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Abstract. In this paper, we study the discrete Morse flow for either Yamabe type heat
flow or nonlinear heat flow on a bounded regular domain in the whole space. We
show that under suitable assumptions on the initial data g one has a weak approxi-
mate discrete Morse flow for the Yamabe type heat flow on any time interval. This
phenomenon is very different from the smooth Yamabe flow, where the finite time
blow up may exist.
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1 Introduction

The aim of this note is to develop the discrete Morse flows both for Yamabe type heat flow

and for the nonlinear heat flow for any finite time (see [1–3]). The phenomenon for weak

solutions is very different from that of the smooth Yamabe flow, where the finite time

blowup may exist (see [4] and [2]). We use the idea from [5], where the 2-dimensional

Yamabe flow has been studied, to develop the discrete flow. We now recall definition of

the weak solution to the Yamabe type heat flow. Let Ω⊂Rn be a regular bounded domain

with smooth boundary. For any T>0, we let Q=QT =Ω×[0,T]. Assume that the initial

data g∈C2,1(QT) is regular and gν =0 on the boundary ∂Ω×{t}, where ν is the outward

unit normal to ∂Ω. Assume that ψ∈C(Ω) is a non-negative regular function. Hereafter,

for a smooth function u : Ω→R, we use the following notations,

∇u=(∂u/∂xi), Lu=∆u−ψ(x)u.
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Assume n≥3. Recall that for p= n+2
n−2 , the Yamabe type flow equation is

up−1∂tu= Lu, on Q, (1.1)

with the initial data u=g and with the Neumann boundary condition uν=0. Let s∗=
p+1

2 =
n

n−2 , which is the half of the Sobolev critical exponent [6]. We say that the non-negative

u∈C([0,T],H1(Ω)) is a weak solution to the Yamabe type flow (1.1) if for any η∈C∞
0 (Q),

we have
∫

Q

1

s∗
us∗−1∂tu

s∗ηdxdt+
∫

Q
(∇u,∇η)dxdt=

∫

Q
ψ(x)uηdxdt

and u(0,·)−g∈ H1
0 (Ω) in weak sense that limt→0‖u(t,·)−g(·)‖L2 → 0. Note that for any

p > 1 being a fixed exponent, one may propose the corresponding nonlinear heat flow

and study the weak solution to it.

We have the following conclusion.

Theorem 1.1. Assume that ψ=0 on Ω. For any T>0 and any initial-boundary data g∈C1(Ω)
with g≥0 and gν =0 on the boundary, there exists a discrete Morse flow {ûN(t)} to the Yamabe

type flow (1.1) with the initial data ûN(0)= g≥0 and the lateral boundary condition (ûN)ν =0.

The limit of the discrete Morse flow is a weak solution to (1.1) on [0,T]×Ω.

For the precise meaning of the discrete Morse flow, which is the triple (uN ,ûN ,∂tû
s
N),

one may see the definition under Eq. (2.5) in Section 2. We may use the standard notation

‖u‖p for the norm of the Lebesgue space Lp(Ω). Other notations are from the famous

books [6] and [7].

The use of the discrete Morse flow method (also called Rothe’s method) to the study

of parabolic problems has a long history and this field is still very active. The discrete

Morse flow method was introduced by E.Rothe in the paper [8]. This method for initial

boundary value problems, consists of a time variable discretization by finite differences

and leads to a sequence of boundary value problems for elliptic equations [9–11]. The

method is also known as the horizontal line method for numerical purposes [12]. One

may see the book [13] for a friendly introduction of Rothe’s method. Only in recent

decades, we can see some applications of discrete Morse flows to other geometric flows

such as harmonic map heat flows. In [14], the authors applied the discrete Morse flow

method to the problem of the heat flow for surfaces of prescribed mean curvature. In the

recent work [15], the authors applied the discrete Morse flow method to the parabolic p-

Laplacian systems. In the interesting work [16], the discrete Morse flow method had been

used to construct infinitely many weak solutions to harmonic map heat flows to spheres.

One may also see the references [17–19] for discrete Morse flows for harmonic map heat

flows. As one can expect, it is possible to use this method to study weak solutions to

Yang-Mills heat flow.

The plan of this paper is below. The main result, Theorem 1.1, will be proved in

Section 3. In Section 2, we present the proof of the existence of discrete Morse flow for

nonlinear heat flow and the conclusion is stated in Theorem 2.1.
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2 Discrete Morse flow for nonlinear heat flow

In this section, we take any fixed s∈ (1,s∗) and study the nonlinear heat flow

us−1∂tu= Lu on Q

with the boundary data uν=0 on ∂Ω×[0,T] and the initial data g.

We may assume that there is a positive number L such that |g(x)|≤ L in Ω. We let

H :={u∈H1(Ω);|u(x)|≤ L+1,∀ x∈Ω}.

With the help of Rellich compactness [6], we know that H is a weakly closed subset of

H1 :=H1(Ω).
We may define

λ= inf

{

∫

Ω
(|∇u|2+ψ(x)u2)dx;u∈H1(Ω),

∫

Ω
|u|2dx=1

}

,

and we may assume that λ>0. Then we have for any u∈H1(Ω),
∫

Ω
(|∇u|2+ψ(x)u2)dx≥λ

∫

Ω
|u|2dx.

We define, for u∈H, the functional

J(u)=
1

2

∫

Ω
(|∇u|2+ψ(x)u2)dx.

From the definition of λ we get,

J(u)≥ 1

2
λ
∫

Ω
u2dx>0 (2.1)

for any u 6=0, u∈H. Recall the Poincare inequality that for any u∈H1(Ω),
∫

Ω
|∇u|2dx≥λ1

∫

Ω
|u−ū|2dx,

for some uniform constant λ1 > 0, where ū= 1
|Ω|

∫

Ω
udx. For u∈ H, we have |ū| ≤ L+1.

Then we have for any u∈H1(Ω),

‖u‖2≤‖u−ū‖2+(L+1)
√

|Ω|≤‖∇u‖2+(L+1)
√

|Ω|.

The above remark is useful in the estimation of L2 norm of the weak solution.

We now consider discrete Morse flow for the nonlinear heat flow

us−1∂tu= Lu on Q (2.2)

with the boundary condition uν = 0 on ∂Ω×[0,T] and the initial data g. We have the

following result.
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Theorem 2.1. Assume that the function ψ∈C(Ω̄) is non-negative. Fix any T>0 and any given

non-negative data g∈H1(Ω). For the nonlinear heat flow (2.2) with the initial data u0 = g and

the lateral boundary condition uν =0, there exists a discrete Morse flow {ûN(t)} and its limit is

a weak solution to (2.2) on [0,T]×Ω.

Proof. We now prove Theorem 2.1. Let h = T/N for some positive integer N > 1. For

n= 1,...,N, we let tn = nh. So, the sequence {0< t1 < ...< tN} is the division of the time

interval [0,T].
To introduce the discrete Morse flow for the flow (2.2), we define u0 = g. We may

define the functional F1(·) on H for the 1-step by

F1(u)=
1

2s2h

∫

Ω
||u|s−|u0|s|2dx+ J(u).

One may use Theorem 1.8.2 in [20] to get a minimizer of F1(·) on H, and we shall call this

process the direct method as usual.

We now do the induction construction. Given any minimizer un−1 ⊂ H of the func-

tional Fn−1 and we may assume |un−1(x)|≤ L on Ω. Define, the functional for the n-step,

Fn(u)=
1

2s2h

∫

Ω
||u|s−|un−1|s|2dx+ J(u).

Before taking minimizing sequence, we need the truncation process. Note that for 0≤u∈
H1, we may let uL(x)=u(x) for u(x)≤ L and uL(x)= L for u(x)> L. Then it is clear that

Fn(uL)≤ Fn(u). Clearly, the functional Fn is non-negative, i.e., Fn(·)≥ 0 on H. Using the

Sobolev compactness embedding theorem, we know the functional

∫

Ω
||u|s−|un−1|s|2dx,

is continuous in H (since 2s=p+1< 2n
n−2 ). By the direct method, we may take a minimizing

sequence (uk)⊂ H with 0 ≤ uk ≤ L, whose weak H1 limit is a non-negative minimizer

un ∈H : 0≤un(x)≤ L on Ω, of the functional Fn(u). Then un is an interior point of H and

un solves the following equation

us−1
n

1

sh
(|un|s−|un−1|s)= Lun on Ω (2.3)

with the boundary condition (un)ν=0, in the weak sense. That is, for any η∈C∞
0 (Ω), we

have
1

sh

∫

Ω
us−1

n (us
n−us

n−1)ηdx+
∫

Ω
∇un ·∇ηdx=−

∫

Ω
ψ(x)unηdx.

By the minimality of un, we have

1

2s2h

∫

Ω
||un|s−|un−1|s|2dx+ J(un)≤ J(un−1).
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Adding them together, we have

1

2

∫ T

0

∫

Ω

∣

∣

∣

∣

us
n−us

n−1

sh

∣

∣

∣

∣

2

dx+ J(un)≤ J(u0). (2.4)

By (2.1), we know that for some λ0>0,

1

2s2

n

∑
0

∫

Ω

∣

∣

∣

∣

us
k−us

k−1

h

∣

∣

∣

∣

2

dx+
1

2
λ0

∫

Ω
|∇un|2dx≤ J(u0),

which implies that there is a uniform constant C(u0)>0 such that
∫

Ω
|∇un|2dx≤C(u0).

We now define uN(t)∈H and ûN(t)∈H for t∈ [0,T] in such a way that, for n=1,...,N,

tn =nh,

uN(t)=
tn−t

h
un−1+

t−tn−1

h
un; ûN(t)=un, for t∈ (tn−1,tn].

We further define, for n=1,...,N,

∂tû
s
N(t)=

1

h
(us

n−us
n−1), for t∈ [tn−1,tn].

Then Eq. (2.3) can be written as

ûs−1
N ∂tu

s
N = LûN on Q, (2.5)

which holds in weak sense and we call the triple (uN ,ûN,∂tû
s
N) the discrete Morse flow

for the evolution Eq. (2.2).

Note that ∂tuN = 1
h (un−un−1) for t∈ (tn−1,tn],

|uN−ûN|s ≤|us
N−ûs

N |≤h|∂t û
s
N |,

and for t small,

|uN(t,x)−g(x)|≤ t

h
|u1(x)−g(x)|≤ |ûN(t1,x)−g(x)|.

We remark that it holds the energy bound

∫ T

0
dt

∫

Ω
|∂tû

s
N(t)|2dx=

1

h

N

∑
1

∫

Ω
|us

n−us
n−1|2dx.

The relation (2.4) implies that

1

2

∫ T

0
dt

∫

Ω
|uN(t)

s−ûs
N(t)|2dx≤ s2h2 J(u0)→0
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as h→0. By (2.4) we have for some uniform constant C(T)>0,

∫ T

0
|∂tu

s
N(t)|2L2 + J(uN)≤C(T),

and in particular,
∫

Ω
|∇uN(t)|2dx≤C(u0,T) for some uniform constant C(u0,T).

By the uniform bounds above and the standard results from Sobolev spaces [20] we

may assume that as h→0, for any r>1, uN →u∞ in Lr(Q), ∇uN →∇u∞ weakly in L2(Q),
and ∂tû

s
N → ∂tu

s
∞ weakly in L2(Q). Then we may get the limit u∞(t) which solves (2.2)

weakly with the uniform estimate

∫ T

0
|∂tu

s
∞(t)|2L2 + J(u∞)≤C(T).

Using the elementary inequality that |a−b|s ≤ |as−bs| for any a> 0 and b> 0, we know

that

|us
∞(t)−gs|L2 ≤

∫ t

0
|∂tu

s
∞(t)|L2 ≤

√
tC(T)→0

as t→0, i.e., the initial data of the flow (u∞(t)) is g in the weak L2 sense. Then the proof

of Theorem 2.1 is complete.

We remark that with a little more effort, we may extend the result above to any p>1 or

any ψ(x)∈Lq(Ω̄) (q≥2) by the method used in Chapter 5 in Ladyzhenskaya’s book [13].

3 Discrete Morse flow for Yamabe type heat flow

As we remark above, with a minor modification, the method above may be applied to

prove Theorem 1.1, but we prefer to give another proof. Recall that we have assumed

that p = n+2
n−2 and φ = 0 on Ω. We now prove Theorem 1.1. We use the subspace H as

above. As before, we let h= T/N for any positive integer N > 1. For n= 1,...,N, we let

tn =nh such that 0< t1< ...< tN is the division of the time interval [0,T].
To introduce the discrete Morse flow for flow (1.1), we define, for u∈H, the Dirichlet

functional

D(u)=
1

2

∫

Ω
|∇u|2dx.

We define u0= g and set s= s∗ for notation simpler. Note that 2s= p+1= 2n
n−2 . We define

the functional E1 on H by

E1(u)=
1

2s2h

∫

Ω
||u|s−|u0|s|2dx+D(u).

We now do the induction definition. Assume that the functional En−1(u) is defined

and there is a minimizer of the functional En−1(·) on H such that 0≤ un−1(x)≤ L on Ω.
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Define, for the minimizer un−1 ⊂ H of the functional En−1(·), a new functional for the

n-step,

En(u)=
1

2s2h

∫

Ω
||u|s−|un−1|s|2dx+D(u).

By the direct method, we know that there is a non-negative minimizer un ∈ H of the

functional En(u). We now use a trick introduced in [2]. For any ξ∈C1
0(Ω) : ξ≥0 and t>0

small, (1−tξ)un ∈H and we have

En(un)≤En((1−tξ)un).

Then

0≤ lim
t→0+

t−1(En((1−tξ)un)−En(un)),

which gives us

0≤−
∫

us
n

1

sh
(|un|s−|un−1|s)ξ+

∫

∇un ·∇(unξ).

Note that

a(a−b)≥ 1

2
(a2−b2), ∀a,b∈R.

Then we have for wn :=u2
n,

∫

1

sh
(|wn|s−|wn−1|s)ξ+

∫

∇wn ·∇ξ≤0.

We may take the test function

ξ=max(wn−L2,0)

to conclude that
∫

1

sh

(

|wn|s−L2s
)

ξ+
∫

|∇ξ|2 ≤0,

which implies that un ≤ L on Ω. Hence, un is a interior point in H.

Then we know that un solves the following equation

us−1
n

1

sh
(|un|s−|un−1|s)=∆un on Ω⊂Rn (3.1)

with the boundary condition (un)ν=0, in the weak sense. That is, for any η∈C∞
0 (Q), we

have
1

sh

∫

Ω
us−1

n (us
n−us

n−1)ηdx+
∫

Ω
(∇un,∇η)dx=−

∫

Ω
ψ(x)unηdx.

By the minimality of un, we have

1

2s2h

∫

Ω
||un|s−|un−1|s|2dx+D(un)≤D(un−1).
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Adding them together, we have

1

2

∫ T

0

∫

Ω

∣

∣

∣

∣

us
n−us

n−1

sh

∣

∣

∣

∣

2

dx+D(uN)≤D(u0). (3.2)

Then we have
1

2s2

∫ T

0

∫

Ω

∣

∣

∣

∣

us
n−us

n−1

h

∣

∣

∣

∣

2

dx+
1

2

∫

Ω
|∇uN |2dx≤D(u0),

which implies that there is a uniform constant C(u0)>0 such that

∫

Ω
|∇uN |2dx≤C(u0).

We now define the discrete Morse flow as before, with uN(t)∈ H and ûN(t)∈ H for

t∈ [0,T] in such a way that, for n=1,...,N, tn =nh,

uN(t)=
tn−t

h
un−1+

t−tn−1

h
un; ûN(t)=un for t∈ (tn−1,tn].

We may further let, for n=1,...,N,

∂tû
s
N(t)=

1

h
(us

n−us
n−1), for t∈ [tn−1,tn].

The triple (uN ,ûN ,∂tû
s
N) is called the discrete Morse flow for the flow (2.2). Then Eq. (3.1)

can be written as

ûs−1
N ∂tû

s
N =∆ûN on Q (3.3)

in the weak sense. The following goes basically as in Section 2 and for completeness, we

present the detail. Note again that |us
N−ûs

N |≤h|∂tu
s
N | and for t small,

|uN(t,x)−g(x)|≤ t

h
|u1(x)−g(x)|≤ |ûN(t1,x)−g(x)|.

We remark that
∫ T

0
dt

∫

Ω
|∂tû

s
N(t)|2dx=

1

h

N

∑
1

∫

Ω
|us

n−us
n−1|2dx.

The relation (3.2) implies that

1

2

∫ T

0
dt

∫

Ω
|uN(t)

s−ûs
N(t)|2dx≤ s2h2D(u0)→0

as h→0. By (3.2) we have for some uniform constant C(T)>0,

∫ T

0
|∂tu

s
N(t)|2L2 + J(uN)≤C(T),
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and in particular,
∫

Ω
|∇uN(t)|2dx≤C(u0,T) for some uniform constant C(u0,T).

Using the uniform bounds above and the standard knowledge from Sobolev spaces

[13] we may assume that as h→0, for any r>1, uN →u∞ in Lr(Q),

∇uN →∇u∞ weakly in L2(Q),

and

∂tû
s
N →∂tu

s
∞ weakly in L2(Q).

Then the limit u∞(t) which solves (1.1) weakly with the uniform estimate

∫ T

0
|∂tu

s
∞(t)|2L2 +D(u∞)≤C(T).

Again, since

|us
∞(t)−gs|L2 ≤

∫ t

0
|∂tu

s
∞(t)|L2 ≤

√
tC(T)→0

as t→0, we know that the initial data of the flow (u∞(t)) is g in the weak L2 sense. This

completes the proof of Theorem 1.1. �

We remark that there are other types of numerical-analytical method to construct

weak solutions to porous medium equations related to our work and one may prefer

to lecture 1 part in [21] for this subject.
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