independent. This completes the proof. �

Clearly, we have that dim({λK}) = dim(Uh). Lemma 3.1 in fact gives that the reconstructed

space satisfies dim(Umh ) = dim(Uh) and Umh is spanned by {λK}. Moreover, for the function

g ∈ Uh or g ∈ C0(Ω), one may write Rmg explicitly:

Rmg =
∑
K∈Th

g(xK)λK(x). (3.5)

Then we give the approximation property of the space Umh . For any element K, we define a

constant Λ(m,K) as

Λ(m,K) := max
q∈Pm(S(K))

maxx∈S(K) |q(x)|
maxx∈I(K) |q(x)|

.

We let Λm := maxK∈Th(1 + Λ(m,K)(#S)1/2) and in [23, 24] the authors proved that under

some mild conditions on element patches, the constant Λm can be bounded uniformly with

respect to the partition. These conditions rely on the size of element patches and the authors

also proved that if the number #S is greater than a certain number, the conditions on element

patches will be fulfilled, see [23, Lemma 6] and [24, Lemma 3.4]. This certain number is usually

too large to be impractical and is not recommended in the implementation. The numerical

results demonstrate that our method still has a very good performance even we take the value

#S to be far less than that certain number. In Section 5 we list the values of #S for different

m that are adopted in the numerical tests.

Then we state the following estimate.

Lemma 3.2. For any element K and any function g ∈ C0(Ω), there holds

‖g −Rmg‖L∞(K) ≤ Λm inf
q∈Pm(S(K))

‖g − q‖L∞(S(K)).

Proof. We refer to [23, Lemma 3] for the proof. �

From Lemma 3.2, it is easy to derive the following approximation properties.

Theorem 3.1. For any element K, there exist constants C such that

‖g −Rmg‖Hq(K) ≤ CΛmh
m+1−q
K ‖g‖Hm+1(S(K)), q = 0, 1,

‖∇q(g −Rmg)‖L2(∂K) ≤ CΛmh
m+1−q−1/2
K ‖g‖Hm+1(S(K)), q = 0, 1,

(3.6)

for any g ∈ Hm+1(Ω).

Proof. We refer to [23, Lemma 4] for the proof. �

3.2. Reconstruction for Vector-valued Functions

Here we consider to extend the reconstruction process for vector-valued functions. Precisely,

we will introduce a reconstruction operator for functions in the space Sm+1(Ω). We also start

from the piecewise constant space (Uh)d. Given a function g ∈ (Uh)d and for any element
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K ∈ Th, we solve a polynomial R̃mKg of degree m on S(K) by the following discrete least

squares problem:

R̃mKg = arg min
q∈Pm(S(K))d

∑
x∈I(K)

‖q(x)− g(x)‖2ld ,

s.t.

{
q(xK) = g(xK),

∇ · q = 0,

(3.7)

where

‖v‖2ld := v2
1 + . . .+ v2

d, ∀v = (v1, . . . , vd)
T ∈ Rd.

Based on Assumption 3.1, it is trivial to check the uniqueness and the existence of the solution

to the problem (3.7). Then the reconstruction operator R̃m is piecewise defined as

(R̃mg)|K = (R̃mKg)|K , for any element K ∈ Th.

It should be noted that R̃mKg still has a linear dependence on g. Therefore, the operator R̃m
maps the space (Uh)d into the piecewise divergence-free polynomial space of degree m, and we

denote by Smh = R̃m(Uh)d. We also extend the operator R̃m to act on the smooth function

as the operator Rm. For the function g(x) ∈ C0(Ω)d, we define a piecewise constant function

g̃(x) ∈ (Uh)d such that

g̃(xK) = g(xK), ∀K ∈ Th,

and we define R̃mg := R̃mg̃. We also present a group of basis functions to the space Smh . For

any element K, we define an indicator function w̃i
K(x) ∈ (Uh)d, which reads

w̃i
K(x) =

{
ei, x ∈ K,
0, otherwise,

where ei is a d× 1 unit vector whose i-th entry is 1. Then we define λ̃
i

K as λ̃
i

K = R̃mKw̃
i
K and

we have the following lemma.

Lemma 3.3. The functions
{
λiK
}

(∀K ∈ Th, 1 ≤ i ≤ d) are linearly independent.

Proof. The proof results from the constraint in (3.7) and is similar to the proof of Lemma

3.1. �

Analogously, we conclude that the space Smh is spanned by {λ̃
i

K} and for the function

g = (g1, . . . , gd) ∈ (Uh)d or g = (g1, . . . , gd) ∈ C0(Ω)d, we can write R̃mg as

R̃mg =
∑
K∈Th

d∑
i=1

gi(xK)λ̃
i

K(x).

Further, we give the approximation property of the operator R̃m.

Lemma 3.4. For any element K and any function g ∈ C0(Ω)d, there holds

‖g − R̃mg‖L∞(K) ≤
√
dΛm inf

q∈Pm(S(K))d∩S0(S(K))
‖g − q‖L∞(S(K)). (3.8)
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Proof. For any divergence-free polynomial q ∈ Pm(S(K))d∩S0(S(K)), we clearly have that

R̃mKq = q from the definition of the least squares problem (3.7). We deduce that

‖g − R̃mg‖L∞(K) ≤ ‖g − q‖L∞(K) + ‖R̃m(q − g)‖L∞(K)

≤ ‖g − q‖L∞(K) + Λ(m,K) max
x∈I(K)

|R̃m(q − g)|

≤ ‖g − q‖L∞(K) + Λ(m,K)
√
d#S max

x∈I(K)
|q − g|

≤
√
d
(

1 + Λ(m,K)
√

#S
)
‖g − q‖L∞(S(K)),

which gives us the estimate (3.8) and completes the proof. �

Theorem 3.2. For any element K, there exist constants C such that

‖g − R̃mg‖Hq(K) ≤ CΛmh
m+1−q
K ‖g‖Hm+1(S(K)), q = 0, 1,

‖∇q(g − R̃mg)‖L2(∂K) ≤ CΛmh
m+1−q−1/2
K ‖g‖Hm+1(S(K)), q = 0, 1,

(3.9)

for any g ∈ Sm+1(Ω).

Proof. By [2, Theorem 4.1] and [23, Assumption A], there exists an approximation polyno-

mial q̃ ∈ Pm(S(K))d ∩ S0(S(K)) such that

‖g − q̃‖L∞(S(K)) ≤ Ch
m+1−d/2
K ‖g‖Hm+1(S(K)).

By Lemma 3.4, we obtain that

‖g − R̃mg‖L2(K) ≤ Ch
d/2
K ‖g − R̃

mg‖L∞(K) ≤ Ch
d/2
K Λm‖g − q̃‖L∞(S(K))

≤ CΛmh
m+1
K ‖g‖Hm+1(S(K)),

and together with the inverse inequality M2, we have that

‖g − R̃mg‖H1(K) ≤ ‖g − q̃‖H1(K) + ‖q̃ − R̃mg‖H1(K)

≤ ‖g − q̃‖H1(K) + Ch−1
K ‖q̃ − R̃

mg‖L2(K)

≤ CΛmh
m+1
K ‖g‖Hm+1(S(K)).

Applying the trace inequality M2 gives the trace estimate in (3.9). �

3.3. Reconstruction for Tensor-valued Functions

In this subsection, we consider the reconstruction for the tensor-valued functions in the space

Im+1(Ω). Again, we start from a piecewise constant space. Since the functions in Im+1(Ω) have

zero trace, we define the space Uh consisting of piecewise constant functions with zero trace,

which reads

Uh :=
{
vh ∈ (Uh)d×d | tr (vh) = 0

}
.

For the function g ∈ Uh, we will seek a polynomial R̂mKg of degree m on S(K) by solving the

following problem:

R̂mKg = arg min
q∈Pm(S(K))d×d

∑
x∈I(K)

‖q(x)− g(x)‖2ld×d ,

s.t.


q(xK) = g(xK),

∇× q = 0,

tr (q) = 0,

(3.10)
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where

‖τ‖2ld×ld := ‖τ 1‖2ld + . . .+ ‖τ d‖2ld , ∀τ = (τ 1, . . . , τ d) ∈ Rd×d.

Similarly, we have that the problem (3.10) has a unique solution by Assumption 3.1. The global

reconstruction operator R̂m is piecewise defined by

(R̂mg)|K = (R̂mKg)|K , for any element K ∈ Th.

The solution R̂mKg is linearly dependent on g and we denote by Imh the image of the operator

R̂m. Then we still extend the operator R̂m to act on the smooth functions. For the function

g(x) ∈ C0(Ω)d×d with zero trace, we let ĝ(x) ∈ Uh such that

ĝ(xK) = g(xK), ∀K ∈ Th,

and again we define R̂mg := R̂mĝ. Here we give a group of basis functions to the space Imh .

We define a group of characteristic functions ŵi,j
K (x) ∈ Uh but we shall consider the zero

trace condition of functions in Uh. Actually this condition implies that there are only d2 − 1

characteristic functions on every element. For any element K, we define ŵi,j
K (x) as

ŵi,j
K (x) =

{
ei,j , x ∈ K,
0, otherwise,

1 ≤ i 6= j ≤ d,

where ei,j is the d× d matrix whose (i, j) entry is 1 and the other entries are 0. For 1 ≤ i < d,

we define ŵi,i
K (x) as

ŵi,i
K (x) =

{
êi,i, x ∈ K,
0, otherwise,

where êi,i is the d× d matrix whose (i, i) entry is 1, (d, d) entry is −1 and other entries are 0.

We define λ̂
i,j

K = R̂mŵi,j
K and we state that the functions {λ̂

i,j

K } are a group of basis functions

to the space Imh .

Lemma 3.5. The functions {λ̂
i,j

K } (∀K ∈ Th, 1 ≤ i, j ≤ d, i+ j < 2d) are linearly independent.

Proof. The proof of Lemma 3.5 is analogous to the proof of Lemmas 3.3 and 3.1. �

Clearly, we can know that Imh = span{λ̂
i,j

K } and for any function g = (gi,j(x))d×d ∈ Uh or

g = (gi,j(x))d×d ∈ C0(Ω)d×d with tr (g) = 0, R̂mg can be expressed as

R̂mg =
∑
K∈Th

∑
1≤i,j≤d and i+j<2d

gi,j(xK)λ̂
i,j

K (x). (3.11)

Moreover, we give the approximation property of the space Imh .

Lemma 3.6. For any element K and any function g ∈ C0(Ω)d×d with tr (g) = 0, there holds

‖g − R̂mg‖L∞(K) ≤ dΛm inf
q∈Pm(S(K))d×d∩I0(S(K))

‖g − q‖L∞(S(K)). (3.12)
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Proof. According to the problem (3.1), we have that R̂mq = q for any q ∈ Pm(S(K))d×d ∩
I0(S(K)). We obtain that

‖g − R̂mg‖L∞(K) ≤ ‖g − q‖L∞(K) + ‖R̂m(q − g)‖L∞(K)

≤ ‖g − q‖L∞(K) + Λ(m,K) max
x∈I(K)

|R̃m(q − g)|

≤ ‖g − q‖L∞(K) + dΛ(m,K)
√

#S max
x∈I(K)

|q − g|

≤ d
(

1 + Λ(m,K)
√

#S
)
‖g − q‖L∞(S(K)),

which completes the proof. �

Theorem 3.3. For any element K, there exist constants C such that

‖g − R̂mg‖Hq(K) ≤ CΛmh
m+1−q
K ‖g‖Hm+1(S(K)), q = 0, 1,

‖∇q(g − R̂mg‖L2(∂K) ≤ CΛmh
m+1−q−1/2
K ‖g‖Hm+1(S(K)), q = 0, 1,

(3.13)

for any g ∈ Im+1(Ω).

Proof. Since ∇ × g = 0 and tr (g) = 0, there exists a function ĝ ∈ Sm+2(S(K)) such that

g = ∇ĝ [18, Lemma 2.1]. By [2, Theorem 4.1], there exists a polynomial q̂ ∈ Pm+1(S(K))d ∩
S0(S(K)) such that

‖g −∇q̂‖L∞(S(K)) = ‖∇(ĝ − q̂)‖L∞(S(K)) ≤ Ch
m+1−d/2
K ‖ĝ‖Hm+2(S(K))

= Ch
m+1−d/2
K ‖g‖Hm+1(S(K)).

Clearly, ∇q̂ ∈ Pm(S(K))d×d ∩ I0(S(K)). By Lemma 3.6 and the approximation estimate of q̂,

we deduce that

‖g − R̂mg‖L2(K) ≤ Ch
d/2
K ‖g − R̂

mg‖L∞(K) ≤ Ch
d/2
K Λm‖g −∇q̂‖L∞(S(K))

≤ CΛmh
m+1
K ‖g‖Hm+1(S(K)).

Together with the inverse inequality M3, we have

‖g − R̂mg‖H1(K) ≤ ‖g −∇q̂‖H1(K) + ‖∇q̂ − R̂mg‖H1(K)

≤ ‖g −∇q̂‖H1(K) + Ch−1
K ‖∇q̂ − R̂

mg‖L2(K)

≤ ‖g −∇q̂‖H1(K) + Ch−1
K

(
‖g −∇q̂‖L2(K) + ‖g − R̂mg‖L2(K)

)
≤ CΛmh

m
K‖g‖Hm+1(S(K)).

The trace estimate of (3.13) follows from the trace inequality M2. �

We have established three types of reconstruction operators and their corresponding ap-

proximation spaces and the approximation results. In Appendix 6, we present some details of

the computer implementation to reconstructed spaces.

Remark 3.1. The computational cost of constructing the approximation spaces mainly has

two parts. The first part is the cost to construct element patches. In numerical tests, we choose

the accuracy m = 1, 2, 3 and in this case at most 6 recursive steps on each element are enough
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to construct the element patch. The computational cost of this step is very low, see Appendix

6. For the second step, as we illustrate in Appendix 6, we only need to store three matrices with

sizes #S ×#S, d#S × d#S and d2#S × d2#S, respectively. This part is also very cheap. We

note that in our implementation, the computational time to construct approximation spaces is

only 5% of the computational time to use the numerical integration to assemble the total stiff

matrix.

4. Sequential Least Squares Method for Stokes Problem

In this section, we propose a sequential least squares finite element method to solve the

Stokes problem based on the first-order system (2.4). We are motivated by the idea in [16, 27]

to decouple the system (2.4) into two steps. The first first-order system is defined to seek the

numerical approximations to the gradient U and the pressure p, which reads

− ν∇ ·U +∇p = f , in Ω,

n×U = n×∇g, on ∂Ω.
(4.1)

The first equation in (4.1) is the same as the first equation in (2.4) and the boundary condition

in (2.4) provides the tangential trace n × U on the boundary ∂Ω. Then, we define a least

squares functional Jp
h (·, ·) for numerically solving the system (4.1), which reads

Jp
h (Vh, qh) :=

∑
K∈Th

‖ − ν∇ ·Vh +∇qh − f‖2L2(K)+
∑
e∈Eih

(
η

he
‖[[qh]]‖2L2(e)+

η

he
‖[[n⊗Vh]]‖2L2(e)

)
+
∑
e∈Ebh

η

he
‖n×Vh − n×∇g‖2L2(e), ∀(Vh, qh) ∈ H1(Th)d×d ×H1(Th), (4.2)

where η is a positive parameter and will be specified later on. In (4.2), the trace terms are used

to weakly impose the continuity condition as well as the boundary condition. We minimize the

functional (4.2) over the spaces Imh × Ũmh to give approximations to U and p and here the space

Ũmh is defined by Umh /R.

Specifically, the minimization problem is defined as to find Uh ∈ Imh and ph ∈ Ũmh such that

(Uh, ph) = arg min
(Vh,qh)∈Imh ×Ũ

m
h

Jp
h (Vh, qh). (4.3)

We write the Euler-Lagrange equation to solve the problem (4.3) and the corresponding discrete

variational problem reads: find (Uh, ph) ∈ Imh × Ũmh such that

aph(Uh, ph; Vh, qh) = lph(Vh, qh), ∀(Vh, qh) ∈ Imh × Ũmh , (4.4)

where the bilinear form aph(·; ·) is

aph(Uh, ph; Vh, qh) =
∑
K∈Th

∫
K

(−ν∇ ·Uh +∇ph)(−ν∇ ·Vh +∇qh)dx

+
∑
e∈Eih

∫
e

η

he
[[ph]] · [[qh]]ds+

∑
e∈Eih

∫
e

η

he
[[n⊗Uh]] : [[n⊗Vh]]ds

+
∑
e∈Ebh

∫
e

η

he
(n×Uh) · (n×Vh)ds, (4.5)
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and the linear form lph(·) is

lph(Vh, qh) =
∑
K∈Th

∫
K

f (−ν∇ ·Vh +∇qh) dx+
∑
e∈Ebh

∫
e

η

he
(n×Vh) · (n×∇g)ds.

Then we will focus on the error estimate to the problem (4.4). To do this, we will require

some projection results which play a key role in the analysis. We define V mh and Ṽ mh as piecewise

polynomial spaces with respect to the partition Th and the sub-decomposition T̃h,

V mh := {vh ∈ L2(Ω) | vh|K ∈ Pm(K), ∀K ∈ Th},

Ṽ mh := {vh ∈ L2(Ω) | vh|K̃ ∈ Pm(K̃), ∀K̃ ∈ T̃h},

and clearly we have that V mh ⊂ Ṽ mh . Then we state following lemmas.

Lemma 4.1. For any vh ∈ V mh , there exists a function ṽh ∈ Ṽ mh such that

vh = ṽh, in any K̃ ∈ T̃h,

[[ṽh]] = 0, on any ẽ ∈ Ẽh\Eh,∑
ẽ∈w(e)

hβẽ ‖[[ṽh]]‖2L2(ẽ) ≤ Ch
β
e ‖[[vh]]‖2L2(e), on any e ∈ Eh and β = −1, 1,

(4.6)

where w(e) = {ẽ ∈ Ẽh | ẽ ⊂ e}.

Proof. The fact V mh ⊂ Ṽ mh directly implies that there exists a polynomial ṽh ∈ Ṽ mh satisfying

the equalities in (4.6) and ∑
ẽ∈w(e)

‖[[ṽh]]‖2L2(ẽ) = ‖[[vh]]‖2L2(e).

Hence, ∑
ẽ∈w(e)

hβẽ ‖[[ṽh]]‖2L2(ẽ) =
∑

ẽ∈w(e)

hβe

(
hẽ
he

)β
‖[[ṽh]]‖2L2(ẽ)

≤Chβe
∑

ẽ∈w(e)

‖[[ṽh]]‖2L2(ẽ) = Chβe ‖[[vh]]‖2L2(e),

where the last inequality follows from the mesh regularity assumption. This completes the

proof. �

Lemma 4.2. For any vh ∈ V mh , there exists a function ṽh ∈ Ṽ mh ∩H1(Ω) such that∑
K∈Th

‖∇α(vh − ṽh)‖2L2(K) ≤ C
∑
e∈Eih

h1−2α
e ‖[[vh]]‖2L2(e), α = 0, 1. (4.7)

Proof. By Lemma 4.1, there exists a piecewise polynomial v̂h ∈ Ṽ mh satisfying the estimate

(4.6). By [21, Theorem 2.1], there exists a function ṽh ∈ Ṽ mh ∩H1(Ω) such that∑
K̃∈T̃h

‖∇α(v̂h − ṽh)‖2
L2(K̃)

≤ C
∑
ẽ∈Ẽih

h1−2α
ẽ ‖[[v̂h]]‖2L2(ẽ), α = 0, 1.

Combining (4.6), we have that∑
K∈Th

‖∇α(vh − ṽh)‖2L2(K) =
∑
K̃∈T̃h

‖∇α(v̂h − ṽh)‖2
L2(K̃)

≤ C
∑
ẽ∈Ẽih

h1−2α
ẽ ‖[[v̂h]]‖2L2(ẽ)

≤ C
∑
e∈Eih

h1−2α
e ‖[[vh]]‖2L2(e),
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which gives the inequality (4.7) and this completes the proof. �

Lemma 4.3. For any qh ∈ (V mh )d, there exists a function q̃h ∈ (Ṽ mh )d ∩H1(Ω)d such that∑
K̃∈T̃h

‖∇α(qh − q̃h)‖2
L2(K̃)

(4.8)

≤C

∑
ẽ∈Ẽih

h1−2α
ẽ ‖[[ñ⊗ qh]]‖2L2(ẽ) +

∑
ẽ∈Ẽbh

h1−2α
ẽ ‖ñ× qh‖2L2(ẽ)

 , α = 0, 1,

and the tangential trace n× q̃h vanishes on the boundary ∂Ω.

Proof. Again by [21, Theorem 2.1], there exists a piecewise polynomial q̂h ∈ (Ṽ mh )d∩H1(Ω)d

such that ∑
K̃∈T̃h

‖∇α(qh − q̂h)‖2
L2(K̃)

≤ C
∑
ẽ∈Ẽih

h1−2α
ẽ ‖[[ñ⊗ qh]]‖2L2(ẽ). (4.9)

We will construct a new piecewise polynomial q̃h ∈ (Ṽ mh )d∩H1(Ω)d based on q̂h, which satisfies

the inequality (4.8) and its tangential trace vanishes on the boundary.

We denote by N = {ν0,ν1, . . . ,νn} the Lagrange points with respect to the partition T̃h
and we let {φν0

, φν1
, . . . , φνn

} be the corresponding basis functions such that φνi
(νj) = δij .

Then we divide the set N into three disjoint subsets (see Fig. 4.1):

Ni := {ν ∈ N | ν is interior to the domain Ω} ,
Nv := {ν ∈ N | ν is shared by two different sides of the boundary ∂Ω},
Nb := N\(Ni ∪Nv).

(4.10)

We note that the points in Nb are interior to one slide of the boundary ∂Ω, and particularly in

two dimensions the points in Nv are vertices of the boundary ∂Ω.

∂Ω

Ω

v0 v1 v2

v3

v4

v5
v6

v7v8

v0 ∈ Nv

v1, v2, v3, v4 ∈ Nb

v5, v6, v7, v8 ∈ Ni

∂Ω Ω

v0

v1

v2
v3

v4

v5
v6

v7

v8
v9

v10v13

v11

v12

v0, v1, v2, v3, v4, v6, v9 ∈ Nv

v5, v7, v8 ∈ Nb

v10, v11, v12, v13 ∈ Ni

Fig. 4.1. Examples of Lagrange nodes in two dimensions (left) / in three dimensions (right).

By {φνi
}, the function q̂h =

(
q̂1
h, . . . , q̂

d
h

)
can be expanded as q̂jh =

∑
ν∈N α

j
νφν(1 ≤ j ≤ d).
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Then we construct a new group of coefficients {βjν} by

βjν :=


αjν , for ν ∈ Ni,
β̃jν , for ν ∈ Nb,
0, for ν ∈ Nv.

(4.11)

For ν ∈ N , we denote αν and βν as αν = (α1
ν , . . . , α

d
ν)T and βν = (β1

ν , . . . , β
d
ν)T , respectively.

Then we determine the values of β̃jν . By the definition (4.10), for any ν ∈ Nb there exists a

boundary face ẽ ∈ Ẽbh that includes the point ν, and we let its corresponding coefficients satisfy

that

ñ× βν = 0, ñ · βν = ñ ·αν ,

where ñ is the unit outward normal with respect to the boundary face ẽ. We construct a new

piecewise polynomial q̃h = (q̃1
h, . . . , q̃

d
h)T where q̃jh =

∑
ν∈N β

j
νφν(1 ≤ j ≤ d). It is trivial to

check that the trace n × q̃h vanishes on the boundary ∂Ω. Then we will estimate the term

‖∇(q̂h − q̃h)‖L2(Ω). Since q̂h and q̃h have the same value on the points in Ni, one can see that

‖∇α(q̂h − q̃h)‖2L2(Ω) ≤ C
∑

ν∈Nb∪Nv

|αν − βν |2‖∇αφν‖2L2(Ω).

We first consider the points in the set Nb. Again for any ν ∈ Nb, we have that there exists a face

ẽ ∈ Ẽbh such that ν ∈ ẽ, and by the scaling argument and the shape regularity of the partition

T̃h, there holds ‖∇αφν‖2L2(Ω) ≤ Chd−2α
ẽ . Combining with (4.11) and the inverse estimate, we

obtain that ∑
ν∈Nb

|αν − βν |2‖∇αφν‖2L2(Ω)

=
∑
ν∈Nb

‖∇αφν‖2L2(Ω)

(
|ñ× (αν − βν)|2 + |ñ · (αν − βν)|2

)
≤C

∑
ν∈Nb

hd−2α
ẽ |ñ×αν |2 = C

∑
ν∈Nb

hd−2α
ẽ |ñ× q̂h(ν)|2

≤C
∑
ν∈Nb

hd−2α
ẽ ‖ñ× q̂h‖2L∞(ẽ) ≤ C

∑
ν∈Nb

h1−2α
ẽ ‖ñ× q̂h‖2L2(ẽ)

≤C
∑
ẽ∈Ẽbh

h1−2α
ẽ ‖ñ× q̂h‖2L2(ẽ).

Then we move on to the points in Nv. By definition (4.10), for every ν ∈ Nv there exist two

adjacent faces ẽ1 ∈ Ẽbh and ẽ2 ∈ Ẽbh such that ν ∈ ẽ1∩ ẽ2. We note that ẽ1 and ẽ2 are not parallel

and are included in two different sides of ∂Ω. We let ñ1 and ñ2 be the unit outward normals

corresponding to ẽ1 and ẽ2, respectively, and clearly we have ñ1 6= ñ2. This fact implies that

there exists a positive constant C such that

|v|2 ≤ C
(
|ñ1 × v|2 + |ñ2 × v|2

)
, for ∀v ∈ Rd. (4.12)

It should be noted that the constant C only depends on the angle of ñ1 and ñ2 and this angle
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only depends on the boundary ∂Ω. Then we derive that∑
ν∈Nv

|αν − βν |2‖∇αφν‖2L2(Ω) =
∑
ν∈Nv

‖∇αφν‖2L2(Ω)|αν |
2

≤C
∑
ν∈Nv

‖∇αφν‖2L2(Ω)

(
|ñ1 ×αν |2 + |ñ2 ×αν |2

)
≤C

∑
ν∈Nv

(
hd−2α
ẽ1

|ñ1 × q̂h(ν)|2 + hd−2α
ẽ2

|ñ2 × q̂h(ν)|2
)

≤C
∑
ν∈Nv

(
hd−2α
e1 ‖ñ1 × q̂h‖2L∞(ẽ1) + hd−2α

ẽ2
‖ñ2 × q̂h‖2L∞(ẽ2)

)
≤C

∑
ν∈Nv

(
h1−2α
ẽ1
‖ñ1 × q̂h‖2L2(ẽ1) + h1−2α

ẽ2
‖ñ1 × q̂h‖2L2(ẽ2)

)
≤C

∑
ẽ∈Ẽbh

h1−2α
ẽ ‖ñ× q̂h‖2L2(ẽ).

Thus, we arrive at

‖∇α(q̂h − q̃h)‖2L2(Ω) ≤ C
∑
e∈Ẽbh

h1−2α
e ‖n× q̂h‖2L2(e).

We finally present that the error ‖∇α(qh− q̃h)‖L2(T̃h) satisfies the estimate (4.8). We have that

‖∇α(qh − q̃h)‖2
L2(T̃h)

≤ C
(
‖∇α(qh − q̂h)‖2

L2(T̃h)
+ ‖∇α(q̃h − q̂h)‖2L2(Ω)

)
≤ C

∑
ẽ∈Ẽih

h1−2α
ẽ ‖[[n⊗ qh]]‖2L2(ẽ) +

∑
ẽ∈Ẽbh

h1−2α
ẽ ‖n× q̂h‖2L2(ẽ)

 ,

and together with [21, Theorem 2.1] and the trace inequality, we deduce that∑
e∈Ẽbh

h1−2α
ẽ ‖ñ× q̂h‖2L2(ẽ) ≤ C

∑
e∈Ẽbh

(
h1−2α
ẽ ‖ñ× qh‖2L2(ẽ) + h1−2α

ẽ ‖ñ× (qh − q̂h)‖2L2(ẽ)

)

≤ C

∑
ẽ∈Ẽbh

h1−2α
ẽ ‖ñ× qh‖2L2(ẽ) +

∑
K∈T̃h

h−2α
K ‖qh − q̂h‖2L2(K)


≤ C

∑
ẽ∈Ẽih

h1−2α
ẽ ‖ñ⊗ qh‖2L2(ẽ) +

∑
ẽ∈Ẽbh

h1−2α
ẽ ‖ñ× qh‖2L2(ẽ)

 .

Combining all inequalities yields the estimate (4.8) and completes the proof. �

Lemma 4.4. For any Vh ∈ (V mh )d×d, there exists a function Ṽh ∈ (Ṽ mh )d×d ∩H1(Ω)d×d such

that ∑
K∈Th

‖∇α(Vh − Ṽh)‖2L2(K)

≤C

∑
e∈Eih

h1−2α
e ‖[[n⊗Vh]]‖2L2(e) +

∑
e∈Ebh

h1−2α
e ‖n×Vh‖2L2(e)

 , (4.13)

for α = 0, 1, and the tangential trace n× Ṽh vanishes on the boundary ∂Ω.
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Proof. We columnwise expand Vh as Vh = (v1
h, . . . ,v

d
h) where vih ∈ (V mh )d(1 ≤ i ≤ d). By

Lemma 4.1, there exist a piecewise polynomial function v̂ih ∈ (Ṽ mh )d such that

vih = v̂ih, in any K̃ ∈ T̃h,

[[ñ⊗ v̂ih]] = 0, on any ẽ ∈ Ẽh\Eh,∑
ẽ∈w(e)

h1−2α
ẽ ‖[[ñ⊗ v̂ih]]‖2L2(ẽ) ≤ Ch

1−2α
e ‖[[n⊗ vih]]‖2L2(e), on any e ∈ E ih,∑

ẽ∈w(e)

h1−2α
ẽ ‖[[ñ× v̂ih]]‖2L2(ẽ) ≤ Ch

1−2α
e ‖[[n× vih]]‖2L2(e), on any e ∈ Ebh.

(4.14)

By Lemma 4.3, for every v̂ih there exists a piecewise polynomial function ṽih ∈ (Ṽ mh )d ∩H1(Ω)d

satisfying the estimate (4.8) and the tangential trace of ṽih equals to 0 on the boundary. We

define Ṽh as Ṽh = (ṽ1
h, . . . , ṽ

d
h). By (4.14) and the estimate (4.8), it can be seen that for the

polynomial Ṽh the estimate (4.13) holds true and its tangential trace vanishes on ∂Ω. This

completes the proof. �

Next, we focus on the continuity and the coercivity of the bilinear form aph(·; ·). We begin

by defining the following two energy norms ‖ · ‖U and ‖ · ‖p:

‖Vh‖2U :=
∑
K∈Th

‖∇ ·Vh‖2L2(K)+
∑
e∈Eih

h−1
e ‖[[n⊗Vh]]‖2L2(e) +

∑
e∈Ebh

h−1
e ‖n×Vh‖2L2(e),

for any Vh ∈ Imh + I1(Ω), and

‖qh‖2p :=
∑
K∈Th

‖∇qh‖2L2(K) +
∑
e∈Eih

h−1
e ‖[[qh]]‖L2(e),

and any qh ∈ Ũmh + H1(Ω)/R. We have the following estimates which show that ‖ · ‖U and

‖ · ‖p are actually norms on their corresponding spaces.

Lemma 4.5. There exist a constant C such that

‖Vh‖L2(Ω) ≤ C‖Vh‖U, ∀Vh ∈ Imh + I1(Ω). (4.15)

Proof. we refer to [27, Lemma 4.1] for the proof. �

Lemma 4.6. There exist a constant C such that

‖qh‖L2(Ω) ≤ C‖qh‖p, ∀qh ∈ Ũ +H1(Ω)/R. (4.16)

Proof. We refer to [11] for the proof. �

Now we are ready to state that the bilinear form aph(·; ·) is bounded and coercive with respect

to energy norms ‖ · ‖U and ‖ · ‖p for any positive η.

Lemma 4.7. For the bilinear form aph(·; ·) with any η > 0, there exists a positive constant C

such that

|aph(Uh, ph; Vh, qh)| ≤ C
(
‖Uh‖2U + ‖ph‖2p

)1/2 (‖Vh‖2U + ‖qh‖2p
)1/2

, (4.17)

for any Uh,Vh ∈ Imh + I1(Ω) and any ph, qh ∈ Ũmh +H1(Ω)/R.
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Proof. Without loss of generality, we set ν = 1. Obviously we have that∫
K

‖ − ∇ ·Uh +∇ph‖2dx ≤ C
(∫

K

‖∇ ·Uh‖2dx+

∫
K

‖∇ph‖2dx

)
, ∀K ∈ Th,

and applying the Cauchy-Schwarz inequality to (4.5) directly gives the estimate (4.17), which

completes the proof. �

Lemma 4.8. For the bilinear form aph(·; ·) with any η > 0, there exists a positive constant C

such that

aph(Uh, ph; Uh, ph) ≥ C
(
‖Uh‖2U + ‖ph‖2p

)
, (4.18)

for any Uh ∈ Imh and any ph ∈ Ũmh .

Proof. It is also sufficient to prove for the case ν = 1. For any Uh ∈ Imh , Lemma 4.4 implies

that there exists a function Vh ∈ H1(Ω)d×d such that n × Vh = 0 on ∂Ω and the estimate

(4.13) holds. For any ph ∈ Ũmh , there exists a function qh ∈ H1(Ω) satisfying the estimate (4.7)

by Lemma 4.2.

Here we prove for the three-dimensional case. Since n × Vh = 0 on ∂Ω and the domain

Ω is assumed to be a bounded convex polygon (polyhedron), we have the following Helmholtz

decomposition [16]:

Vh = ∇qT +∇×Ψ,

where q ∈ H1
0 (Ω)d ∩H2(Ω)d is the solution of

∆q = ∇ ·Vh, in Ω, q = 0, on ∂Ω. (4.19)

Since qh ∈ H1(Ω), the regularity of generalized Stokes problem [16,22] provides that

‖∆q‖2L2(Ω) + ‖∇qh‖2L2(Ω) ≤ C
(
‖ −∆q +∇qh‖2L2(Ω) + ‖∇ · q‖2L2(Ω)

)
. (4.20)

Together with [16, Lemma 3.2] and the auxiliary problem (4.19), we obtain

‖∇ ·Vh‖2L2(Ω) + ‖∇qh‖2L2(Ω)

≤C
(
‖ − ∇ ·Vh +∇qh‖2L2(Ω) + ‖tr (Vh) ‖2H1(Ω) + ‖∇ ×Vh‖2L2(Ω)

)
. (4.21)

We note that the inequality (4.21) also holds in two dimensions and the proof is similar.

Then we are ready to establish the coercivity (4.18) and we first take the parameter η = 1.

We have that

‖Uh‖2U + ‖ph‖2p =
∑
K∈Th

‖∇ ·Uh‖2L2(K) +
∑
K∈Th

‖∇ph‖2L2(K)

+
∑
e∈Eih

h−1
e ‖[[n⊗Uh]]‖2L2(e) +

∑
e∈Ebh

h−1
e ‖n×Vh‖2L2(e) +

∑
e∈Eih

h−1
e ‖[[qh]]‖L2(e),

and

‖∇ ·Uh‖2L2(Th) + ‖∇ph‖2L2(Th) ≤ C
(
‖∇ ·Vh‖2L2(Ω) + ‖∇qh‖2L2(Ω)

)
+ C

(
‖∇ · (Uh −Vh)‖2L2(Th) + ‖∇(ph − qh)‖2L2(Th)

)
.

From (4.21) and the above two inequalities, we arrive at

‖Uh‖2U + ‖ph‖2p ≤ C
(
aph(Uh, ph; Uh, ph) + ‖∇ ·Vh‖2L2(Ω) + ‖∇qh‖2L2(Ω)

)
.
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Thus, it suffices to show that the right hand side of (4.21) can be bounded by aph(Uh, ph; Uh, ph).

We further deduce that

‖ − ∇ ·Vh +∇qh‖2L2(Ω) ≤ C
(
‖ − ∇ ·Uh +∇ph‖2L2(Th)

)
+ C

(
‖∇ · (Uh −Vh)‖2L2(Th) + ‖∇(ph − qh)‖2L2(Th)

)
,

and since Uh ∈ Imh , we have

‖tr (Vh) ‖2H1(Ω) + ‖∇ ×Vh‖2L2(Ω) = ‖tr (Vh −Uh) ‖2H1(Th) + ‖∇ × (Vh −Uh)‖2L2(Th)

≤ C‖(Vh −Uh)‖2H1(Th).

Combining all inequalities above and the estimates (4.8) and (4.7), we conclude that

‖Uh‖2U + ‖ph‖2p ≤ Ca
p
h(Uh, ph; Uh, ph).

By a scaling argument, we can obtain that for any positive parameter η the coercivity (4.18)

holds true, which completes the proof. �

We have established the boundedness and coercivity of the bilinear form aph(·; ·), which

implies that there exists a unique solution to the discrete problem (4.4). We state the error

estimate to the numerical approximations obtained by (4.4).

Theorem 4.1. Let (U, p) ∈ Im+1(Ω) ×Hm+1(Ω)/R be the solution to the problem (4.1) and

let (Uh, ph) ∈ Imh × Ũmh be the solution to the problem (4.4), there exists a constant C such that

‖U−Uh‖U + ‖p− ph‖p ≤ Chm
(
‖U‖Hm+1(Ω) + ‖p‖Hm+1(Ω)

)
. (4.22)

Proof. For the exact solution (U, p), the jump term vanishes on interior faces, that is

[[n×U]] = 0, [[p]] = 0, on any e ∈ E ih.

Hence, for any (Vh, qh) ∈ Imh × Ũmh we have that

Jp
h (Vh, qh) = aph(U−Vh, p− qh; U−Vh, p− qh).

We let Vh = R̂mU and qh = Rmp, and together with the coercivity (4.18) and the boundedness

(4.17), we obtain that

‖U−Uh‖U + ‖p− ph‖p ≤ Caph(U−Uh, p− ph; U−Uh, p− ph)1/2 = CJp
h (Uh, ph)1/2

≤ CJp
h (Vh, qh)1/2 ≤ Caph(U−Vh, p− qh; U−Vh, p− qh)1/2

≤ C (‖U−Vh‖U + ‖p− qh‖p) .

Applying the approximation estimates (3.13) and (3.6) and the trace estimate, it is trivial to

obtain

‖U−Vh‖U ≤ Chm‖U‖Hm+1(Ω), ‖p− qh‖p ≤ Chm‖p‖Hm+1(Ω),

which completes the proof. �

The error estimate of the numerical approximation Uh to the gradient with solving the

minimization problem (4.3) has been established. Now let us consider another first-order system

to solve the velocity u:
∇u−U = 0, in Ω,

u = g, on ∂Ω.
(4.23)

We define the least squares functional Ju
h (·) for solving (4.23):

Ju
h (vh) :=

∑
K∈Th

‖∇vh −Uh‖2L2(K) +
∑
e∈Eih

µ

he
‖[[n⊗ vh]]‖2L2(e) +

∑
e∈Ebh

µ

he
‖vh − g‖2L2(e), (4.24)
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where µ is a positive parameter. It is noticeable that in (4.24) the first term contains the

numerical approximation Uh since the exact gradient is unavailable to us. We minimize the

functional Ju
h (·) in the piecewise divergence-free polynomial space Smh to seek a numerical

solution. The piecewise divergence-free property provides a local mass conservation, which

is very desirable in solving the incompressible fluid flow problem [19, 30]. The minimization

problem is given by

uh = arg min
vh∈Sm

h

Ju
h (vh). (4.25)

We also write its Euler-Lagrange equation to solve (4.25). Thus, the corresponding discrete

variational problem is defined as to find uh ∈ Smh such that

auh(uh,vh) = luh(vh), ∀vh ∈ Smh , (4.26)

where the bilinear form auh(·, ·) is

auh(uh,vh) =
∑
K∈Th

∫
K

∇uh : ∇vhdx+
∑
e∈Eih

∫
e

µ

he
[[n⊗ uh]] : [[n⊗ vh]]ds+

∑
e∈Ebh

∫
e

µ

he
uh · vhds,

and the linear form luh(·) is

luh(vh) =
∑
K∈Th

∫
K

∇vh : Uhdx+
∑
e∈Ebh

∫
e

µ

he
vh · gds,

Then we derive the error estimate of the numerical solution to (4.24). We introduce an energy

norm ‖ · ‖u which is defined as

‖vh‖2u :=
∑
K∈Th

‖∇vh‖2L2(K) +
∑
e∈Eih

h−1
e ‖[[n⊗ vh]]‖2L2(e) +

∑
e∈Ebh

h−1
e ‖vh‖2L2(e),

for any vh ∈ H1(Ω)d + Smh . We state the following lemma to give a bound for the norm ‖ · ‖u.

Lemma 4.9. There exists a positive constant C such that

‖vh‖L2(Ω) ≤ C‖vh‖u, (4.27)

for any vh ∈ H1(Ω)d + Smh .

Proof. We refer to [1, 11] for the proof. �

By the definition of the bilinear form auh(·, ·), it is easy to find that for any µ > 0, there exist

constants C such that

|auh(uh,vh)| ≤ C‖uh‖u‖vh‖u, ∀uh,vh ∈ Smh +H1(Ω)d,

|auh(vh,vh)| ≥ C‖vh‖2u, ∀uh ∈ Smh ,

which implies there exists a unique solution to the problem (4.26). Finally, we present the error

estimate of the numerical solution in approximation to the velocity u.

Theorem 4.2. Let u ∈ Sm+1(Ω) be the solution to (2.4) and let uh ∈ Smh be the solution to

(4.26), there exists a positive constant C such that

‖u− uh‖u ≤ C
(
hm‖u‖Hm+1(Ω) + ‖U−Uh‖L2(Ω)

)
, (4.28)

where Uh is the numerical solution in (4.3).
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Proof. For smooth u, the trace [[n⊗u]] = 0 on any interior faces. We let vh = R̃mu be the

interpolant of u, and we obtain that

‖u− uh‖2u =
∑
K∈Th

‖∇u−∇uh‖2L2(K) +
∑
e∈Eih

h−1
e ‖[[n⊗ (u− uh)]]‖2L2(e) +

∑
e∈Ebh

h−1
e ‖u− uh‖2L2(e)

≤C

( ∑
K∈Th

‖Uh −∇uh‖2L2(K) +
∑
K∈Th

‖U−Uh‖2L2(K)

)
+
∑
e∈Eih

h−1
e ‖[[n⊗ (u− uh)]]‖2L2(e) +

∑
e∈Ebh

h−1
e ‖u− uh‖2L2(e)

≤C
(
Ju
h (uh) + ‖U−Uh‖2L2(Ω)

)
≤ C

(
Ju
h (vh) + ‖U−Uh‖2L2(Ω)

)
≤C

(
‖u− vh‖u + ‖U−Uh‖L2(Ω)

)2
≤C

(
hm‖u‖Hm+1(Ω) + ‖U−Uh‖L2(Ω)

)2
.

The last inequality follows from the approximation property (3.9) and the trace estimate M2,

which completes the proof. �

5. Numerical Results

In this section, we present a series of numerical experiments to demonstrate the accuracy

of our method in both two dimensions and three dimensions. We take the accuracy order as

1 ≤ m ≤ 3 and for different m we list the values #S that are used in numerical experiments

in Table 5.1. For all test problems, the Reynolds number Re and the parameters η and µ are

chosen to be 1.

Table 5.1: #S for 1 ≤ m ≤ 3.

d = 2
m 1 2 3

#S 5 10 15

d = 3
m 1 2 3

#S 8 18 36

Fig. 5.1. The triangular meshes with mesh size h = 1/10 (left) / h = 1/20 (right) for Example 5.1.
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5.1. 2D Example

Example 5.1. We solve the Stokes problem (2.3) on the domain Ω = (0, 1)2 with the analytical

solution

u(x, y) =

[
sin(2πx) cos(2πy)

− cos(2πx) sin(2πy)

]
, p(x, y) = x2 + y2 − 2

3
,

to show the convergence rates of our method. The source term f and the Dirichlet da-

ta g are taken accordingly. We employ a series of triangular meshes with mesh size h =

1/10, 1/20, . . . , 1/160, see Fig. 5.1. The numerical results are displayed in Fig. 5.2 and Fig. 5.3.

For the first part (4.1), we plot the numerical error under energy norm ‖U−Uh‖U + ‖p− ph‖p
in Fig. 5.2, which approaches zero at the speed O(hm). The convergence rates are consistent

with the theoretical analysis (4.22). For L2 error, we also plot the errors ‖U −Uh‖L2(Ω) and

‖p − ph‖L2(Ω) in Fig. 5.2, and we numerically detect the odd/even situation. For odd m, the

L2 errors seem to converge to zero at the optimal speed, and for even m, the errors have a

sub-optimal convergence rate. For the second system (4.23), we show the numerical results in
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Fig. 5.2. The convergence rates of ‖U − Uh‖U + ‖p − ph‖p (left) / ‖U − Uh‖L2(Ω) (middle) /

‖p− ph‖L2(Ω) (right) for Example 5.1.
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Fig. 5.3. The convergence rates of ‖u− uh‖u (left) / ‖u− uh‖L2(Ω) (right) for Example 5.1.
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Fig. 5.3. Clearly, the error under energy norm ‖ · ‖u converges to zero with the rate O(hm) as

the mesh size approaches 0. For the L2 norm, we also observe the optimal rate and sub-optimal

rate for odd m and even m, respectively. We note that the convergence orders under all error

measurements are in perfect agreement with our theoretical error estimates.

Example 5.2. Here we solve the Stokes problem to show the great flexibility of the proposed

method. The exact solution and the computational domain are taken the same as in Example

1 but in the example we use a series of polygonal meshes with 250, 1000, 4000, 16000 elements.

These meshes consist of very general elements and are generated by PolyMesher [32], see

Fig. 5.4. The numerical errors under all error measurements for both two systems (4.1) and

(4.23) are shown in Fig. 5.5 and Fig. 5.6, respectively. Again we observe the optimal convergence

orders for all energy norms. For L2 norm, the odd/even situation is still detected. On such

polygonal meshes, the numerically computed orders agree with our error estimates.

Fig. 5.4. The polygonal meshes with 250 elements (left) / 1000 elements (right) for Example 5.2.
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Fig. 5.5. The convergence rates of ‖U − Uh‖U + ‖p − ph‖p (left) / ‖U − Uh‖L2(Ω) (middle) /

‖p− ph‖L2(Ω) (right) for Example 5.2.

Example 5.3. In this example, we test the modified lid-driven cavity problem [29] to investigate

the performance of our method dealing with the problem with low regularities. We consider

the unit square domain Ω = (0, 1)2, which is subjected to a horizontal flow on the boundary

y = 1 with the velocity u(x, y) = (4x(1 − x), 0)T . The condition of remaining boundaries is

no-slip boundary condition. The source term f is selected to be (0, 0)T . The velocity field on

the upper boundary involves singularity in the upper right and left corners, but the restraints

are not as strong as for the well-known standard lid-driven cavity problem [29]. We solve this
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Fig. 5.6. The convergence rates of ‖u− uh‖u (left) / ‖u− uh‖L2(Ω) (right) for Example 5.2.
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Fig. 5.7. The convergence rates of ‖u− uh‖u (left) / ‖u− uh‖L2(Ω) (right) for Example 5.3.
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Fig. 5.8. Velocity vectors (left) and the streamline of the flow (right) with the accuracy m = 2 for

Example 5.3.

problem on the triangular partition with h = 1/10, h = 1/20, h = 1/40 and h = 1/80, see

Fig. 5.1. Since the analytical solution is unknown and we take the numerical solution which

is obtained with the mesh size h = 1/320 and the accuracy m = 3 as the exact solution. The

numerical errors in approximation to the velocity are presented in Fig. 5.7. The convergence
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Fig. 5.9. Velocity vectors (left) and the streamline of the flow (right) with the accuracy m = 3 for

Example 5.3.

rates under energy norms and L2 norms are detected to be O(h) for all accuracy 1 ≤ m ≤ 3. A

possible explanation of such convergence rates can be traced back to the low regularity of this

problem. Figure 5.8 and Figure 5.9 present the numerical results obtained on the mesh level

h = 1/80 with the accuracy m = 2 and m = 3, respectively. We can observe the main vortex

in the center of the domain and two small vortices in the bottom left and right corners.

5.2. 3D Example

Example 5.4. In this example, we consider the Stokes problem in three dimensions. We solve

the problem on the domain Ω = (0, 1)3 and we take a series of tetrahedral meshes with the

resolution h = 1/4, h = 1/8 and h = 1/16 (see Fig. 5.10). We choose the analytical solution u

and p as

u(x, y, z) =

1− ex cos(2πy)
1

2π
ex sin(2πy)

0

 , p(x, y, z) = x2 + y2 − 2

3
.

The numerical errors in approximation to the gradient and the pressure are collected in Ta-

ble 5.2, and the numerical errors in solving the second first-order system are gathered in Ta-

ble 5.3. We also depict the velocity field and the contour of |uh| in Fig. 5.11 and the numerical

solution in this figure is obtained on the mesh level h = 1/16 with the accuracy m = 3. Here,

Table 5.2: The numerical results of ‖U −Uh‖U + ‖p − ph‖p, ‖U −Uh‖L2(Ω) and ‖p − ph‖L2(Ω) for

Example 5.4.

m h ‖U−Uh‖U + ‖p− ph‖p order ‖U−Uh‖L2(Ω) order ‖p− ph‖L2(Ω) order

1

1/4 4.162e+1 - 2.022e-0 - 3.421e-0 -

1/8 2.446e+1 0.77 9.998e-1 1.02 1.743e-0 0.97

1/16 1.206e+1 1.02 3.653e-1 1.46 7.143e-1 1.29

2

1/4 1.476e+1 - 6.388e-1 - 1.053e-0 -

1/8 4.213e-0 1.81 1.284e-1 2.31 3.425e-1 1.62

1/16 1.167e-0 1.92 3.128e-2 2.03 7.752e-2 2.13

3

1/4 4.125e-0 - 1.557e-1 - 1.409e-1 -

1/8 4.913e-1 3.06 1.125e-2 3.79 1.010e-2 3.80

1/16 5.431e-2 3.13 7.507e-4 3.91 6.931e-4 3.86
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Fig. 5.10. The tetrahedral meshes with mesh size h = 1/8 (left) / mesh size h = 1/16 (right) for

three-dimensional examples.
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Fig. 5.11. The velocity field (left) / the contour of |uh| (right) for Example 5.4.

Table 5.3: The numerical results of ‖u− uh‖u and ‖u− uh‖L2(Ω) for Example 5.4.

m h ‖u− uh‖u order ‖u− uh‖L2(Ω) order

1

1/4 3.495e-0 - 2.865e-1 -

1/8 2.075e-0 0.75 1.278e-1 1.16

1/16 1.062e-0 0.97 5.081e-2 1.33

2

1/4 2.395e-0 - 1.509e-1 -

1/8 5.402e-1 2.15 3.259e-2 2.21

1/16 1.367e-1 1.98 7.653e-3 2.09

3

1/4 4.640e-1 - 2.307e-2 -

1/8 5.382e-2 3.10 1.747e-3 3.72

1/16 6.649e-3 3.02 1.255e-4 3.81

we still observe the odd/even situation. For odd m, the errors under L2 norm seem to converge

to zero optimally as the mesh size tends to zero. For even m, the convergence rates for all

variables under L2 norm are numerically detected to be sub-optimal. Again we note that all

computed convergence orders are consistent with theoretical analysis.

Example 5.5. In the last example, we solve another three-dimensional test problem. The

domain and the meshes are selected the same as the previous example. For this test, the exact
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Fig. 5.12. The velocity field (left) / the contour of |uh| (right) for Example 5.5.

Table 5.4: The numerical results of ‖U −Uh‖U + ‖p − ph‖p, ‖U −Uh‖L2(Ω) and ‖p − ph‖L2(Ω) for

Example 5.5.

m h ‖U−Uh‖U + ‖p− ph‖p order ‖U−Uh‖L2(Ω) order ‖p− ph‖L2(Ω) order

1

1/4 7.312e-0 - 3.516e-1 - 1.932e-1 -

1/8 3.691e-0 0.98 1.101e-1 1.67 9.032e-2 1.10

1/16 1.831e-0 1.01 3.105e-2 1.82 3.132e-2 1.53

2

1/4 1.946e-0 - 5.619e-2 - 7.300e-2 -

1/8 5.082e-1 1.93 1.163e-2 2.27 1.921e-2 1.92

1/16 1.287e-1 1.98 2.646e-3 2.12 4.932e-3 1.98

3

1/4 7.028e-1 - 2.878e-2 - 2.609e-2 -

1/8 7.992e-2 3.13 1.881e-3 3.93 1.848e-3 3.82

1/16 9.250e-4 3.11 1.181e-4 4.01 1.093e-4 4.08

Table 5.5: The numerical results of ‖u− uh‖u and ‖u− uh‖L2(Ω) for Example 5.5.

m h ‖u− uh‖u order ‖u− uh‖L2(Ω) order

1

1/4 1.217e-0 - 6.262e-2 -

1/8 6.123e-1 0.99 2.155e-2 1.53

1/16 3.041e-1 1.00 6.256e-3 1.78

2

1/4 3.311e-1 - 1.839e-2 -

1/8 8.045e-2 2.04 3.552e-3 2.37

1/16 1.975e-2 2.02 7.529e-4 2.23

3

1/4 1.157e-1 - 6.098e-3 -

1/8 1.336e-2 3.11 3.874e-4 3.97

1/16 1.561e-3 3.09 2.357e-5 4.03

solution is

u(x, y, z) =

 sin(πx) cos(πy)e−2z

cos(πx) sin(πy)e−2z

π cos(πx) cos(πy)e−2z

 , p(x, y, z) = x2 + y2 + z2 − 1,

and the source term and the boundary data are taken from u and p. We list the numerical

errors in approximation to the gradient of the velocity and pressure in Table 5.4 and the

numerical errors of the velocity are given in Table 5.5. It can be clearly seen that the convergence

rates for all unknowns are optimal under energy norms, and the old/even situation of L2 errors

is also observed. In addition, we plot the numerical solution with the mesh resolution h = 1/16
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and the accuracy m = 3 to show the velocity field and the contour of |uh| in Fig. 5.12.

6. Conclusion

We constructed three types of approximation spaces by patch reconstructions. These recon-

structed discontinuous spaces allow us to numerically solve the Stokes problem in two sequential

steps. In the three spaces, the gradient of velocity, the velocity and the pressure are approxi-

mated, respectively. We first employed a reconstructed space that consists of piecewise curl-free

polynomials with zero trace to approximate the gradient of the velocity and the pressure. Then

we obtained the approximation to the velocity in the reconstructed piecewise divergence-free

space. The convergence rates for all unknowns under L2 norms and energy norms are derived.

We presented a series of numerical tests in two and three dimensions to verify the error esti-

mates and illustrate the great flexibility of the method we proposed. In addition, the computer

program is able to handle approximation spaces of any high order and the elements with various

geometry in a uniform manner.

Appendix

In Appendix, we present the detailed computer implementation of constructing the ap-

proximation spaces introduced in Section 3. The construction contains two steps that are

constructing element patches and solving local least squares problems on every element. We

first give the recursive algorithm to the construction of the element patch, see Alg. A.1. From

Alg. A.1, it can be seen that for each element K, the construction to the corresponding element

patch involves two parts: enlarging the set St(K) and sorting distances between points in I(K)

and xK . The two parts require at most O((#S)2) computational cost, which gives us that the

computation complexity to Alg. A.1 is O(Ne(#S)2), where Ne is the number of all elements.

Thus, Alg. A.1 is very fast since #S is usually much smaller than Ne.

Algorithm A.1. Construction to Element Patch

Input: a partition Th and a threshold #S;

Output: the element patch of each element in Th;

1: for every K ∈ Th do

2: initialize t = 0, St(K) = {K};
3: while the cardinality of St(K) < #S do

4: set St+1(K) = St(K);

5: for every K̃ ∈ St(K) do

6: add all adjacent face-neighbouring elements of K̃ to St+1(K);

7: end for

8: let t = t+ 1;

9: end while

10: collect collocation points of all elements in St(K) in I(K);

11: sort the distances between points in I(K) and xK ;

12: select the #S smallest values and collect the corresponding elements to form

S(K);

13: end for
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Then we will explain how to solve the least squares problems (3.1), (3.7) and (3.10). The

key of solving least squares problems is to construct a group of polynomial bases that satisfy

the constraints in (3.7) and (3.10). For (3.7), we shall construct the bases of the divergence-free

polynomial space, that is Pk(D)d ∩ S0(D), here D is a bounded domain and k is a positive

integer. In two dimensions, we can directly take the curl of the natural polynomial bases

1, x, y, x2, xy, y2, x3, x2y, xy2, y3, . . .

to obtain the bases of divergence-free polynomials, as illustrated in [2]. For example, if the

linear accuracy is considered we have that

P1(D)2 ∩ S0(D) = span

{[
1

0

]
,

[
0

1

]
,

[
0

x

]
,

[
y

0

]
,

[
x

−y

]}
.

For the second-order case, it is easy to find that

P2(D)2 ∩ S0(D)

=span

{[
1

0

]
,

[
0

1

]
,

[
0

x

]
,

[
y

0

]
,

[
x

−y

]
,

[
0

x2

]
,

[
x2

−2xy

]
,

[
−2xy

y2

]
,

[
y2

0

]}
.

To get a group of divergence-free polynomials bases in three dimensions is a bit more com-

plicated and we outline a method which is easy to implement. We construct two groups of

polynomials S̃
1

k(D) and S̃
2

k(D) whose union actually forms a group of bases. The first group

S̃
1

k(D) consists of the vector-valued polynomials which only have one nonzero entry. Specifically

speaking, S̃
1

k(D) has three types of polynomials, that is S̃
1

k(D) = Q1
k(D) ∪ Q2

k(D) ∪ Q3
k(D),

where
Q1
k(D) :=

{
p = (p1, 0, 0)T ∈ Pk(D)3 | p1(y, z) ∈ Pk(y, z)

}
,

Q2
k(D) :=

{
p = (0, p2, 0)T ∈ Pk(D)3 | p2(x, z) ∈ Pk(x, z)

}
,

Q3
k(D) :=

{
p = (0, 0, p3)T ∈ Pk(D)3 | p3(y, z) ∈ Pk(x, y)

}
,

(A.1)

and Pk(a, b) denotes the polynomial space of degree k based on the coordinate (a, b),

Pk(a, b) = span
{

1, a, b, a2, ab, b2, . . . , ak, ak−1b, . . . , abk−1, bk
}
.

Then S̃
2

k(D) has two types of polynomials, that is S̃
2

k(D) = R1
k(D) ∪R2

k(D), where

R1
k(D) :=

{
p = (p1, p2, 0)T ∈ Pk(D)3

∣∣ p1 = xtq, p2 = −
∫
q(y, z)dy,

q(y, z) ∈ Pk−t(y, z), 1 ≤ t ≤ k
}
,

R2
k(D) :=

{
p = (p1, 0, p3)T ∈ Pk(D)3

∣∣ p1 = xtq, p3 = −
∫
q(y, z)dz,

q(y, z) ∈ Pk−t(y, z), 1 ≤ t ≤ k
}
.

(A.2)

It is trivial to verify that the polynomials in S̃
1

k(D) and S̃
2

k(D) are divergence-free, and we state

the following lemma.

Lemma A.1. The divergence-free polynomial space Pk(D)3 ∩ S0(D) satisfies that Pk(D)3 ∩
S0(D) = S̃

1

k(D) ∪ S̃
2

k(D).

Proof. We let q ∈ Pk(D)3 such that q = S̃
1

k(D) ∩ S̃
2

k(D). By the definition (A.1), the first

entry of q only depends on y and z. From (A.2), the first entry of q must rely on x, which
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gives q = 0. Hence, we have that S̃
1

k(D) ∩ S̃
2

k(D) = {0}. From (A.1) and (A.2), we can know

that dim(S̃
1

k(D)) = 3(k + 2)(k + 1)/2 and dim(S̃
2

k(D)) = (k + 2)(k + 1)k/3. By [2], we have

that dim(Pk(D)3 ∩ S0(D)) = 3C3
k+3 − C3

k+2, which exactly implies dim(Pk(D)3 ∩ S0(D)) =

dim(S̃
1

k(D)) + dim(S̃
2

k(D)). This fact gives us that Pk(D)3 ∩ S0(D) = S̃
1

k(D) ∪ S̃
2

k(D) and

completes the proof. �

Further, we give an example of the linear accuracy. In this case, we can obtain that

S̃
1

1(D) = span


1

0

0

 ,
0

1

0

 ,
0

0

1

 ,
y0

0

 ,
z0

0

 ,
0

x

0

 ,
0

z

0

 ,
0

0

y

 ,
0

0

z

 ,

and

S̃
2

2(D) = span


 x

−y
0

 ,
 x

0

−z

 .

Hence, P1(D)3 ∩ S0(D) = S̃
1

1(D) ∪ S̃
2

1(D).

Then we consider to solve the problem (3.10), which requires us to construct the polynomial

space consists of the curl-free polynomials with zero trace, that is Pk(D)d×d ∩ I0(D). Actually

after obtaining the bases of the divergence-free polynomial space, it is easy to get the bases

of the polynomial space Pk(D)d×d ∩ I0(D). We can take the gradient of the divergence-free

polynomial bases to get those bases. Again we take k = 1 for an example and we can obtain

that

P1(D)d×d ∩ I0(D)

=span

{[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
1 0

0 −1

]
,

[
0 x

0 0

]
,

[
x −y
0 −x

]
,

[
−y 0

−x y

]
,

[
0 0

y 0

]}
.

In the rest of Appendix, we present the details of the computer implementation to the

reconstructed space. Let us construct the space I1
h in two dimensions as an illustration. We

consider the element K0 and we let its element patch S(K0) formed by its face-neighbouring

elements, see Fig. A.1.

K0

K1

K2

K3 xK0

xK1

xK2

xK3

Fig. A.1. K0 and its neighbours (left) / collocation points (right).

For a tensor-valued function g = (g00, g01; g10, g11)T ∈ Uh(g00 = −g11), the least squares

problem (3.7) on S(K0) takes the form

R̂1
K0
g = arg min

q∈Pm(S(K0))2×∩I0(S(K0))

∑
x∈I(K0)

‖q(x)− g(x)‖2l2×l2 , s.t. q(xK0) = g(xK0). (A.3)
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From the bases of the polynomial space P1(S(K0))2 ∩ I0(S(K)), the polynomial p(x) in (A.3)

has the form

p(x) = a0

[
1 0

0 −1

]
+ a1

[
0 0

1 0

]
+a2

[
0 1

0 0

]
+a3

[
0 x

0 0

]
+a4

[
x −y
0 −x

]
+ a5

[
−y 0

−x y

]
+ a6

[
0 0

y 0

]
.

By the constraint in (A.3), we can know the values of a0, a1 and a2 and we rewrite the

polynomial p(x) as

p(x) =

[
g00(xK0

) g01(xK0
)

g10(xK0
) g11(xK0

)

]
+a3

[
0 x− xK0

0 0

]
+ a4

[
x− xK0

−y + yK0

0 −x+ xK0

]
+a5

[
−y + yK0

0

−x+ xK0 y − yK0

]
+ a6

[
0 0

y − yK0 0

]
,

where xKi
= (xKi

, yKi
)(0 ≤ i ≤ 3). Thus the problem (A.3) is equivalent to

arg min
a3,a4,a5,a6∈R

3∑
i=1

∥∥∥∥a3

[
0 xKi − xK0

0 0

]
+ a4

[
xKi − xK0 −yKi + yK0

0 −xKi
+ xK0

]
+a5

[
−yKi

+ yK0
0

−xKi + xK0 yKi − yK0

]
+ a6

[
0 0

yKi − yK0 0

]
−
[
g00(xKi

)− g00(xK0
) g01(xKi

)− g01(xK0
)

g10(xKi
)− g10(xK0

) g11(xKi
)− g11(xK0

)

] ∥∥∥∥2

l2×l2
. (A.4)

The solution to (A.4) reads


a3

a4

a5

a6

 = (ATA)−1AT



2(g00(xK1)− g00(xK0))

g01(xK1
)− g01(xK0

)

g10(xK1
)− g10(xK0

)

· · ·
2(g00(xK3)− g00(xK0))

g01(xK3
)− g01(xK0

)

g10(xK3
)− g10(xK0

)


,

where

A =



0 2(xK1 − xK0) −2(yK1 − yK0) 0

xK1
− xK0

−yK1
+ yK0

0 0

0 0 −xK1
+ xK0

yK1
− yK0

· · · · · · · · · · · ·
0 2(xK3 − xK0) −2(yK3 − yK0) 0

xK3
− xK0

−yK3
+ yK0

0 0

0 0 −xK3
+ xK0

yK3
− yK0


.

By rearrangement, we can obtain the solution to (A.3), which takes the form

a0

a1

a2

a3

a4

a5

a6


=

[
I3×3 0

−MI9×3 M

]


g00(xK0)

g01(xK0
)

g10(xK0
)

· · ·
g00(xK3)

g01(xK3
)

g10(xK3
)


, M = (ATA)−1AT



2 0 0 0 0 0

0 I2×2 0 0 0 0

0 0 2 0 0 0

0 0 0 I2×2 0 0

0 0 0 0 2 0

0 0 0 0 0 I2×2


,
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where I2×2 and I3×3 are 2×2 identity matrix and 3×3 identity matrix and I9×3 = (I3×3, I3×3,

I3×3)T . We note that the collocation points in I(K) totally determine the matrix M , and by

the expansion (3.11), the coefficient matrix[
I3×3 0

−MI9×3 M

]
(A.5)

actually contains all information of the basis functions λ̂
j,k

Ki
(0 ≤ i ≤ 3, 1 ≤ j, k ≤ 2, j + k < 4)

on the element K0. Then we can use the coefficient matrix (A.5) on each element to represent

the reconstructed space I1
h. For the spaces U1

h and S1
h, their constructions are very similar. In

addition, such a computer implementation can be easily adapted to three dimensions and the

case when higher-order accuracy is considered.
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