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Abstract. Let G be a finite group and c(G) denote the number of cyclic subgroups of
G. It is known that the minimal value of c on the set of groups of order n, where n is a
positive integer, will occur at the cyclic group Zn. In this paper, for non-cyclic nilpotent
groups G of order n, the lower bounds of c(G) are established.
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1 Introduction

Throughout this paper all groups are finite. For a group G of order n, let c(G) denote the
number of cyclic subgroups of G and d(n) denote the number of divisors of n. A well-
known result on group theory says that a cyclic group of order n has a unique subgroup
of order d, for any divisor of n, so a cyclic group of order n has exactly d(n) (necessarily
cyclic) subgroups. Richard [14] proved that c(G)≥d(n), with equality if and only if G is
a cyclic group. Another basic result of group theory states that c(G)= |G| if and only if G
is an elementary abelian 2-group. Tărnăuceanu [16, 17] described the finite groups with
c(G)= |G|−r (r=1,2). Regarding the results about c(G)= |G|−r. Belshoff, Dillstrom and
Reid [2, 3] established a more remarkable bound. They showed that |G|≤8r. Cocke and
Jensen [4] proved that if G is not a 2-group then |G|≤ 6r. Jafari and Madadi [9] proved
that for any a divisor m of |G|, G has at least d(m) cyclic subgroups whose orders divide

m. Garonzi and Lima [5] studied the function α(G)= c(G)
|G|

. They explored basic properties

of α(G) and pointed out a connection with the probability of commutation.
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Let s(G) denote the number of subgroups of G. It’s well-known that if G is a p-group
of order pn, then s(G)≤ s(Zn

p). Qu [13] proved that if p is odd and G is non-elementary
abelian p-group, then

s(G)≤s(Mp×Zn−3
p ),

where Mp= 〈a,b
∣

∣ap = bp = cp=1,[a,b]= c,[a,c]= [b,c]=1〉. Tărnăuceanu [18] showed that
if G is a non-elementary abelian 2-group of order 2n, then

s(G)≤s(D8×Zn−3
2 ).

Aivazidis and Müller [1] determined the structure of those finite non-cyclic p-groups
whose number of subgroups is minimal. Recently, we [12] generalized the results of
Aivazidis and Müller on all finite non-cyclic nilpotent groups.

In the light of above investigations, it is a natural question that to ask for a given order
which non-cyclic groups have the minimal number of cyclic subgroups. In this paper, this
question is answered among all non-cyclic nilpotent groups. In fact, we obtain the lower
bounds of c(G), where G is a non-cyclic nilpotent of order n. Our main results are the
following theorems.

Theorem 1.1. Let p be a prime, G a non-cyclic p-group of order pn.

(1) If pn =23, then c(G)≥5, with equality if and only if G∼=Q8.

(2) If pn 6= 23, then c(G)≥ (n−1)p+2, with equality if and only if G∼=Zpn−1×Zp, Mpn or
Q16.

Theorem 1.2. Let n=pα1
1 pα2

2 ···pαk

k be a positive integer and s= min{i∈{1,··· ,k}
∣

∣αi>1}, where
p1< p2< ···< pk are distinct primes. Suppose G is a non-cyclic nilpotent group of order n, then
there exists a suitable q∈π(n), such that Q is non-cyclic and ps≤q≤3ps−2, where Q∈Sylq(G).
Furthermore,

(1) If qλ =23, then c(G)≥5·d( n
8 ), with equality if and only if G∼=Q8×Z n

8
.

(2) If qλ 6= 23, then c(G)≥ [(λ−1)q+2]·d( n
qλ ), with equality if and only if G ∼= Zq×Z n

q
,

Mqλ×Z n

qλ
or Q16.

All unexplained notations and terminologies are standard and can be found in [6, 8,
15]. In addition, π(n), the set of the prime divisors of n; Zn, the cyclic group of order n;
Q2n , the generalized quaternion of order 2n; Zn

p , the elementary abelian group of order

pn; Mpλ = 〈a,b
∣

∣apλ−1
=bp=1,ab = a1+pλ−2

〉. A×B means a direct product of A and B.

2 Preliminaries

Lemma 2.1. ([7]) Let p be an odd prime, G a p-group of order pn with exp(G)= pn−α(n≥3). If
α≥1, then ck(G)≡0 mod p, where 2≤ k≤n−α.
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Lemma 2.2. ([15]) Let p be a prime, G a p-group of order pn. If exp(G)= pn−1, then one of the
following statements holds:

(1) G∼=Zpn−1×Zp is abelian of type (pn−1,p).

(2) G∼=Mpn = 〈a,b
∣

∣apn−1
=bp=1,b−1ab= a1+pn−2

〉, n≥3.

(3) G∼=Q2n = 〈a,b
∣

∣a2n−1
=1,b2= a2n−2

,b−1ab= a−1〉, n≥3.

(4) G∼=D2n = 〈a,b
∣

∣a2n−1
=b2=1,b−1ab= a−1〉, n≥3.

(5) G∼=SD2n = 〈a,b
∣

∣a2n−1
=b2=1,b−1ab= a−1+2n−2

〉, n≥4.

Lemma 2.3. Let G be a 2-group of order 2n. If exp(G)= 2n−1, then the following table
holds.

G c(G)
(1) Z2n−2×Z2(n≥2) 2n
(2) M2n(n≥4) 2n
(3) Q2n(n≥3) 2n−2+n
(4) D2n(n≥3) 2n−1+n
(5) SD2n(n≥4) 3·2n−3+n

Proof. (1) Let G= 〈a,b
∣

∣a2n−1
= b2 =1,ab= ba〉. It is easy seen that the subgroups 〈a2i

〉 and

〈a2i
b〉 for all 1≤ i≤n−1, which are all cyclic subgroups of G. Therefore, c(G)=2n.

(2) Let G= 〈a,b
∣

∣a2n−1
=b2=1,b−1ab= a1+2n−2

〉. It is easily seen that

o(akb)= o(ak) for all 1≤ k≤2n−1−1.

Thus, the subgroups

〈a2i
〉 and 〈a2i

b〉 (1≤ i≤n−1)

are all cyclic subgroups of G. Therefore, c(G)=2n.

(3) Let G= 〈a,b
∣

∣a2n−1
=1,b2= a2n−2

,b−1ab= a−1〉. It is easily seen that

o(akb)=4 for all 1≤ k≤2n−1.

Thus, the subgroups

〈a2i
〉, 0≤ i≤n−1 and 〈ajb〉, 1≤ j≤2n−2

are all cyclic subgroups of G. Therefore, c(G)=2n−2+n.

(4) Let G= 〈a,b
∣

∣a2n−1
=b2=1,b−1ab= a−1〉. It is easily seen that

o(ajb)=2 for all 1≤ j≤2n−1.

Thus, the subgroups
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〈a2i
〉, 0≤ i≤n−1 and 〈ajb〉, 1≤ j≤2n−1

are all cyclic subgroups of G. Therefore, c(G)=2n−1+n.

(5) Let G= 〈a,b
∣

∣a2n−1
=b2=1,b−1ab= a−1+2n−2

〉. For any 1≤ k≤2n−1, we have

o(akb)=2 if k is even; o(akb)=4 if k is odd.

Thus, the subgroups

〈a2i
〉(0≤ i≤n−1), 〈a2kb〉(1≤ k≤2n−2) and 〈a2j+1b〉(1≤ j≤2n−3)

are all cyclic subgroups of G. Therefore, c(G)=n+2n−2+2n−3=3·2n−3+n.

Lemma 2.4. ([5])
Let A and B be groups and gcd(|A|,|B|)=1. Then c(A×B)= c(A)·c(B).

Lemma 2.5. ([14]) Let G be a group of order n. Then c(G)≥ d(n), with equality if and only if
G∼=Zn.

Lemma 2.6. Let n= pα1
1 pα2

2 ···pαk

k be a positive integer, then

d(n)=
k

∏
i=1

d(pαi
i )=

k

∏
i=1

(αi+1).

Proof. The proof is straightforward.

Lemma 2.7. Let n= pα1
1 pα2

2 ···pαk

k be a positive integer, then

d(n)= c(Zn)= c(Z
p

αi
i
)·c(Z n

p
αi
i

) for any i∈{1,2,··· ,k}.

Proof. It follows from Lemmas 2.4–2.6.

3 The proof of Theorem 1.1

Theorem 3.1. Let p be an odd prime, G a non-cyclic p-group of order pn. Then c(G)≥ (n−
1)p+2, with equality if and only if G∼=Zpn−1×Zp or Mpn .

Proof. Let p be an odd prime. Given a non-cyclic p-group G, recall that sk(G) is the
number of subgroups of order pk of G. A well-known theorem due to Kulakoff [10]
asserts that

sk(G)≡ p+1 mod (p2)

for all k such that 1≤ k≤n−1. Thus, in particular, c1(G)=s1(G)≥ p+1.
Suppose that exp(G)= pn−α, then α≥1. By Lemma 2.1, we know that

ck(G)≡0 mod (p)
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for all k such that 2≤ k≤n−α. In particular, ck(G)≥ p, and therefore

c(G)=
n−α

∑
k=0

ck(G)= c0(G)+c1(G)+
n−α

∑
k=2

ck(G)

≥ 1+(p+1)+
n−α

∑
k=2

p=(n−α−1)p+(p+1)+1=(n−α)p+2.

So c(G)≥ (n−1)p+2 whenever α=1.

Suppose that α≥2, then G has a maximal subgroup M such that

exp(M)= pn−α= p(n−1)−(α−1).

By induction on α, we get c(M)≥ [(n−1)−1]p+2=(n−2)p+2. Observing

|G|−|M|= pn−pn−1
> pn−1−p= p(pn−2−1)≥ p(pn−α−1).

We can choose p elements of G, say a1,a2 ··· ,ap, such that

a1∈G−M, a2 ∈G−M
⋃

〈a1〉, ··· , ap ∈G−M
p−1
⋃

k=1
〈ak〉.

Since exp(G)= pn−α, we have o(ai)≤ pn−α for any i∈{1,2··· ,p}. So G has at least p cyclic
subgroups 〈ai〉(i=1,2··· ,p), which are not contained in M. So we get

c(G)> c(M)+p≥ (n−2)p+2+p=(n−1)p+2.

This proves the first part of our assertion.

Now, we may assume that n≥3 and c(G)= (n−1)p+2. By the above argument, the
equality implies α=1. So we have G∼=Zpn−1×Zp or Mpn by Lemma 2.2.

In the following, let G = Zpn−1 : Zp ( the implied action of Zp on Zpn−1 may well be
trivial; we only require that G is a split extension ), then sk(G)= p+1, for all 1≤ k≤n−1
by a result of Lindenberg [11]. Applying Lemma 2.1, we get c1(G)= p+1 ck(G)= p for all
2≤ k≤n−1, and thus c(G)=(n−1)p+2. The proof is complete.

Theorem 3.2. Let G be a non-cyclic 2-group of order 2n(n≥3).

(1) If n=3, then c(G)≥5, with equality if and only if G∼=Q8.

(2) If n=4, then c(G)≥8, with equality if and only if G∼=Q16, M16 or Z8×Z2

(3) If n≥5, then c(G)≥2n, with equality if and only if G∼=Z2n−1×Z2 or M2n .



98 Meng W and Lu J / J. Math. Study, 56 (2023), pp. 93-102

Proof. There are 5 groups of order 23, and 14 groups of order 24. We use Magma to obtain
a full list of the isomorphism classes of groups in each case, and ask Magma for the total
number of cyclic subgroups of each group in the list. Our claim for n=3 and n=4 is now
a simple matter of inspection.

In the following, we can assume that n≥5 and exp(G)=2n−α. Since G is non-cyclic,
then α≥1. If α=1, then c(G)≥2n in Lemma 2.3.

Suppose that α≥2. Then G has a maximal subgroup M such that

exp(M)=2n−α=2(n−1)−(α−1).

By induction on α, we have c(M)≥2(n−1). Observing

|G|−|M|=2n−2n−1=2n−1
>2(2n−2−1)≥2(2n−α−1).

We can choose two elements a1,a2∈G such that

a1 ∈G−M, a2 ∈G−M
⋃

〈a1〉.

Since exp(G)= 2n−α, we get o(ai)≤ 2n−α for any i∈{1,2}. Thus we find there at least 2
cyclic subgroups of G, say 〈a1〉 and 〈a2〉, which are not contained in M. So we get

c(G)≥ c(M)+2≥2(n−1)+2=2n.

Furthermore, we can get that c(G)=2n if and only if G∼=Z2n−1×Z2 or M2n by the above
arguments and Lemma 2.3. The proof is complete.

Now Theorem 1.1 follows from Theorems 3.1 and 3.2.

4 The proof of Theorem 1.2

In this section, let n= pα1
1 pα2

2 ···pαk

k be a positive integer and

Ω={i∈{1,··· ,k}
∣

∣αi >1},

where p1 < p2 < ···< pk are distinct primes. Suppose that G is a finite group with the
second minimal value of c on the set of nilpotent groups of order n, we know that G is a
non-cyclic nilpotent group by Lemma 2.5.

Let G=P1×P2×···×Pk, where Pi∈Sylpi
(G)(i=1,··· ,k). By Lemma 2.4, we have

c(G)= c(P1)·c(P2)···c(Pk).

Proposition 4.1. G has a unique non-cyclic Sylow subgroup.
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Proof. Since G is non-cyclic, there exits at least one of Sylow subgroups, say Pi is not cyclic
and hence αi > 1. Suppose that Pj (j 6= i) is another non-cyclic Sylow subgroup of G. By
Lemma 2.4, we have

c(G)= c(Pi)·c(Pj)·c(∏
l 6=i,j

Pl).

Applying Lemma 2.5, we know c(Pl)≥ c(Zpαl ) = d(pαl ), with equality iff Pl
∼= Zpαl . Let

H = Pi×Z n
pαi

, then c(G)> c(H)> c(Zn). It contradicts the fact that c(G) is the second

minimal value of s on the set of groups of order n. So G has a unique non-cyclic Sylow
subgroup.

By Proposition 4.1, we can assume that Q ∈ Sylq(G) is a unique non-cyclic Sylow
subgroup of G. Thus G=Q×Z n

qλ
, where |Q|= qλ. By hypothesis and Theorem 1.1, we

know that c(Q)= (λ−1)q+2 or 5. Furthermore, we have λ> 1 and hence Ω 6=∅. Write
s= min Ω. In particular, when |Ω|=1, we can get the Proposition 4.2 as follows.

Proposition 4.2. Suppose |Ω|=1, then q= ps.

Proof. It is obvious.

In the following, we always suppose that |Ω|≥2.

Proposition 4.3. Let n=23 pα2
2 ··· pαk

k , then q=2.

Proof. Let T be a Sylow 2-subgroup of G. We only need show that T is non-cyclic. Sup-
pose that T is cyclic, then q ≥ 3. Since G = Q×Z n

qλ
= T×Q×Z n

8qλ
, by Lemma 2.4, we

get

c(G)= c(T)·c(Q)·c(Z n

8qλ
).

Furthermore, applying Lemmas 2.5, 2.6 and 2.7, we have

c(G)= (3+1)[(λ−1)q+2]·c(Z n

8qλ
)≥ (12λ−4)·c(Z n

8qλ
)

> 5(λ+1)·c(Z n

8qλ
)= c(Q8)·c(Zqλ)·c(Z n

8qλ
)= c(Q8×Z n

8
)> c(Zn).

It contradicts the fact that c(G) is the second minimal value of c on the set of nilpotent
groups of order n. So Q=T is non-cyclic.

Proposition 4.4. Let n=2α3β pα3
3 ··· pαk

k , where α≥2 and α 6=3.

(1) Suppose β 6=2, then q=2.

(2) Suppose β=2.

(2.1) If α≤5, then q=2.

(2.2) If α>5, then q=3.
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Proof. (1) Suppose that β 6=2 and T is a Sylow 2-subgroup of G, we only need show that
T is non-cyclic.

Suppose that T is cyclic. Now we claim that β ≥ 3. Suppose β ≤ 1, then the Sylow
3-subgroup of G is cyclic and hence q≥5. Since G=Q×Z n

qλ
=T×Q×Z n

2αqλ
, we get

c(G)= c(T)·c(Q)·c(Z n

2αqλ
)≥ (α+1)[(λ−1)q+2]·c(Z n

2αqλ
).

Observing
(λ−1)q+2

λ+1
≥

5λ−3

λ+1
≥

5·2−3

2+1
=

7

3
>2>

2α

α+1
,

We have

c(G)>2α(λ+1)·c(Z n

2αqλ
)= c(M2α)·c(Zqλ)·c(Z n

2αqλ
)= c(M2α ×Z n

2α
)> c(Zn).

It contradicts the fact that c(G) is the second minimal value of c on the set of nilpotent
groups of order n. So we get β≥3.

We now assume that P is a Sylow 3-subgroup of G. We claim P is non-cyclic. If P is
cyclic, then q≥5. Similar to above argument, we know that T is non-cyclic, a contradic-
tion. So we get P is non-cyclic and hence q=3.

By the above arguments, we have

c(G)= c(T)·c(Q)·c(Z n

2αqλ
)=(α+1)(3λ−1)·c(Z n

2αqλ
).

Since 3λ−1
λ+1 ≥ 3·3−1

3+1 =2> 2α
α+1 , we get

c(G)>2α(λ+1)·c(Z n

2αqλ
)= c(M2α)·c(Zqλ)·s(Z n

2αqλ
)= c(M2α ×Z n

2α
)> c(Zn).

This is a final contradiction. So T is non-cyclic and hence Q=T, the conclusion (1) holds.
(2) Suppose that β = 2 and P is cyclic. Similar to the proof of (1), we can get T is

non-cyclic. So Q=T and G=T×Z32 . Furthermore, we have

c(G)= c(T)·c(Z32 )·c(Z n
2α ·32

)=2α·(2+1)·c(Z n
2α ·32

)=6α·c(Z n
2α ·32

).

Let H=Z2α×Z3×Z3×Z n
2α ·32

, then

c(H)= c(Z2α)·c(Z3×Z3)·c(Z n
2α ·32

)=5(α+1)c(Z n
2α ·32

).

By hypothesis, c(H)≥c(G) implies that 5(α+1)≥6α, which leads to α≤5. So the conclu-
sions (2) holds.

Corollary 4.1. Let n=2α pα3
3 ··· pαk

k , where α≥2. If 32 ∤n, then q=2.

Proof. It follows from Propositions 4.3 and 4.4.
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Proposition 4.5. Let n=2pα2
2 ··· pαk

k . Then ps ≤q≤3ps−2.

Proof. Since s= min {i∈{1,··· ,k}|αi > 1}, we get s≥ 2 and hence ps ≥ 3. It is obviously
that q≥ ps. Suppose q>3ps−2. Since G=Q×Z n

qλ
=Q×Zpαs

s
×Z n

pαs
s qλ

, we have

c(G)= [(λ−1)q+2](αs+1)c(Z n

pαs
s qλ

).

As
(λ−1)q+2

λ+1 ≥ q+2
3 >

3ps−2+2
3 = ps >

(αs−1)ps+2
αs+1 , we get

c(G)> [(αs−1)ps+2](λ+1)c(Z n

pαs
s qλ

)

=c(Mpαs
s
)·c(Zqλ)·c(Z n

pαs
s qλ

)= c(Mpαs
s
×Z n

pαs
s

)> c(Zn).

It contradicts the fact that c(G) is the second minimal value of c on the set of nilpotent
groups of order n. So q≤3ps−2.

Now Theorem 1.2 follows from Propositions 4.1–4.4, 4.6 and Theorem 1.1.
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