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1 Department of Mathematical Sciences, Lakehead University, 955 Oliver Road,
Thunder Bay, Ontario P7B 5E1, Canada.

2 Department of Computer Science, Purdue University, 250 N. University Street,
West Lafayette, IN 47907, USA.

3 Institute of Mathematics, Academy of Sciences, Žitná 25, CZ-115 67, Prague 1,
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Abstract. In this paper, we are concerned with the numerical approximation of
a steady-state heat radiation problem with a nonlinear Stefan-Boltzmann bound-
ary condition in R

3. We first derive an equivalent minimization problem and then
present a finite element analysis to the solution of such a minimization problem.
Moreover, we apply the Newton iterative method for solving the nonlinear equa-
tion resulting from the minimization problem. A numerical example is given to
illustrate theoretical results.
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1 Introduction

The main purpose of this paper is to study a finite element approximation to the so-
lution of the steady-state heat radiation problem with a nonlinear Stefan-Boltzmann
boundary condition in R3. In particular, we assume that Ω is a bounded domain in
R3 with Lipschitz continuous boundary Γ. Let ν be the outward unit normal to Γ.
Consider the following stationary heat conduction equation

−div(A∇u) = f in Ω, (1.1)
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with mixed Dirichlet-radiation boundary conditions

u = ū on Γ1,
αu + νT A∇u + βu4 = g on Γ2,

(1.2)

where A is a diagonal uniformly positive definite 3 × 3 matrix of heat conductivities,
f ≥ 0 is the density of body heat sources and u ≥ 0 is the temperature of the body
to be determined. Moreover, Γ1 and Γ2 are non-empty disjoint sets relatively open in
Γ and satisfying Γ = Γ1 ∪ Γ2, α ≥ 0 is the heat transfer coefficient, β = σ fem with the
Stefan-Boltzmann constant σ = 5.669 × 10−8 [Wm−2K−4] and the relative emissivity
function 0 ≤ fem ≤ 1, ū ≥ 0 is the prescribed temperature, and g ≥ 0 is the density of
surface heat sources.

Because they are of practical importance, numerical approximations of similar heat
radiation problems have been extensively studied (see, e.g., [5, 7, 9, 10, 14]). The case
Γ1 = ∅ in R2 is investigated in [8]. It is well known that the traces of the variational so-
lution of (1.1) and (1.2) belong to the Lebesgue space L5(∂Ω) due to the nonlinearity in
the Stefan-Boltzmann boundary condition. In the two-dimensional case, we may seek
the variational solution of (1.1) and (1.2) in the Sobolev space H1(Ω) whose functions
have traces in L5(∂Ω) by the trace theorem (cf. [8, 9]). However, it is no longer true in
the three-dimensional case. Taking this into account, we may define a new function
space in which the variational solution of (1.1) and (1.2) uniquely exists. Such a func-
tion space is also used to find the minimizing element of the minimization problem
in [5], where only axially symmetric domains are treated (see also [13]). In [11,12], the
three-dimensional heat radiation problem is solved on arbitrary geometries by means
of a Fredholm boundary integral equation and the boundary element method. An-
other approach, how to avoid the problem with traces in three-dimensions, is to use a
discontinuous Galerkin method from [15].

The paper is organized as follows. In Section 2, we derive a variational formulation
of the heat radiation problem. Section 3 is devoted to an analysis of the finite element
approximation to the solution of the minimization problem and a discussion of the
Newton iterative method for the nonlinear equation arising from the minimization
problem. In Section 4 we present a numerical example to illustrate the theoretical
analysis.

2 Variational formulation of the radiation problem

Assume that ai ∈ L∞(Ω), i = 1, 2, 3, f ∈ L2(Ω), g ∈ L2(Γ2), ū ∈ H1(Ω) and ū|Γ ∈
L5(Γ2), α, β ∈ L∞(Γ2) and β ≥ β0 a.e. for some positive constant β0. For simplicity, we
denote by ‖ · ‖k the norm ‖ · ‖Hk(Ω) for integer k ≥ 0. Also, for a relatively open subset
D in Γ, we denote by ‖ · ‖q,D the norm ‖ · ‖Lq(D) for q ≥ 1.

We next define a bilinear form on H1(Ω) × H1(Ω) by

a(v, w) :=
∫

Ω

(∇v)T A∇w dx +
∫

Γ2

αvw ds, v, w ∈ H1(Ω), (2.1)
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and a linear functional on L2(Ω) by

F(v) :=
∫

Ω

f v dx +
∫

Γ2

gv ds, v ∈ L2(Ω). (2.2)

Consider the following functional of potential energy

J(v) :=
1

2
a(v + ū, v + ū) +

1

5

∫

Γ2

β|v + ū|5 ds − F(v + ū). (2.3)

Note that by the trace theorem (cf. [1], p. 234) in the three-dimensional space we
only have that v|Γ ∈ L4(Γ) for any v ∈ H1(Ω), whereas in two-dimensional space
v|Γ ∈ Lp(Γ) for all p ∈ [1, ∞). To ensure the functional J is well-defined in three
dimensions, we introduce the space V by setting

V :=
{

v ∈ H1(Ω) : v|Γ2
∈ L5(Γ2)

}

. (2.4)

Let us equip V with the norm ‖ · ‖V defined by

‖v‖V := ‖v‖1 + ‖v‖5,Γ2
, v ∈ V. (2.5)

It is shown in [5, 9] that V is a reflexive Banach space. According to the definitions of
the first and second Gâteaux derivatives of J, namely,

J′(z; v) := lim
t→0

1

t

[

J(z + tv) − J(z)
]

, v, z ∈ V,

and

J′′(z; v, w) = lim
t→0

1

t

[

J′(z + tw; v) − J′(z; v)
]

, v, w, z ∈ V,

it can be easily verified that

J′(z; v) = a(z + ū, v) +
∫

Γ2

β|z + ū|3(z + ū)v ds − F(v), v, z ∈ V, (2.6)

and

J′′(z; v, w) = a(w, v) + 4
∫

Γ2

β|z + ū|3wv ds, v, w, z ∈ V. (2.7)

We next formulate a variational analogue of (1.1) and (1.2). To this end, we define
a linear subspace V0 of V by

V0 := {v ∈ V : v|Γ1
= 0}. (2.8)

By Friedrichs’ inequality there exists a positive constant c such that for all v ∈ V0,

a(v, v) ≥ c‖v‖2
1. (2.9)

Consider the following minimization problem: Find an element u ∈ V0 such that

J(u) = inf
v∈V0

J(v). (2.10)
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Theorem 2.1. The functional J is continuous on V and strictly convex on V0. Moreover, the
functional J is coercive on V0, that is,

J(v) → ∞ as ‖v‖V → ∞.

Therefore, the minimization problem (2.10) has a unique solution u ∈ V0. Furthermore, we
have that u + ū ≥ 0 a.e. on Ω.

Proof. By a direct computation, we find that J is continuous on V. From (2.7) and
(2.9) it follows that for any v, z ∈ V0,

J′′(z; v, v) ≥ c‖v‖2
1 + 4

∫

Γ2

β|z + ū|3v2 ds ≥ 0.

By the trace theorem, ‖v‖1 = 0 implies v = 0 almost everywhere on Γ for v ∈ H1(Ω).
This means that J′′(z; v, v) = 0 if and only if ‖v‖V = 0 for v, z ∈ V0. Thus, J is strictly
convex on V0. By (2.3) and (2.9), we have that there exist two positive constants c1 and
c2 such that for any v ∈ V0,

J(v) ≥ c1(‖v‖2
1 + ‖v‖2

5,Γ2
)− c2(‖v‖1 + ‖ū‖1),

which implies that J(v) → ∞ as ‖v‖V → ∞, namely, J is coercive on V0. Summarizing
the above properties of J, we conclude that (2.10) has a unique solution u ∈ V0 (cf. [6],
p. 35).

We next prove u + ū ≥ 0 a.e. on Ω. For this we introduce a function

ũ(x) := max{u(x),−ū(x)}, x ∈ Ω ∪ Γ2.

It is well known that |v| ∈ H1(Ω), when v ∈ H1(Ω). Using the equality

max(u,−ū) =
1

2
(u − ū + |u + ū|),

we find that ũ ∈ H1(Ω). Since ū ∈ V and u ∈ V0, it follows that ũ ∈ V. We also
observe that ũ has a zero trace on Γ1 due to the fact that u = u on Γ1. Now it is easily
seen that ũ ∈ V0.

Moreover, for any x ∈ Ω ∪ Γ2 we have

ũ(x) + ū(x) =

{

0 if u(x) ≤ −ū(x),
u(x) + ū(x) if u(x) > −ū(x).

Recalling that α ≥ 0, β > 0, and A is a diagonal and uniformly positive matrix, we
have that

a(ũ + ū, ũ + ū) ≤ a(u + ū, u + ū), (2.11)

and
∫

Γ2

β|ũ + ū|5 ds ≤
∫

Γ2

β|u + ū|5 ds. (2.12)
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Also, since f ≥ 0 and g ≥ 0, it follows from (2.2) that F(ũ) ≥ F(u). Combining
this with (2.11) and (2.12) yields that J(ũ) ≤ J(u). This implies that ũ = u. By the
definition of ũ, we confirm that u + ū ≥ 0, which completes the proof. �

The following result establishing a variational equality for solving the minimiza-
tion problem (2.10) can be found in [5, 9].

Remark 2.2 The solution u of (2.10) is characterized by the following variational
equation

J′(u; v) = 0 for all v ∈ V0. (2.13)

Remark 2.3 Applying Remark 2.2 we can show that the solution of the minimiza-
tion problem (2.10) is “equivalent” to the solution of the radiation problem.

To see this, assume that u ∈ V0 is sufficiently smooth such that u + ū satisfies
the heat conduction equation (1.1) with boundary conditions (1.2). Then u is also the
solution of minimization problem (2.10). Indeed, if a smooth u ∈ V is the solution of
(1.1) with mixed boundary conditions (1.2), then by Green’s theorem we have that for
any v ∈ C∞(Ω),

0 =
∫

Ω

[div(A∇u) + f ]v dx =
∫

Ω

[−(∇u)T A∇v + f v] dx +
∫

Γ

(νT A∇u)v ds. (2.14)

Since C∞(Ω) is dense in V, (2.14) holds for any v ∈ V. Using (1.2), we have that u is
the solution of variational equation (2.13). That is, u is the solution of minimization
problem (2.10).

Conversely, let u ∈ V0 be a sufficiently smooth solution of (2.10). Then u + ū
satisfies (1.1) and (1.2) by a standard argumentation (cf. [3], p. 125).

3 Finite element approximation

In this section, we are concerned with finding a finite element approximation to the
solution of the minimization problem (2.10) and then determining the numerical solu-
tion of (2.10) by using the Newton iterative method.

Let Ω be a bounded polyhedral domain with Lipschitz boundary. Let Th be a
standard face-to-face partition of Ω into tetrahedral elements and let {V0

h }h→0 be a
sequence of finite-dimensional subspaces of V0 on Ω associated with Th. We assume
that V0

h satisfies the approximation hypothesis:

For every v ∈ V0 there exists vh ∈ V0
h such that

‖v − vh‖V → 0 as h → 0. (H)

Consider the discretized minimization problem: Find an element uh ∈ V0
h such that

J(uh) = inf
vh∈V0

h

J(vh). (3.1)
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Following an argument similar to the proof of Theorem 2.1 and Remark 2.2, we have
that minimization problem (3.1) has a unique solution uh ∈ V0

h , which is completely
characterized by the variational equation

J′(uh; vh) = 0 for all vh ∈ V0
h . (3.2)

The next theorem shows the solution uh of the discretized minimization problem (3.1)
converges to the solution of the minimization problem (2.10) in V.

Theorem 3.1. Assume that {V0
h }h→0 satisfies hypothesis (H). Let u and uh be the solutions

of (2.10) and (3.1), respectively. Then

‖u − uh‖V → 0 as h → 0. (3.3)

Proof. Recall that V0
h ⊂ V0. It follows from (2.13) and (3.2) that for any vh ∈ V0

h ,

J′(u; uh − vh) − J′(vh; uh − vh) = J′(uh; uh − vh) − J′(vh; uh − vh). (3.4)

For notational convenience we let

b(u, v, w) :=
∫

Γ2

β
[

|u + ū|3(u + ū) − |v + ū|3(v + ū)
]

w ds, u, v, w ∈ V. (3.5)

It is shown in [5] that for all u, v ∈ V,

∣

∣|u|3u − |v|3v
∣

∣ ≤ |u − v|
[

|u|3 + |v|(|u| + |v|)2
]

≤ |u − v|(|u| + |v|)3,

and

8
∫

D′

[

|u|3u − |v|3v
]

(u − v) ds ≥
∫

D′
|u − v|5 ds,

where D′ is an arbitrary relatively open subset of Γ. Thus, we have

|b(u, vh, uh − vh)| =
∣

∣

∣

∫

Γ2

β
[

|u + ū|3(u + ū)− |vh + ū|3(vh + ū)
]

(uh − vh) ds
∣

∣

∣

≤ β
∫

Γ2

|(u + ū) − (vh + ū)|(|u + ū|+ |vh + ū|)3|uh − vh| ds

≤ β

∫

Γ2

|u − vh||uh − vh|(|u| + |vh|+ 2|ū|)3 ds, (3.6)

and

b(uh, vh, uh − vh) ≥ c1‖uh − vh‖
5
5,Γ2

, (3.7)

where c1 is a positive constant. Combining (3.7) with (2.6) and (2.9), we obtain that

J′(uh; uh − vh) − J′(vh; uh − vh) = a(uh − vh, uh − vh) + b(uh, vh, uh − vh)

≥ c2(‖uh − vh‖
2
1 + ‖uh − vh‖

5
5,Γ2

), (3.8)
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where c2 is a positive constant. For the left-hand term of (3.4), it is easily seen from
(2.6) that

J′(u; uh − vh) − J′(vh; uh − vh) = a(u − vh, uh − vh) + b(u, vh, uh − vh). (3.9)

Using the Hölder inequality and the trace theorem, we have

|a(u − vh, uh − vh)|

≤ c3(‖∇(u − vh)‖0‖∇(uh − vh)‖0 + ‖u − vh‖2,Γ2
‖uh − vh‖2,Γ2

)

≤ c4‖u − vh‖1‖uh − vh‖1, (3.10)

where c3 and c4 are positive constants, and by (3.6),

|b(u, vh, uh − vh)|

≤ c5‖u − vh‖5,Γ2
‖uh − vh‖5,Γ2

‖(|u| + |vh|+ 2|ū|)3‖5/3,Γ2

≤ c6‖u − vh‖5,Γ2
‖uh − vh‖5,Γ2

(‖u‖5,Γ2
+ ‖vh‖5,Γ2

+ ‖ū‖5,Γ2
)3, (3.11)

where c5 and c6 are positive constants. Recall that {V0
h }h→0 satisfies the hypothesis.

Therefore, we may choose vh ∈ V0
h such that ‖u − vh‖V → 0 as h → 0. Then there exist

positive constants h0 and C independent of h such that for all h ∈ (0, h0),

(‖u‖5,Γ2
+ ‖vh‖5,Γ2

+ ‖ū‖5,Γ2
)3 ≤ (‖u‖5,Γ2

+ ‖ū‖5,Γ2
+ 1)3 ≤ C. (3.12)

From (3.8), (3.4) and (3.9)–(3.12) we conclude that

‖uh − vh‖
2
1 + ‖uh − vh‖

5
5,Γ2

≤ c7(‖u − vh‖1‖uh − vh‖1 + ‖u − vh‖5,Γ2
‖uh − vh‖5,Γ2

), (3.13)

where c7 is a positive constant. For simplicity, set

γ := max{‖u − vh‖1, ‖u − vh‖5,Γ2
} and λ := ‖uh − vh‖1 + ‖uh − vh‖5,Γ2

.

When ‖uh − vh‖1 ≤ ‖uh − vh‖5,Γ2
, we have

λ5 ≤ 32‖uh − vh‖
5
5,Γ2

.

On the other hand, when ‖uh − vh‖1 > ‖uh − vh‖5,Γ2
, we have

λ2 ≤ 4‖uh − vh‖
2
1.

This implies
min{λ2, λ5} ≤ 32(‖uh − vh‖

2
1 + ‖uh − vh‖

5
5,Γ2

). (3.14)

From (3.13) and (3.14) it follows that

min{λ2, λ5} ≤ c8γλ, (3.15)
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where c8 is a positive constant. Note that there exists a positive constant h1 < h0 such
that for all h ∈ (0, h1) we have c8γ < 1. Combining this with (3.15) yields λ ≤ c9γ1/4

for all h ∈ (0, h1), where c9 is a positive constant. Therefore, we have for all h ∈ (0, h1),

‖u − uh‖V ≤ 2γ + λ ≤ c10(γ + γ1/4), (3.16)

where c10 is a positive constant. Recall that γ → 0 as h → 0. By (3.16), we confirm the
result of the theorem. �

We next derive an error estimate for u − uh in V under further assumptions on
V0

h . To this end, assume that V0
h ⊂ H7/6(Ω) ∩ V0. Denote by Ih a standard linear

interpolation operator from C(Ω) ∩ V0 to V0
h . Let k be an integer greater than one. We

further assume that the following estimate holds for any v ∈ Hk(Ω) ∩ V0,

‖v − Ihv‖s ≤ chk−s‖v‖k , s ∈ [1, 7/6]. (3.17)

where c is a positive constant. Hence, we obtain the following estimate of ‖u − uh‖V .

Theorem 3.2. Assume that ū ∈ H1(Ω) and ū|Γ2
∈ L6(Γ2). Let u and uh be the solutions

of (2.10) and (3.1), respectively. Suppose that k is an integer greater than one and that (3.17)
holds. If u ∈ Hk(Ω) then there exists a positive constant c independent of h such that

‖u − uh‖V ≤ ch2(k−1)/5 as h → 0. (3.18)

Proof. We will use some results from the proof of Theorem 3.1. By (3.5) and (3.6) it
follows that for any vh ∈ V0

h ,

|b(u, vh, uh − vh)|

≤ c1‖u − vh‖4,Γ2
‖uh − vh‖4,Γ2

‖(|u| + |vh|+ 2|ū|)3‖2,Γ2

≤ c2‖u − vh‖1‖uh − vh‖1(‖u‖6,Γ2
+ ‖vh‖6,Γ2

+ ‖ū‖6,Γ2
)3, (3.19)

where c1 and c2 are positive constants. By the Sobolev imbedding theorem u ∈ H2(Ω)
is continuous. Let vh = Ihu. By the trace theorem and (3.17), we have that there exist
positive constants h0 and C′ independent of h such that for all h ∈ (0, h2),

(‖u‖6,Γ2
+ ‖vh‖6,Γ2

+ ‖ū‖6,Γ2
)3 ≤ c(‖u‖7/6 + ‖u − vh‖7/6 + ‖ū‖6,Γ2

)3 ≤ C′. (3.20)

From (3.4), (3.8), (3.9), (3.10), (3.19), and (3.20) we conclude that

‖uh − vh‖
2
1 + ‖uh − vh‖

5
5,Γ2

≤ c‖u − vh‖1‖uh − vh‖1. (3.21)

This implies that

‖uh − vh‖1 ≤ c‖u − vh‖1 and ‖uh − vh‖
5
5,Γ2

≤ c‖u − vh‖
2
1. (3.22)

Again, by the trace theorem and (3.17), we have that

‖u − vh‖1 + ‖u − vh‖5,Γ2
≤ c(‖u − vh‖1 + ‖u − vh‖11/10) ≤ chk−11/10.
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Combining this with (3.22) and (3.17) proves estimate (3.18). �

We point out that the spaces V0
h may be obtained by using the construction of finite

elements developed in [4]. Following an argument on the regularity of partitions of Ω

in [2], estimate (3.17) is satisfied.
Now let us turn our attention to the Newton iterative method for solving the non-

linear equation (3.2). Choosing an initial guess uh,0 ∈ V0
h , the Newton iterative method

for (3.2) is to find uh,n+1 ∈ V0
h , n ≥ 0, such that

J′′(uh,n; vh, uh,n+1 − uh,n) = −J′(uh,n; vh) for all vh ∈ V0
h , (3.23)

where J′ and J′′ are given by (2.6) and (2.7), respectively. In order to show that (3.23)
is uniquely solvable, we define the functional Ln on V for a given uh,n by

Ln(v) :=
1

2
a(v + ū, v + ū) +

∫

Γ2

β|uh,n + ū|3(2v − 3uh,n + ū)v ds

−F(v + ū), v ∈ V. (3.24)

By a simple calculation, we obtain the first and second Gâteaux derivatives of Ln,
respectively, given by

L′
n(z; v) = a(z + ū, v) +

∫

Γ2

β|uh,n + ū|3(4z − 3uh,n + ū)v ds

−F(v), v, z ∈ V, (3.25)

and

L′′
n(z; v, w) = a(w, v) + 4

∫

Γ2

β|uh,n + ū|3wv ds, v, w, z ∈ V. (3.26)

Lemma 3.1. The functional Ln defined by (3.24) is continuous on V, strictly convex on V0,
and coercive on V0

h .

Proof. By the argument similar to the proof of Theorem 2.1, we have that Ln is
continuous on V and strictly convex on V0. We next prove that Ln is coercive on V0

h . It
follows from (2.9) and (3.24) that for any v ∈ V0

h ,

Ln(v) ≥ c′1‖v‖2
1 − c′2(‖uh,n‖5,Γ2

+ ‖ū‖5,Γ2
)5‖v‖5,Γ2

− c′3‖v‖1

≥ c′2‖v‖2
1 − c′4‖v‖V . (3.27)

Notice that the norm ‖v‖V is equivalent to ‖v‖1 in the finite-dimensional space V0
h

when h is fixed, that is, there exist two positive constants C1 and C2 such that for all
v ∈ V0

h ,
C1‖v‖V ≤ ‖v‖1 ≤ C2‖v‖V . (3.28)

Combining this with (3.27) yields

Ln(v) ≥ c′2C2
1‖v‖2

V − c′4‖v‖V .
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This implies that for v ∈ V0
h ,

Ln(v) → ∞ as ‖v‖V → ∞,

which means Ln is coercive on V0
h . This completes the proof. �

The next theorem shows that the iterative solution uh,n+1 of (3.23) uniquely exists
for each n ≥ 0, and converges to the solution uh of (3.1), provided that uh,0 is suf-
ficiently close to uh. To state this result, we denote by en the error ‖uh − uh,n‖V for
n ≥ 0.

Theorem 3.3. Let uh be the solution of (3.1). For every given uh,n ∈ V0
h , n ≥ 0, equation

(3.18) has a unique solution uh,n+1 ∈ V0
h . Furthermore, there exist positive constants δ and c

independent of n such that for every e0 < δ, we have

en+1 ≤ ce2
n. (3.29)

Proof. By Lemma 3.3, the following minimization problem

Ln(wh,n) = inf
vh∈V0

h

Ln(vh) (3.30)

has a unique solution wh,n ∈ V0
h for every given uh,n ∈ V0

h . Following the argument
similar to Remark 2.2, we have that minimization problem (3.30) is completely char-
acterized by the variational equation

L′
n(wh, vh) = 0 for all vh ∈ V0

h , (3.31)

where wh ∈ V0
h is to be determined. It is straightforward to show that

L′
n(wh, vh) = J′′(uh,n; vh, wh,n − uh,n) + J′(uh,n; vh).

Thus, equation (3.23) is equivalent to (3.31), which implies that equation (3.23) has a
unique solution uh,n+1 ∈ V0

h for every given uh,n ∈ V0
h .

For notational convenience, we set

ûh := uh + ū, ûh,n := uh,n + ū,

and
yh,n := |ûh|

3ûh + 3|ûh,n|
3ûh,n − 4|ûh,n|

3ûh.

From (2.6), (2.7), (3.2), and (3.23) it follows that for any vh ∈ V0
h ,

J′′(uh,n; vh, uh,n+1 − uh)

= J′(uh; vh) − J′(uh,n; vh) − J′′(uh,n; vh, uh − uh,n)

=
∫

Γ2

βyh,nvh ds. (3.32)
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Let xh,n := û2
h + 2|ûhûh,n|+ 3û2

h,n. We first prove that

|yh,n| ≤ (ûh − ûh,n)
2xh,n. (3.33)

If ûh > 0 and ûh,n > 0, we have

|yh,n| = |(ûh − ûh,n)
2(û2

h + 2ûhûh,n + 3û2
h,n)| = (ûh − ûh,n)

2xh,n.

If ûh < 0 and ûh,n > 0, we obtain

|yh,n| ≤ û4
h + 3û4

h,n + 8|ûhû3
h,n| + 8û2

hû2
h,n + 4|û3

h ûh,n| = (ûh − ûh,n)
2xh,n.

In other cases, we can obtain estimate (3.33) by a similar argument. Combining (3.32)
with (3.33) verifies that

|J′′(uh,n; vh, uh,n+1 − uh)| ≤
∫

Γ2

β(ûh − ûh,n)
2|vh|xh,n ds

≤ c‖(uh − uh,n)
2xh,n‖5/4,Γ2

‖vh‖5,Γ2

≤ c‖uh − uh,n‖
2
5,Γ2

‖xh,n‖5/2,Γ2
‖vh‖5,Γ2

. (3.34)

Note that

|J′′(uh,n; uh,n+1 − uh, uh,n+1 − uh)| ≥ c‖uh,n+1 − uh‖
2
1 ≥ ce2

n+1.

Choosing vh = uh,n+1 − uh in (3.34), we get that

en+1 ≤ c‖xh,n‖5/2,Γ2
e2

n. (3.35)

It is easy to see that

‖xh,n‖5/2,Γ2
≤ c‖|ûh|+ |ûh,n|‖

2
5,Γ2

≤ c(‖uh‖V + ‖ū‖V + en)
2. (3.36)

We conclude from (3.35) and (3.36) that there exist two positive constants M1 and M2

independent of n such that

en+1 ≤ (M1 + M2e2
n)e2

n. (3.37)

Thus, if we pick δ with (M1 + M2δ2)δ < 1 and e0 < δ, then we have that en+1 ≤ en <

δ, n ≥ 0, by an induction on n. Therefore, we obtain that for any n ≥ 0,

en+1 ≤ (M1 + M2δ2)e2
n,

which confirms estimate (3.29). �
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4 Numerical examples

In this section, we report results of numerical experiments to illustrate the theoretical
investigations in the previous section.

The numerical experiments were carried out for heat radiation problem (1.1) and
(1.2) on the cube Ω = (0, 1)3. The two parts Γ1 and Γ2 of Γ are given, respectively, by

Γ2 = {(x1, x2, x3) : x3 = 1 and 0 ≤ x1, x2 ≤ 1} and Γ1 = Γ\Γ2.

We choose the matrix A = diag{60, 60, 60} and the parameters α = 90, β = 0.75 ×
5.669 × 10−8 and the right-hand terms

f (x1, x2, x3) = 36000π2x3 sin πx1 sin πx2, ū(x1, x2, x3) = 300,

and

g(x1, x2, x3) = 27000 + 45000 sin πx1 sin πx2 + 344.39175(1 + sin πx1 sin πx2)
4.

Thus, the exact solution of (1.1) and (1.2) is

ū(x1, x2, x3) = 300(1 + x3 sin πx1 sin πx2).

The cube Ω is first divided into N × N × N subcubes along each axis, with each
small cube constructed from six pyramidal elements containing a common vertex at
the centre of each cube (see Figure 1). Each pyramidal element is then subdivided into
four tetrahedra that have a common edge passing through the centre of the square
base.

Figure 1: Partition of a cube into 6 pyramids.

In our examples, N is taken to be 4, 8, 16, 32, 64, and 128, respectively. The cor-
responding mesh size h is proportional to 1/4, 1/8, 1/16, 1/32, 1/64, and 1/128. We
employ piecewise linear polynomials to form approximating subspaces which belong
to C0(Ω). Thus, equation (3.23) is equivalent to a linear system associated with a set
of basis functions. The Gaussian cubature was used for the numerical integration over
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Table 1: Number of iterations and computing time.

N #1∗ #2∗ Time [s]
4 429 4 0.105
8 2969 4 1.145

16 22065 4 13.287
32 170081 4 253.853
64 1335489 4 4754.96

128 10584449 4 133819.00

(#1∗: #1 of unknowns; #2∗: #2 of iterations.)

Table 2: Errors and orders of convergence with k = 2.

N h−1 ‖u − uh‖1
‖u−uh,n+1‖1

‖u−uh,n‖1
‖u − uh‖V

‖u−uh,n+1‖V

‖u−uh,n‖V

4 4 91.1320 - 97.8978 -
8 8 45.6345 1.99700 47.3420 2.06788

16 16 22.8253 1.99929 23.2551 2.03577
32 32 11.4136 1.99983 11.5215 2.01841
64 64 5.70694 1.99996 5.73395 2.00934

128 128 2.85349 1.99999 2.86024 2.00471

the tetrahedral elements and a modified Newton Method was used to solve the non-
linear system. The stopping criterion of Newton iterations is

‖uh,n+1 − uh,n‖E

‖uh,n‖E
< 10−10, (4.1)

where uh,n stands the vector corresponding to uh,n for n ≥ 0 and ‖ · ‖E denotes the
Euclidean norm of the corresponding vector. Also, the initial iteration uh,0 for each h
is chosen to be the solution of linear equation (3.2) with β = 0.

We used a 64-bit, 1300 MHz Itanium 2 Processor sever with a main memory size
of 60.10 GB to carry out the computation. Table 1 shows the number of iterations
and the computing time for the performance of Newton iterations until the stopping
criterion (4.1) is reached. It can be seen from Table 1 that the number of iterations is
independent of the mesh size h.

In Table 2, we list the results on H1-norm and V-norm of the error of the exact
solution u and the approximate solution uh.

We observe that orders of convergence in the numerical experiments are 1 in both
norms. The theoretical result in Theorem 3.2 shows the order of convergence is 2(k −
1)/5 = 0.4 for k = 2 in V-norm. But note that the L5-norm of the error on Γ2, ‖u −
uh‖5,Γ2

= ‖u − uh‖V − ‖u − uh‖1 is much less than H1-norm of the error in Table 2. In
this case we may improve the order of convergence to k − 11/10 = 0.9 by following
an argument similar to the proof of Theorem 3.2, which implies the computed order is
consistent with the theoretical order in V-norm.

Finally, Figure 2 illustrates the numerical solution of (1.1) and (1.2) for h = 1/32.
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Figure 2: Numerical solution for h = 1/32 and (a) x1 = 0.5, (b) x2 = 0.5 and (c) x3 = 0.5.

5 Conclusions

Finite element approximations of an axially symmetric three-dimensional heat radia-
tion problem are studied in [5]. In our paper, we need not assume that Ω is axially
symmetric. Then, however, we encounter some trouble with the definition domain
of the energy functional J. Namely, the traces of functions from the Sobolev space
H1(Ω) are not in L5(∂Ω), in general, since Ω is a three-dimensional bounded domain.
Therefore, we considered a special reflexive Banach subspace V of H1(Ω), where the
energy functional is well defined. We proved that finite element solutions converge
to the true solution u in the norm of V without any additional regularity assump-
tions on u. For a sufficiently smooth solution u, we derived the convergence of order
2(k − 1)/5, where k > 1 is a given integer. Additionally, we introduced a Newton
iterative method for finding finite element approximation of a nonlinear 3D heat ra-
diation problem. Finally, we computed a numerical example with mixed boundary
conditions to illustrate our theoretical results and the efficiency of the Newton itera-
tive method. An open problem is how to modify the presented method to anisotropic
materials, when the matrix A of heat conductivities in not diagonal. In this case we
cannot employ inequality (2.11).
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