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Abstract. Lutwak showed the Busemann-Petty type problem (also called the Shep-
hard type problem) for the centroid bodies. Grinberg and Zhang gave an affirmation
and a negative form of the Busemann-Petty type problem for the Lp-centroid bodies.
In this paper, we obtain an affirmation form and two negative forms of the Busemann-
Petty type problem for the general Lp-centroid bodies.
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1 Introduction

Let Kn denote the set of convex bodies (compact, convex subsets with non-empty inte-
riors) in n-dimensional Euclidean space Rn, for the set of convex bodies containing the
origin in their interiors and the set of origin-symmetric convex bodies, we write Kn

o and
Kn

os, respectively. Let Sn
o and Sn

os orderly denote the set of star bodies (about the origin)
and the set of origin-symmetric star bodies in Rn. Let Sn−1 denote the unit sphere in Rn,
denote by V(K) the n-dimensional volume of a body K, for the standard unit ball B in
Rn, write ωn = V(B).

Centroid body was attributed by Blaschke to Dupin (see [6, 18]), its definition was
extended by Petty (see [17]). Let K is a compact set, the centroid body, ΓK, of K is an
origin-symmetric convex body whose support function is given by (see [6])

hΓK(u) =
1

V(K)

∫
K
|u · x|dx (1.1)
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for all u ∈ Sn−1.
Centroid bodies are very important in Brunn-Minkowski theory. For decades, cen-

troid bodies have attracted increased attention (for example see articles [10,11,17,27] and
books [6, 18]). In particular, Lutwak [11] showed an affirmation and a negative form of
the Busemann-Petty type problems for the centroid bodies as follows:

Theorem 1.1. For K ∈ Sn
o , L ∈ P∗, if ΓK ⊆ ΓL, then

V(K) ≤ V(L),

and V(K) = V(L) if and only if K = L. Here P∗ denotes the set of polars of all projection bodies.

Theorem 1.2. If K ∈ Sn
os\P∗ is infinite smooth, then there exists L ∈ Sn

os\P∗ is infinite smooth,
such that ΓK ⊂ ΓL, but

V(K) > V(L).

In 1997, Lutwak and Zhang [15] introduced the notion of Lp-centroid bodies. For each
compact star-shaped (about the origin) K in Rn and real p ≥ 1, the Lp-centroid body, ΓpK,
of K is an origin-symmetric convex body whose support function is defined by

hp
ΓpK(u) =

1
cn,pV(K)

∫
K
| u · x |p dx

=
1

cn,p(n + p)V(K)

∫
Sn−1
| u · v |p ρK(v)n+pdv (1.2)

for all u ∈ Sn−1. Here

cn,p = ωn+p/ω2ωnωp−1 (1.3)

and dv is the standard spherical Lebesgue measure on Sn−1. The normalization above is
chosen so that for the standard unit ball B in Rn, we have ΓpB = B. For the case p = 1,
by (1.1) and (1.2), we see that Γ1K is the centroid body ΓK under the normalization of
definition (1.2) and Γ1K = c−1

n,1ΓK (see [6]).
Further, Lutwak and Zhang [15] established the Lp-centroid affine inequality. Where-

after, associated with the Lp-centroid bodies, Lutwak, Yang and Zhang [14] proved the
Lp-Busemann-Petty centroid inequality which is stronger than the Lp-centroid affine in-
equality. The Lp-centroid bodies mean that the centroid bodies are extended from the
Brunn-Minkowski theory to the Lp-Brunn-Minkowski theory. Regarding the studies of
the Lp-centroid bodies, also see [1–3,7,21,22,24] and books [6,18]. In particular, Grinberg
and Zhang [7] gave the following the Busemann-Petty type problem for the Lp-centroid
bodies.

Theorem 1.3. If K ∈ Sn
o , L ∈ P∗p , then ΓpK ⊆ ΓpL implies

V(K) ≤ V(L),

and V(K) = V(L) if and only if K = L. Here P∗p denotes the set of polars of all Lp-projection
bodies.
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Theorem 1.4. If K ∈ F 2
os\Lp, then there exists L ∈ Kn

os such that ΓpK ⊂ ΓpL, but

V(K) > V(L).

Here F 2
os denotes the set of origin-symmetric convex bodies whose support functions are of C2 and

have positive continuous curvature functions, and Lp denotes the set of Lp-balls (see [7]).

In 2005, Ludwig [9] introduced a function ϕτ : R→ [0,+∞) by

ϕτ(t) = |t|+ τt (1.4)

with a parameter τ ∈ [−1, 1]. From (1.4), Ludwig [9] introduced the notions of general
Lp-projection bodies. Whereafter, Haberl and Schuster [8] derived a general Lp-projection
body is the Lp-Minkowski combination of two asymmetric Lp-projection bodies, and es-
tablished the general Lp-Petty projection inequality and the general Lp-Busemann-Petty
centroid inequality.

Recently, motivated by Ludwig, Haberl and Schuster’s work, Feng, Wang and Lu [5]
defined the general Lp-centroid bodies as follows: For K ∈ Sn

o , p ≥ 1 and τ ∈ [−1, 1], the
general Lp-centroid body, Γτ

pK, of K is the convex body whose support function is defined
by

hp
Γτ

pK(u) =
2

cn,p(τ)V(K)

∫
K

ϕτ(u · x)pdx

=
2

cn,p(τ)(n + p)V(K)

∫
Sn−1

ϕτ(u · v)pρK(v)n+pdv, (1.5)

where
cn,p(τ) = cn,p[(1 + τ)p + (1− τ)p]

and cn,p satisfies (1.3). The normalization is chosen such that Γτ
pB = B for every τ ∈

[−1, 1]. Obviously, if τ = 0 then Γτ
pK = ΓpK. Further, let τ = 1 in (1.5), they [5] defined

the asymmetric Lp-centroid body, Γ+
p K, of K ∈ Sn

o by

hp
Γ+

p K(u) =
2

cn,pV(K)

∫
K
(u · x)p

+dx

=
2

cn,p(n + p)V(K)

∫
Sn−1

(u · v)p
+ρK(v)n+pdv, (1.6)

where (u · x)+ = max{u · x, 0}. Besides, they [5] also defined Γ−p K = Γ+
p (−K).

According to the definitions of Γ±p K and (1.5), it is easy to verity that for K ∈ Sn
o ,

p ≥ 1, τ ∈ [−1, 1] and u ∈ Sn−1,

h(Γτ
pK, u)p = f1(τ)h(Γ+

p K, u)p + f2(τ)h(Γ−p K, u)p, (1.7)
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where

f1(τ) =
(1 + τ)p

(1 + τ)p + (1− τ)p , f2(τ) =
(1− τ)p

(1 + τ)p + (1− τ)p . (1.8)

From (1.8), we easily know that

f1(−τ) = f2(τ), f2(−τ) = f1(τ), (1.9a)
f1(τ) + f2(τ) = 1. (1.9b)

Let τ = 0 in (1.7), and combine with (1.8), we have for u ∈ Sn−1,

h(ΓpK, u)p =
1
2

h(Γ+
p K, u)p +

1
2

h(Γ−p K, u)p. (1.10)

If τ = ±1 in (1.7) and use (1.8), then

Γ+1
p K = Γ+

p K, Γ−1
p K = Γ−p K.

For the research results of general Lp-centroid bodies, we can find in [5, 16, 23]. In this
paper, we research the Busemann-Petty type problem for the general Lp-centroid bod-
ies. Our works belong to part of a new and rapidly evolving asymmetric Lp Brunn-
Minkowski theory.

Let Pτ,∗
p denote the set of polars of all general Lp-projection bodies. We first prove an

affirmation form of the Busemann-Petty type problem for the general Lp-centroid bodies.

Theorem 1.5. If K ∈ Sn
o , p ≥ 1, L ∈ Pτ,∗

p and τ ∈ [−1, 1], then Γτ
pK ⊆ Γτ

pL implies

V(K) ≤ V(L),

and V(K) = V(L) if and only if K = L.

Obviously, if τ = 0, then Theorem 1.5 gives Theorem 1.3. Further, we give a negation
form of the Busemann-Petty type problem for the general Lp-centroid bodies.

Theorem 1.6. If L ∈ Sn
o \Sn

os and p ≥ 1, then for any τ ∈ (−1, 1), there exists K ∈ Sn
o (for

τ = 0, K ∈ Sn
os; for τ 6= 0, K ∈ Sn

o ) such that Γτ
pK ⊂ Γτ

pL, but

V(K) > V(L).

Let τ = 0 in Theorem 1.6, we easily obtain the following.

Corollary 1.1. If L ∈ Sn
o \Sn

os and p ≥ 1, then there exists K ∈ Sn
os such that ΓpK ⊂ ΓpL, but

V(K) > V(L).

Corollary 1.1 shows a negation form of the Busemann-Petty type problem for the Lp-
centroid bodies. Actually, we extend the scope of negation solutions in Corollary 1.1 from
K ∈ Sn

os to K ∈ Sn
o as follows:
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Theorem 1.7. If L ∈ Sn
o \Sn

os and p ≥ 1, then there exists K ∈ Sn
o such that ΓpK ⊂ ΓpL, but

V(K) > V(L).

Finally, we give another negation form of the Busemann-Petty type problem for the
Lp-centroid bodies, it is the Lp-analogues of Theorem 1.2.

Theorem 1.8. For p ≥ 1. If K ∈ Sn
os\P∗p is infinite smooth and p is not an even integer, then

there exists L ∈ Sn
os\P∗p is infinite smooth, such that ΓpK ⊂ ΓpL, but

V(K) > V(L).

2 Some notions

2.1 Support function, radial function and polar body

If K ∈ Kn, then its support function, hK = h(K, ·) : Rn −→ (−∞,+∞), is defined by
(see [6])

h(K, x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y. From the definition of support
function, we easily know that for c > 0, h(cK, ·) = ch(K, ·), and h(K, ·) = h(L, ·) if and
only if K = L.

If K is a compact star-shaped (about the origin) in Rn, its radial function, ρK = ρ(K, ·) :
Rn\{0} −→ [0,+∞), is defined by (see [6])

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ Rn\{0}.

If ρK is positive and continuous, K will be called a star body (about the origin). Two star
bodies K and L are said to be dilates (of one another) if ρK(u)/ρL(u) is independent of
u ∈ Sn−1.

If E is a nonempty set in Rn, the polar set of E, E∗, is defined by (see [6])

E∗ = {x : x · y ≤ 1, y ∈ E}, x ∈ Rn. (2.1)

From (2.1), we easily know that (see [6]) for K ∈ Kn
o ,

h(K, ·) = 1
ρ(K∗, ·) . (2.2)

2.2 Lp-mixed volumes and Lp-dual mixed volumes

In 1993, Lutwak [12] defined the Lp-mixed volumes as follows: For K, L ∈ Kn
o , p ≥ 1, the

Lp-mixed volume, Vp(K, L), of K and L is given by

Vp(K, L) =
1
n

∫
Sn−1

hp
L(u)dSp(K, u). (2.3)



74 W. Wang / Anal. Theory Appl., 39 (2023), pp. 69-82

The measure Sp(K, ·) is called the Lp-surface area measure.
Whereafter, Lutwak [13] introduced the Lp-dual mixed volumes: For K, L ∈ Sn

o and
p ≥ 1, the Lp-dual mixed volume, Ṽ−p(K, L), of K and L is given by

Ṽ−p(K, L) =
1
n

∫
Sn−1

ρ
n+p
K (u)ρ−p

L (u)du. (2.4)

From (2.4), it follows immediately that for each K ∈ Sn
o and p ≥ 1,

Ṽ−p(K, K) =
1
n

∫
Sn−1

ρn
K(u)du = V(K). (2.5)

The Lp-dual Minkowski inequality can be stated that (see [13]): if K, L ∈ Sn
o and p ≥ 1,

then

Ṽ−p(K, L) ≥ V(K)
n+p

n V(L)−
p
n , (2.6)

with equality if and only if K and L are dilates.

2.3 General Lp-harmonic Blaschke bodies

For K, L ∈ Sn
o , p ≥ 1, λ, µ ≥ 0 (not both zero), the Lp-harmonic Blaschke combination,

λ ◦ K+̃pµ ◦ L, of K and L is given by (see [3])

ρ(λ ◦ K+̃pµ ◦ L, ·)n+p

V(λ ◦ K+̃pµ ◦ L)
= λ

ρ(K, ·)n+p

V(K)
+ µ

ρ(L, ·)n+p

V(L)
. (2.7a)

Let λ = µ = 1/2 and L = −K in (2.7a), then the Lp-harmonic Blaschke body, ∇̃pK, of
K ∈ Sn

o is written by

∇̃pK =
1
2
◦ K+̃p

1
2
◦ (−K).

Feng and Wang [4] defined the general Lp-harmonic Blaschke bodies as follows: For
K ∈ Sn

o , p ≥ 1 and τ ∈ [−1, 1], the general Lp-harmonic Blaschke body,

∇̃τ
pK = f1(τ) ◦ K+̃p f2(τ) ◦ (−K)

of K is defined by

ρ(∇̃τ
pK, ·)n+p

V(∇̃τ
pK)

= f1(τ)
ρ(K, ·)n+p

V(K)
+ f2(τ)

ρ(−K, ·)n+p

V(−K)
. (2.7b)

Here f1(τ) and f2(τ) satisfy (1.8). Obviously, if τ = 0, then

∇̃τ
pK = ∇̃pK.

In addition, if τ = ±1 we write
∇̃τ

pK = ∇̃±p K,

then
∇̃+

p K = K, ∇̃−p K = −K.
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2.4 General Lp-projection bodies and Lp-cosine transformations

In 2005, Ludwig [9] introduced the notion of general Lp-projection body as follows: for
K ∈ Kn

o , p ≥ 1 and τ ∈ [−1, 1], the general Lp-projection body, Πτ
pK ∈ Kn

o , of K whose
support function is given by

hp
Πτ

pK(u) = αn,p(τ)
∫

Sn−1
ϕτ(u · v)pdSp(K, v), (2.8)

where Sp(K, ·) is the Lp-surface area measure of K, ϕτ(·) is given by (1.4),

αn,p(τ) =
2

(n + p)cn,pωn[(1 + τ)p + (1− τ)p]
(2.9)

and cn,p satisfies (1.3). For the general Lp-projection bodies, some works have made in [19,
20, 25, 26].

If τ = 0, then (2.8) and (2.9) yield the following Lp-projection body ΠpK of K, i.e.,

hp
ΠpK(u) =

1
(n + p)cn,pωn

∫
Sn−1
|u · v|pdSp(K, v), (2.10)

which is defined by Lutwak, Yang and Zhang (see [14]).
If K ∈ Kn

o has Lp-curvature function fp(K, v) : Sn−1 → R, then we have (see [13])

dSp(K, v) = fp(K, v)dv,

where dv is the standard spherical Lebesgue measure on Sn−1. From this, if K ∈ Kn
o has

Lp-curvature function, then (2.10) can be written as

hp
ΠpK(u) =

1
(n + p)cn,pωn

∫
Sn−1
|u · v|p fp(K, v)dv. (2.11)

Let C(Sn−1) denote the set of all continuous functions on Sn−1. For p ≥ 1 and function
ϕ ∈ C(Sn−1), the Lp-cosine transformation, Cp ϕ, of ϕ is defined by (see [6])

Cp ϕ(u) =
∫

Sn−1
|u · v|p ϕ(v)dv, u ∈ Sn−1. (2.12)

For the Lp-cosine transformation, also see [6, 14].
From (2.11) and (2.12), we easily see that for K ∈ Kn

o has Lp-curvature function and
all u ∈ Sn−1,

hp
ΠpK(u) =

1
(n + p)cn,pωn

Cp fp(K, u). (2.13)

In addition, according to (2.12) and (1.2), we have that for all u ∈ Sn−1,

hp
ΓpK(u) =

1
(n + p)cn,pV(K)

Cpρ
n+p
K (u). (2.14)
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If F, G ∈ C(Sn−1), write

(F, G) =
1
n

∫
Sn−1

F(u)G(u)du, (2.15)

then by (2.12), we have

(Cp f , g) = ( f , Cpg) =
1
n

∫
Sn−1

∫
Sn−1
|u · v|p f (v)g(u)dudv. (2.16)

For the Lp-cosine transformation Cp, we know the following fact (see [6]).

Theorem 2.1. If p ≥ 1, then Cp : Ce(Sn−1) → Ce(Sn−1) is injective if and only if p is not an
even integer. Here Ce(Sn−1) denotes the set of all even continuous functions on Sn−1.

3 Busemann-Petty type problem for the general Lp-centroid
bodies

In the section, we will research Busemann-Petty type problem for the general Lp-centroid
bodies. Associated with the general Lp-projection bodies and general Lp-centroid bodies,
Feng, Wang and Lu [5] gave that

Lemma 3.1. If K ∈ Kn
o , L ∈ Sn

o , p ≥ 1 and τ ∈ [−1, 1], then

Vp(K, Γτ
pL)

ωn
=

Ṽ−p(L, Πτ,∗
p K)

V(L)
. (3.1)

Here Πτ,∗
p K denotes the polar of general Lp-projection body Πτ

pK.

According to Lemma 3.1, we give an extension of Theorem 1.5 as follows:

Theorem 3.1. For K, L ∈ Sn
o , p ≥ 1 and τ ∈ [−1, 1], if Γτ

pK ⊆ Γτ
pL, then for any Q ∈ Pτ,∗

p ,

Ṽ−p(K, Q)

V(K)
≤

Ṽ−p(L, Q)

V(L)
, (3.2)

with equality in (3.2) if and only if K = L.

Proof. Since Q ∈ Pτ,∗
p , thus there exists R ∈ Kn

o such that Q = Πτ,∗
p R, by (2.3) and (3.1),

we get

Ṽ−p(L, Q)/V(L)

Ṽ−p(K, Q)/V(K)
=

Ṽ−p(L, Πτ,∗
p R)/V(L)

Ṽ−p(K, Πτ,∗
p R)/V(K)

=
Vp(R, Γτ

pL)
Vp(R, Γτ

pK)

=

∫
Sn−1 h(Γτ

pL, u)pdSp(R, u)∫
Sn−1 h(Γτ

pK, u)pdSp(R, u)
.

From this, if Γτ
pK ⊆ Γτ

pL, then (3.2) is obtained.
Obviously, by Lp-dual Minkowski inequality (2.6), we know that equality holds in

(3.2) if and only if K = L.
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Note that the case τ = 0 of Theorem 3.1 was given by Grinberg and Zhang [7].
Proof of Theorem 1.5. Since L ∈ Pτ,∗

p , thus taking Q = L in Theorem 3.1, and combining
with (2.5) and inequality (2.6), we get

V(K) ≥ Ṽ−p(K, L) ≥ V(K)
n+p

n V(L)−
p
n ,

i.e., V(K) ≤ V(L).
According to the equality condition of (3.1), we see that V(K) = V(L) if and only if

K = L. �
The proof of Theorem 1.6 requires the following two lemmas.

Lemma 3.2. If K ∈ Sn
o , p ≥ 1 and τ ∈ [−1, 1], then

V(∇̃τ
pK) ≥ V(K). (3.3)

For τ ∈ (−1, 1), equality holds if and only if K is origin-symmetric. For τ = ±1, (3.3) becomes
an equality.

Proof. From (2.7b) and (2.4), we have that for any Q ∈ Sn
o ,

Ṽ−p(∇̃τ
pK, Q)

V(∇̃τ
pK)

= f1(τ)
Ṽ−p(K, Q)

V(K)
+ f2(τ)

Ṽ−p(−K, Q)

V(−K)
.

This together with inequality (2.6) and equality (1.9b) yields

Ṽ−p(∇̃τ
pK, Q)

V(∇̃τ
pK)

≥ f1(τ)V(K)
p
n V(Q)−

p
n + f2(τ)V(K)

p
n V(Q)−

p
n

=V(K)
p
n V(Q)−

p
n .

Let Q = ∇̃τ
pK in above inequality and use (2.5), we obtain

V(∇̃τ
pK) ≥ V(K).

For τ ∈ (−1, 1), according to the equality condition of inequality (2.6), we see that equal-
ity holds in (3.3) if and only if K and ∇̃τ

pK, −K and ∇̃τ
pK both are dilates, i.e., K and

−K are dilates. This means that K is origin-symmetric. For τ = ±1, by ∇̃+
p K = K and

∇̃−p K = −K, we know that (3.3) becomes an equality.

Lemma 3.3. If K ∈ Sn
o , p ≥ 1 and τ ∈ [−1, 1], then

Γ+
p ∇̃τ

pK = Γτ
pK, (3.4a)

Γ−p ∇̃τ
pK = Γ−τ

p K. (3.4b)
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Proof. By (1.6), (1.9b) and (2.7b), we have that for all u ∈ Sn−1,

hp
Γ+

p ∇̃τ
pK
(u) =

2
cn,p(n + p)V(∇̃τ

pK)

∫
Sn−1

(u · v)p
+ρ∇̃τ

pK(v)
n+pdv

=
2

cn,p(n + p)

∫
Sn−1

(u · v)p
+

[
f1(τ)

ρK(v)n+p

V(K)
+ f2(τ)

ρ−K(v)n+p

V(−K)

]
dv

= f1(τ)h
p
Γ+

p K(u) + f2(τ)h
p
Γ+

p (−K)(u)

= f1(τ)h
p
Γ+

p K(u) + f2(τ)h
p
Γ−p K(u) = hp

Γτ
pK(u).

This immediately gives (3.4a). Similarly, we know that for all u ∈ Sn−1,

hp
Γ−p ∇̃τ

pK
(u) = hp

Γ−τ
p K(u).

This yields (3.4b).

Proof of Theorem 1.6. Since L is not origin-symmetric and τ ∈ (−1, 1), thus by Lemma
3.2, we know V(∇̃τ

pL) > V(L). From this, choose 0 < ε < 1 such that K = (1− ε)∇̃τ
pL

(for τ = 0, K ∈ Sn
os; for τ 6= 0, K ∈ Sn

o ) satisfies

V(K) = V((1− ε)∇̃τ
pL) > V(L).

But by (3.4a), (3.4b) and notice that Γ±p cK = cΓ±p K (c > 0), we orderly have

Γ+
p K = Γ+

p (1− ε)∇̃τ
pL = (1− ε)Γ+

p ∇̃τ
pL = (1− ε)Γτ

pL ⊂ Γτ
pL,

Γ−p K = Γ−p (1− ε)∇̃τ
pL = (1− ε)Γ−p ∇̃τ

pL = (1− ε)Γ−τ
p L ⊂ Γ−τ

p L.

Notice that τ ∈ (−1, 1) is equivalent to −τ ∈ (−1, 1), this means that Γ+
p K ⊂ Γτ

pL and
Γ−p K ⊂ Γ−τ

p L imply Γ+
p K ⊂ Γτ

pL and Γ−p K ⊂ Γτ
pL for any τ ∈ (−1, 1), respectively. Hence,

together with (1.7) and (1.9b), we easily obtain that for all u ∈ Sn−1,

h(Γτ
pK, u)p = f1(τ)h(Γ+

p K, u)p + f2(τ)h(Γ−p K, u)p

< f1(τ)h(Γτ
pL, u)p + f2(τ)h(Γτ

pL, u)p

=h(Γτ
pL, u)p,

i.e.,
Γτ

pK ⊂ Γτ
pL.

This completes the proof. �
In order to prove Theorem 1.7, we require the following a lemma.

Lemma 3.4. If K ∈ Sn
o , p ≥ 1, τ ∈ [−1, 1], then

Γp∇̃τ
pK = ΓpK. (3.5)
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Proof. From (1.7), (1.9a), (1.9b) and (1.10), we obtain that for K ∈ Sn
o and all u ∈ Sn−1,

1
2

hp
Γτ

pK(u) +
1
2

hp
Γ−τ

p K(u)

=
1
2

[
f1(τ)h

p
Γ+

p K(u) + f2(τ)h
p
Γ−p K(u)

]
+

1
2

[
f1(−τ)hp

Γ+
p K(u) + f2(−τ)hp

Γ−p K(u)
]

=
1
2

[
f1(τ)h

p
Γ+

p K(u) + f2(τ)h
p
Γ−p K(u)

]
+

1
2

[
f2(τ)h

p
Γ+

p K(u) + f1(τ)h
p
Γ−p K(u)

]
=

1
2

hp
Γ+

p K(u) +
1
2

hp
Γ−p K(u) = hp

ΓpK(u). (3.6)

Thus, by (1.10), (3.4a), (3.4b) and (3.6), we have that for all u ∈ Sn−1,

hp
Γp∇̃τ

pK
(u) =

1
2

hp
Γ+

p ∇̃τ
pK
(u) +

1
2

hp
Γ−p ∇̃τ

pK
(u)

=
1
2

hp
Γτ

pK(u) +
1
2

hp
Γ−τ

p K(u) = hp
ΓpK(u).

So (3.5) is obtained.

Proof of Theorem 1.7. Since L is not origin-symmetric and τ ∈ (−1, 1), thus by Lemma
3.2, we know V(∇̃τ

pL) > V(L). From this, choose 0 < ε < 1 such that

V((1− ε)∇̃τ
pL) > V(L).

Let K = (1 − ε)∇̃τ
pL, then K ∈ Sn

o and V(K) > V(L). But by (3.5) and notice that
ΓpcK = cΓpK (c > 0), we have

ΓpK = Γp(1− ε)∇̃τ
pL = (1− ε)Γp∇̃τ

pL = (1− ε)ΓpL ⊂ ΓpL.

This completes the proof. �
Finally, we give the proof of Theorem 1.8.

Proof of Theorem 1.8. Let C∞
e (Sn−1) denote the set of all even and infinite smooth func-

tions on Sn−1. Because of K ∈ Sn
os\P∗p is infinite smooth, thus ρK ∈ C∞

e (Sn−1). By Theo-
rem 2.1, we know that there exists ϕ ∈ C∞

e (Sn−1) when p ≥ 1 and p is not even integer,
such that ρ

−p
K = Cp ϕ. Since L is not the polar of Lp-projection body, hence function ϕ < 0.

Otherwise, if ϕ ≥ 0 and notice ϕ ∈ C∞
e (Sn−1), it follows from Minkowski’s existence the-

orem that there exists a body Q ∈ Kn
os has Lp-curvature function such that

ϕ = [cn,p(n + p)ωn]
−1 fp(Q, u) for u ∈ Sn−1.

From this, we know that

Cp ϕ = [cn,p(n + p)ωn]
−1Cp fp(Q, u),
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this together with (2.13) yields
ρ
−p
K = hp

ΠpQ,

this and (2.2) give K = Π∗pQ. But K /∈ P∗p , this leads to contradiction.
Therefore, choose F ∈ C∞

e (Sn−1) and is not identically zero, such that F ≤ 0 when
ϕ < 0; F = 0 when ϕ ≥ 0. From this, we have

(F, ϕ) =
1
n

∫
Sn−1

F(v)ϕ(v)dv > 0. (3.7)

And according to F ∈ C∞
e (Sn−1) and notice p is not an even integer, then by Theorem 2.1,

we know that there exists g ∈ C∞
e (Sn−1), such that F = Cpg. Because of ρK > 0 (K ∈ Sn

os),
thus there exists ε > 0, such that

[(n + p)cn,pV(K)]−1ρ
n+p
K − εg > 0.

Notice that
[(n + p)cn,pV(K)]−1ρ

n+p
K − εg ∈ C∞

e (Sn−1),

then there exist µ > 0 and L ∈ Sn
os is infinite smooth, such that

µρ
n+p
L = [(n + p)cn,pV(K)]−1ρ

n+p
K − εg.

This yields

µ(n + p)cn,pV(L)
Cpρ

n+p
L

(n + p)cn,pV(L)
=

Cpρ
n+p
K

(n + p)cn,pV(K)
− εCpg.

Thus, let µ(n + p)cn,pV(L) = 1 and together with (2.14), we obtain

hp
Γp L = hp

ΓpK − εF.

Since F ≤ 0 and p ≥ 1, it follows that ΓpK ⊂ ΓpL. But by (2.4), (2.5), (2.15), (2.16) and
(3.4a), we have

V(K)− Ṽ−p(L, K) = Ṽ−p(K, K)− Ṽ−p(L, K)

=(ρ
n+p
K , ρ

−p
K )− (ρ

n+p
L , ρ

−p
K ) = (ρ

n+p
K − ρ

n+p
L , ρ

−p
K )

=(ρ
n+p
K − ρ

n+p
L , Cp ϕ) = (Cpρ

n+p
K − Cpρ

n+p
L , ϕ)

=(hp
ΓpK − hp

Γp L, ϕ) = (εF, ϕ) = ε(F, ϕ) > 0.

This and inequality (2.6) yield

V(K) > Ṽ−p(L, K) ≥ V(L)
n+p

n V(K)−
p
n ,

i.e., V(K) > V(L). Clearly, by Theorem 1.3, we see L /∈ P∗p . �
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