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Abstract. In this paper, we consider the class of ordered trees and its two subclasses,
bushes and planted trees, which consist of the ordered trees with root degree at least
2 and with root degree 1 respectively. In these three classes, we study the number of
trees of size n with k protected (resp. unprotected) branches, and the total number of
branches (resp. protected branches, unprotected branches) among all trees of size n.
The explicit formulas as well as the generating functions are obtained. Furthermore,
we find that, in each class, as n goes to infinity, the proportion of protected branches
among all branches in all trees of size n approaches 1/3.
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Key words: ordered tree, bush, planted tree, protected branch, unprotected branch, Catalan num-
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1 Introduction

An ordered tree is defined recursively as having a root and an ordered set of subtrees [14,
21]. We will draw ordered trees with the root on the top level, the root being connected
with the roots of its subtrees by line segments, called edges. The size of a tree is defined to
be the number of edges. For each vertex v, the number of subtrees rooted at v is defined
as the degree of v. In the graph theory, it is also named as outdegree. There are many
different definitions for bush [8,11,12]. In this paper, we use the definition in [8]. A bush
is an ordered tree in which the degree of the root is at least 2, while a planted tree is an
ordered tree with root degree 1. The 14 ordered trees of size 4 are shown in Figure 1, in
which the first 5 trees are planted trees and the remaining 9 trees are bushes.

A vertex of degree zero is called a leaf. A vertex of positive degree is called an internal
node. A protected point is a vertex which is not a leaf and which is not distance 1 from
a leaf. Cheon and Shapiro [5] started the study of protected points in ordered trees, and
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Figure 1: The 14 ordered trees of size 4 in which the last 9 are bushes.
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Figure 2: A planted ordered tree and a bush.

they showed that the average portion of protected points in ordered trees with n edges
approaches 1/6 as n goes to ∞. Since this pioneering paper, a large number of extensions
have been studied [3,4,7,13,15,16]. We will focus on protected branches in ordered trees
in this paper. An internal node of degree at least 2 is called a branch node. A tree with
no branch nodes is called a path. By a branch we mean a path connecting either the root
and a nearest branch node, or two nearest branch nodes, or a leaf and the nearest branch
node. Riordan [18] enumerated the plane trees by number of branches and endpoints.
Deutsch [12] introduced a new decomposition of ordered trees by branches, and using
this decomposition he enumerated the ordered trees with prescribed root degrees, node
degrees, and branch lengths.

We define a protected branch of a ordered tree is a branch which does not contain a
leaf, and an unprotected branch is a branch ending at a leaf. For instance, a planted tree
with 4 protected branches and a bush with 5 protected branches are displayed in Figure
2, in which the dashed branches are all protected branches.

In this paper, we will enumerate the number of ordered trees (resp. bushes, planted
trees) of size n with k protected (resp. unprotected) branches, and the total number of
branches (resp. protected branches, unprotected branches) among all ordered trees (re-
sp. bushes, planted trees) of size n. In Section 2, we compute the numbers of branches
in ordered trees, bushes, and planted trees. In Section 3, the enumerations of protected
branches will be discussed. We will show that, as n goes to infinity, the average propor-
tion of protected branches among all branches of ordered trees (resp. bushes, planted
trees) of size n approaches 1/3. In Section 4, the enumerations of unprotected branches
will be considered. As by-products, we obtain three new combinatorial interpretations
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Figure 3: The decomposition of ordered trees.

for the Catalan numbers. The proofs in this paper are based mainly on functional
equations which are obtained from the symbolic method of Flajolet [14], and alternative
bijective proofs would be of interest.

2 The total number of branches

Let T(t,z) be the generating function of ordered trees of a given size and a given num-
ber of branches, let P(z) be the generating function of all paths, and let H(t,z) be the
generating function of all trees except the planted ones.

Using the decomposition of ordered trees given by Deutsch [12], as shown in Figure
3, we have the following two equations:

H=1+
∞

∑
j=2

tjPjH j, (2.1)

T=1+
∞

∑
j=1

tjPjH j, (2.2)

where P(z)= z
1−z . Hence,

H=1−tPH+(tP+t2P2)H2, (2.3)

and eliminating H and P from Eqs. (2.2) and (2.3), we can obtain

T=1−z+zT+tz(1−T+T2). (2.4)

Proposition 2.1. For n≥ 1, let an denote the number of branches in all ordered trees of size n.
Then

an =
3n2−2n+1

n2+n

(
2n−2

n−1

)
.

Proof. Taking into account that T(1,z)=C(z), by partial differentiation for both sides of
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(2.4) with respect to t gives

an = [zn]
∂T(t,z)

∂t
|t=1

= [zn](1−z)zB(z)C(z)2

=

(
2n−1

n−2

)
+

(
2n−2

n−1

)

=
3n2−2n+1

n2+n

(
2n−2

n−1

)
.

the generating function is (1−z)zB(z)C(z)2=z+3z2+11z3+41z4+154z5+582z6+··· .

Eq. (2.4) is also obtained by Riordan [18] in 1975 by using recurrence relations, he also
showed that

T(t,z)=1+
∞

∑
n=1

n

∑
k=1

(
n−1

k−1

)
mk−1tkzn,

with mk =∑
k
j=0(

k
2j)Cj are Motzkin numbers. From here, we can get that the number of

branches in all ordered trees of size n equals

an =
n

∑
k=1

k

(
n−1

k−1

)
mk−1=

3n2−2n+1

n+1
Cn−1.

This sequence appears as A076540 in the OEIS [20], but we did not find other explicit
interpretations in literatures.

Let an,k denote the number of ordered trees of size n with k branches, then an,k =

(n−1
k−1)mk−1 and the first few rows of the array (an,k)n≥1,k≥1 are

(an,k)n≥1,k≥1=




1 0 0 0 0 0 0 ···
1 1 0 0 0 0 0 ···
1 2 2 0 0 0 0 ···
1 3 6 4 0 0 0 ···
1 4 12 16 9 0 0 ···
1 5 20 40 45 21 0 ···
1 6 30 80 135 126 51 ···
...

...
...

...
...

...
...

. . .




,

which is the sequence A091187 in OEIS [20]. Baril and Kirgizov [1] showed that an,k is
the number of permutations of length n with k pure descents and avoiding all patterns in
{132,213,312}.

Let B(t,z) be the generating function of all bushes according to the number of edges
and the number of branches. It is easy to see that B(t,z)= H(t,z)−1. Hence, from (2.3)
we get

B(t,z)=(tP+t2P2)(B(t,z)+1)2−tP(B(t,z)+1),
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or equivalently

(B(t,z)+1)2tz(1−z+tz)−(B(t,z)+1)(1−z)(1−z+tz)+(1−z)2 =0. (2.5)

If bn,k =[tkzn]B(t,z) denotes the number of all bushes of size n with k branches, then we
have the following array

(bn,k)n≥1,k≥1=




0 0 0 0 0 0 0 0 ···
0 1 0 0 0 0 0 0 ···
0 2 1 0 0 0 0 0 ···
0 3 3 3 0 0 0 0 ···
0 4 6 12 6 0 0 0 ···
0 5 10 30 30 15 0 0 ···
0 6 15 60 90 90 36 0 ···
0 7 21 105 210 315 252 91 ···
...

...
...

...
...

...
...

...
. . .




.

Proposition 2.2. For n≥2, let bn denote the number of branches in all bushes of size n. Then

bn =
9n2−15n+6

n2+n

(
2n−4

n

)
.

Proof. By partial differentiation for both sides of (2.5) with respect to t gives

∂B(t,z)

∂t
|t=1

=(C(z)−z−1)(1−z)B(z)=(zC(z)2−z)(1−z)B(z)=(1−z)zB(z)(C(z)2−1),

where the fact B(1,z)=C(z)−zC(z)−1 is used. Hence

bn = [zn]
∂B(t,z)

∂t
|t=1

= [zn](1−z)zB(z)(C(z)2−1)

=

(
2n−1

n−2

)
+

(
2n−4

n−2

)

=
9n2−15n+6

n2+n

(
2n−4

n

)
.

The generating function is (1−z)zB(z)(C(z)2−1)=2z2+7z3+27z4+104z5+400z6+··· .

The sequence (bn)≥2 in the above proposition equals the sequence obtained by mul-
tiplying the infinite vector (2,3,4,5,···)T on the right of the array (bn,k)n≥2,k≥2. They are
not registered in OEIS.
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Let Q(t,z) be the generating function for the planted trees with respect to the size and
the number of branches, i.e., the coefficient [tkzn]Q(t,z) is the number of planted trees
with n edges and k branches. Since any planted tree is either a path or a path connecting
a bush, we have that Q(t,z)= tP+tPB(t,z). Applying (2.5),

Q(t,z)2(1−z+tz)−Q(t,z)(1−z+tz)+tz=0. (2.6)

Riordan [18] showed that

Q(t,z)=
∞

∑
n=1

n

∑
k=1

(
n−1

k−1

)
rk−1tkzn,

with rk =∑
k
j=0(−1)k−j(k

j)Cj are Riordan numbers (A005043).

If cn,k denotes the number of all planted trees of size n with k branches, then we have
the following array

(cn,k)n≥1,k≥1=




1 0 0 0 0 0 0 ···
1 0 0 0 0 0 0 ···
1 0 1 0 0 0 0 ···
1 0 3 1 0 0 0 ···
1 0 6 4 3 0 0 ···
1 0 10 10 5 6 0 ···
1 0 15 20 45 36 15 ···
...

...
...

...
...

...
...

. . .




.

The reversal array (cn,k)n,n−k≥1 is the sequence A091867.

Proposition 2.3. For n ≥ 1, let cn denote the number of branches in all planted tree of size n.
Then

cn =

(
2n−2

n−1

)
−
(

2n−4

n−2

)
,

and the generating function is (1−z)zB(z)= z+z2+4z3+14z4+50z5+182z6+···.

The sequence (1,4,14,50,182,···) appears as A051924 in the OEIS [20].

3 Number of protected branches

In this section, we will study the number of protected branches in ordered trees, bushes
and planted trees, respectively.
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Figure 4: Marking protected branches.

Theorem 3.1. Let T̄(t,z) be the generating function for the number of ordered trees of size n ac-
cording to the number of protected branches, where z marks edges and t marks protected branches,
and let B̄(t,z) be the analogous generating function of all bushes. Then

B̄=
P2(1+tB̄)2

1−P(1+tB̄)
, (3.1)

T̄=1−z(1−t)+2z(1−t)T̄+tzT̄2, (3.2)

where P(z)= z
1−z .

Proof. For any ordered tree, let j be the degree of the root.
If j = 0, then the tree has no edges, and its contribution to the generating function

T̄(t,z) is 1.
If j = 1, then there is only one path starting from the root, and the path connects

to either the empty tree or a bush. If it is the empty tree, then its contribution to the
generating functions is P. If it is a bush, then its contribution to the generating functions
is tPB̄. Hence, the contribution to the generating function T̄(t,z) is P(1+tB̄).

If j> 1, then there are j paths starting from the root. If there exist i (0≤ i≤ j) paths
connecting bushes, then its contribution to the generating functions is Pjti B̄i. Thus, we

obtain that the contribution of the ordered trees whose root has degree j is Pj ∑
j
i=0(

j
i)t

i B̄i=

Pj(1+tB̄)j. We illustrate the generating functions for small values of j in Figure 4.
Summing over all j≥0, we have

B̄=
∞

∑
j=2

Pj(1+tB̄)j, (3.3)

T̄=1+
∞

∑
j=1

Pj(1+tB̄)j, (3.4)
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where P(z)= z
1−z . Hence, we obtain the equations (3.1) and (3.2).

Proposition 3.1. We have

T̄(t,z)=
1−2z+2tz−

√
1−4z+4z2−4tz2

2tz
,

and the number ān,k of ordered trees of size n with k protected branches is equal to

ān,k =[tkzn]T̄(t,z)=
1

n

n

∑
i=0

i

∑
j=0

(
n

i

)(
i

j

)(
2i− j

n−1

)(
n−i+ j

n−k

)
(−1)n+j−k2j.

Proof. Let y(t,z)= T̄(t,z)−1. Then from (3.2), we have

y= z((t−1)+2(1−t)(y+1)+t(y+1)2).

Using the Lagrange inversion formula [17] we obtain

[zn]y(t,z)=
1

n
[zn−1]

(
(t−1)+2(1−t)(z+1)+t(z+1)2

)n

=
1

n

n

∑
i=0

i

∑
j=0

(
n

i

)(
i

j

)(
2i− j

n−1

)
(−2)j(t−1)n−i+jti−j.

Thus, we have

ān,k =[tkzn]T̄(t,z)= [tkzn]y(t,z)

=
1

n

n

∑
i=0

i

∑
j=0

(
n

i

)(
i

j

)(
2i− j

n−1

)(
n−i+ j

n−k

)
(−1)n+j−k2j.

Remark 3.1. The corresponding triangle formed by the coefficients of T̄(t,z) is

(ān,k)n≥1,k≥0=




1 0 0 0 0 0 ···
2 0 0 0 0 0 ···
4 1 0 0 0 0 ···
8 6 0 0 0 0 ···
16 24 2 0 0 0 ···
32 80 20 0 0 0 ···
64 240 120 5 0 0 ···
...

...
...

...
...

...
. . .




.
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This is denoted by A091894 in OEIS [20], is known as Touchard distribution [19, 22].
From [20], we know that ān,k is the number of ordered trees on n edges with k prolific
edges. A prolific edge is a edge whose child vertex has at least two children. For a given
ordered tree, there is a bijection between the set of protected branches and the set of
prolific edges: the last edge of a protected branch is a prolific edge, and each prolific edge
belongs to only one protected branch. Baril, Kirgizov, and Vajnovszki [2] showed that ān,k

is also the number of length n Catalan words with k descents.

Corollary 3.1. For m≥0, the number of ordered trees of size 2m+1 with m protected branches
equals the mth Catalan number

Cm=
1

m+1

(
2m

m

)
.

Proof. Setting n=2m+1 and k=m.

Proposition 3.2. For n≥3, let ān be the number of protected branches in all ordered trees of size
n. Then

ān =

(
2n−2

n−3

)
.

Proof. Since T̄(1,z)=C(z), by partial differentiation for both sides of (3.2) with respect to
t gives

∂T̄(t,z)

∂t
|t=1=

z(1−2C(z)+C(z)2)

1−2zC(z)
=

z(1−C(z))2

1−2zC(z)
= z3B(z)C(z)4,

and hence

ān =[zn]
∂T̄(t,z)

∂t
|t=1=[zn]z3B(z)C(z)4=

(
2n−2

n−3

)
.

The generating function is z3B(z)C(z)4= z3+6z4+28z5+120z6+495z7+2002z8+··· .

Remark 3.2. The sequence

(ān)n≥3=(1,6,28,120,495,2002,8008,31824,125970,497420,1961256,7726160,··· )

is denoted by A002694 in OEIS [20].

By Propositions 2.1 and 3.4, we know that the proportion of protected branches a-
mong all branches for all ordered trees of size n is equal to

ān

an
=

(2n−2
n−3 )

3n2−2n+1
n2+n

(2n−2
n−1 )

=
(n−2)(n−1)

3n2−2n+1
.

Hence , we have the following result.

Theorem 3.2. The proportion of protected branches among all branches in all ordered trees of size
n approaches 1/3 as n→∞.
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We have the average number of protected branches in all ordered trees of size n is

ān

Cn
=

(2n−2
n−3 )

1
n+1(

2n
n )

∼ n

4
.

This means that, when n is large, for every four new edges, there is about one protected
branch.

Proposition 3.3. For n≥2, the number b̄n,k of bushes of size n with k protected branches
equals

b̄n,k=
1

k+1

n

∑
i=0

(
k+i

i

)(
n−1

i+2k+1

)(
i+2k+2

k

)
.

Proof. By Theorem 3.1, we get

B̄(t,z)=

z2

(1−z)2 (1+tB̄)2

1− z
1−z (1+tB̄)

.

Using the Lagrange inversion formula we know

B̄(t,z)=
∞

∑
m=0

1

m

∞

∑
i=0

(
m+i−1

i

)
∞

∑
j=0

(
2m+i+ j−1

j

)
z2m+i+j

(
2m+i

m−1

)
tm−1.

It follows that

b̄n,k=[zntk]B̄(t,z)=
1

k+1

n

∑
i=0

(
k+i

i

)(
n−1

i+2k+1

)(
i+2k+2

k

)
.

Remark 3.3. Arranging these coefficients in matrix form gives (this array do not appear
in [20])

(b̄n,k)n≥1,k≥0=




0 0 0 0 0 0 0 0 ···
1 0 0 0 0 0 0 0 ···
3 0 0 0 0 0 0 0 ···
7 2 0 0 0 0 0 0 ···

15 13 0 0 0 0 0 0 ···
31 54 5 0 0 0 0 0 ···
63 183 51 0 0 0 0 0 ···

127 552 308 14 0 0 0 0 ···
...

...
...

...
...

...
...

...
. . .




.

Corollary 3.2. For m≥1, the number of bushes of size 2m having m−1 protected branches equals
the mth Catalan number Cm= 1

m+1(
2m
m ).
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Proof. Setting n=2m and k=m−1.

Proposition 3.4. For n≥ 4, let b̄n be the number of protected branches in all bushes of size n.
Then

b̄n =
3n−2

n+1

(
2n−4

n

)
.

Proof. Differentiating both sides of Eq. (2.6) with respect to t and taking into account that
B̄(1,z)=C(z)−zC(z)−1 leads to

∂B̄(t,z)

∂t
|t=1=

2z4C(z)5−z5C(z)6

1−2zC(z)
=2z4B(z)C(z)5−z5B(z)C(z)6.

Thus, we can obtain

b̄n =[zn]
∂B̄(t,z)

∂t
|t=1=[zn](2z4B(z)C(z)5−z5B(z)C(z)6)=

3n−2

n+1

(
2n−4

n

)
,

and the generating function

2z4B(z)C(z)5−z5B(z)C(z)6=2z4+13z5+64z6+285z7+··· .

Remark 3.4. The sequence

(b̄n)n≥4=(2,13,64,285,1210,5005,20384,82212,329460,1314610,.. . ),

is denoted by A127531 in OEIS [20].

By Propositions 2.2 and 3.4,

b̄n

bn
=

3n−2
n+1 (

2n−4
n )

9n2−15n+6
n2+n

(2n−4
n )

=
n(3n−2)

9n2−15n+6
.

Hence , we have the following result.

Theorem 3.3. The proportion of protected branches among all branches for all bushes of size n
approaches 1/3 as n→∞.

By Propositions 2.2 and 3.4, we have average number of protected branches in all
bushes of size n is

b̄n

Cn−Cn−1
=

3n−2
n+1 (

2n−4
n )

3
n+1(

2n−2
n )

∼ n

4
.

Informally, when n is large, for every four new edges, there is about one protected branch.
Let Q̄(t,z) be the generating function for the planted trees with respect to the size

and the number of protected branches, i.e., the coefficient [tkzn]Q(t,z) is the number of
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planted trees with n edges and k protected branches. Since any planted tree is either a
path or a path connecting a bush, we have that Q̄(t,z)=P+tPB̄(t,z). Applying (3.1),

Q̄(t,z)2(1−z+tz)−Q̄(t,z)+z=0. (3.5)

If c̄n,k denotes the number of all planted trees of size n with k protected branches, then

c̄n,k=
1

n+1

(
n+1

k

)n−2k

∑
j=0

(
k+ j−1

k−1

)(
n+1−k

n−2k− j

)
,

and we get the following array (A091156).

(c̄n,k)n≥1,k≥0=




1 0 0 0 0 0 0 ···
1 0 0 0 0 0 0 ···
1 1 0 0 0 0 0 ···
1 4 0 0 0 0 0 ···
1 11 2 0 0 0 0 ···
1 26 15 0 0 0 0 ···
1 57 69 5 0 0 0 ···
...

...
...

...
...

...
...

. . .




.

Corollary 3.3. Planted trees of size 2m+1 with m protected branches are enumerated by the mth
Catalan number Cm= 1

m+1(
2m
m ).

Proposition 3.5. For n ≥ 3, let c̄n be the number of protected branches in all planted trees of
size n. Then c̄n =(2n−4

n−3 ), and the generating function is z3B(z)C(z)2 = z3+4z4+15z5+56z6+

210z7+792z8+3003z9+··· (A001791).

By Propositions 2.3 and 3.5,

c̄n

cn
=

(2n−4
n−3 )

(2n−2
n−1 )−(2n−4

n−2 )
=

n−2

3n−5
,

c̄n

Cn−1
=

(2n−4
n−3 )

1
n (

2n−2
n−1 )

=
n−2

2n(2n−3)
∼ n

4
.

Hence, we can conclude the following results.

Theorem 3.4. The proportion of protected branches among all branches for all planted trees of size
n approaches 1/3 as n→∞, and the average number of protected branches (=number of protected
branches per planted tree ) is about n

4 .
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4 Number of unprotected branches

In this section, we will study the number of unprotected branches. Let T̃(t,z) be the
generating function for the number of ordered trees of size n according to the number
of unprotected branches, where z marks edges and t marks unprotected branches, and
let B̃(t,z) be the analogous generating function of all bushes. By a similar argument to
Theorem 3.1, we can obtain

B̃=
∞

∑
j=2

Pj(t+ B̃)j, (4.1)

T̃= 1+
∞

∑
j=1

Pj(t+ B̃)j, (4.2)

where P(z)= z
1−z . Thus, we can get,

B̃=
P2(t+ B̃)2

1−P(t+ B̃)
, (4.3)

T̃= 1+tzT̃+zT̃(T̃−1). (4.4)

By (4.4), we know the number ãn,k of ordered trees of size n having k unprotected branch-
es is equal to

ãn,k =
1

n

(
n

k

)(
n

k−1

)
.

This is the celebrated formula of Narayana number (A001263), which also is the number
of ordered trees with n edges and k leaves [10].

(ãn,k)n≥1,k≥1=




1 0 0 0 0 0 0 ···
1 1 0 0 0 0 0 ···
1 3 1 0 0 0 0 ···
1 6 6 1 0 0 0 ···
1 10 20 10 1 0 0 ···
1 15 50 50 5 1 0 ···
1 21 105 175 105 21 1 ···
...

...
...

...
...

...
...

. . .




.

Proposition 4.1. For n ≥ 1, let ãn be the number of unprotected branches in all ordered trees
of size n. Then ãn =(2n−1

n ), and the generating function is zB(z)C(z)= z+3z2+10z3+35z4+
126z5+462z6+··· .
Proof. Taking into account that T̃(1,z)=C(z), by partial differentiation for both sides of
(3.4) with respect to t gives

∂T̃(t,z)

∂t
|t=1=

zC(z)

1−2zC(z)
= zB(z)C(z).
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This gives us

ãn =[zn]
∂T̃

∂t
|t=1=[zn]zB(z)C(z)=

(
2n−1

n

)
.

Remark 4.1. These numbers appear in OEIS [20] as the sequence A001700.

Since (an)n≥1=(ān)n≥1+(ãn)n≥1, by Proposition 2.1, Theorem 3.2 and Proposition 4.1,
we get the following result.

Corollary 4.1. The proportion of unprotected branches among all branches in all ordered trees of
size n approaches 2/3 as n→∞.

The average number of unprotected branches in all ordered trees of size n is
(2n−1

n )
1

n+1 (
2n
n )
∼ n

2 .

Informally, when n is large, for every two new edges, there is about one protected branch.

Proposition 4.2. For n,k≥2, the number b̃n,k of bushes of size n with k unprotected branches is
given by

b̃n,k=
k−3

∑
i=0

1

k−i−1

(
k−2

i

)(
n−1

2k−i−3

)(
2k−i−2

k−i−2

)
.

Proof. From Eq. (3.3), we get

B̃(t,z)= z

z
(1−z)2 (t+ B̃)2

1− z
1−z (t+ B̃)

.

Thus, by the Lagrange inversion formula we can show that

B̃(t,z)=
∞

∑
m=0

1

m

∞

∑
i=0

(
m+i−1

i

)
∞

∑
j=0

(
2m+i+ j−1

j

)
z2m+i+j

(
2m+i

m−1

)
tm+i+1.

It follows that

b̃n,k=[zntk]B̃(t,z)=
k−3

∑
i=0

1

k−i−1

(
k−2

i

)(
n−1

2k−i−3

)(
2k−i−2

k−i−2

)
.

Remark 4.2. The above array is denoted by A119308 in OEIS [20]. The first few rows and
columns are as follows

(b̃n,k)n≥1,k≥1=




0 0 0 0 0 0 0 ···
0 1 0 0 0 0 0 ···
0 2 1 0 0 0 0 ···
0 3 5 1 0 0 0 ···
0 4 14 9 1 0 0 ···
0 5 30 40 14 1 0 ···
0 6 55 125 90 20 1 ···
...

...
...

...
...

...
...

. . .




.
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Proposition 4.3. For n≥2, let b̃n be the number of unprotected branches in all bushes of size n.
Then

b̃n =
3n−2

n

(
2n−3

n−1

)
.

Proof. Differentiating both sides of Eq. (3.3) with respect to t and taking into account that
B̃(1,z)=C(z)−zC(z)−1 leads to

∂B̃(t,z)

∂t
|t=1=

z2C(z)2+z2C(z)

1−2zC(z)
= z2B(z)C(z)2+z2B(z)C(z).

Hence,

b̃n =[zn]
∂B̃(t,z)

∂t
|t=1=[zn](z2B(z)C(z)2+z2B(z)C(z))=

3n−2

n

(
2n−3

n−1

)

the generating function is

z2B(z)C(z)2+z2B(z)C(z)=2z2+7z3+25z4+91z5+336z6+··· .

Remark 4.3. The sequence of the above numbers

(0,0,2,7,25,91,336,1254,4719,17875,68068,260338,.. . )

is denoted by A097613 in OEIS [20].

Since (bn)n≥1=(b̄n)n≥1+(b̃n)n≥1, by Proposition 2.2, Theorem 3.3 and Proposition 4.3,
we get the following result.

Corollary 4.2. The proportion of unprotected branches among all branches for all bushes of size
n approaches 2/3 as n→∞.

The average number of unprotected branches in all bushes of size n is
3n−2

n (2n−3
n−1 )

3
n+1 (

2n−3
n−1 )

∼ n
2 .

Thus, when n is large, 2 new edges get you about one unprotected branches.

Let Q̃(t,z) be the generating function for the planted trees with respect to the size
and the number of unprotected branches, i.e., the coefficient [tkzn]Q(t,z) is the number of
planted trees with n edges and k unprotected branches. Since any planted tree is either a
path or a path connecting a bush, we have that Q̃(t,z)= tP+PB̃(t,z). Applying (4.3),

Q̃(t,z)2−(1−z+tz)Q̃(t,z)+tz=0. (4.5)
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If c̃n,k denotes the number of all planted trees of size n with k unprotected branches,

then c̃n,k =
1
n (

n
k)(

n−2
k−1), and we have the following modified Narayana array .

(c̃n,k)n≥1,k≥1=




1 0 0 0 0 0 ···
1 0 0 0 0 0 ···
1 1 0 0 0 0 ···
1 3 1 0 0 0 ···
1 6 6 1 0 0 ···
1 10 20 10 1 0 ···
1 15 50 50 5 1 ···
...

...
...

...
...

...
. . .




.

Proposition 4.4. For n≥2, let c̃n be the number of unprotected branches in all planted trees of
size n. Then c̃n=

1
2(

2n−2
n−1 ), and the generating function is zB(z)(1−zC(z))=z+z2+3z3+10z4+

35z5+126z6+··· ( A088218).

Since (cn)n≥1=(c̄n)n≥1+(c̃n)n≥1, by Proposition 2.3, Theorem 3.4 and Proposition 4.4,
we get the following result.

Corollary 4.3. The proportion of unprotected branches among all branches in all planted trees of
size n approaches 2/3 as n→∞.
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