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1 Introduction

In recent years, tensors have been applied to different applications in science and en-
gineering [1–3]. However, most of these applications assume that systems modelled
by tensors are deterministic and such assumption is not always true and practical in
problems involving tensor formulations. In recent years, more research results have
pioneered some theories about random tensors [4–6]. One important question in ran-
dom tensors is about concentration behavior of random tensors. In [7], we extend
Lapalace transform method and Lieb’s concavity theorem from matrices to tensors,
and apply these tools to generalize the classical bounds associated with the names
Chernoff, Bennett, and Bernstein from the scalar to the tensor setting. In [8], this
work extends previous work by considering the tail behavior of the top k-largest sin-
gular values of a function of the tensors summation, instead of the largest/smallest
singular value of the tensors summation directly (identity function) explored in [7].
Majorization and antisymmetric tensor product tools are main techniques utilized
to establish inequalities for unitarily norms of multivariate tensors. Random tensors
summation form discussed in [7,8] is linear form, i.e., each summand of random ten-
sors with degree one. In works [9, 10], we extend the Hanson-Wright inequality for
the maximum eigenvalue of the quadratic form of random Hermitian tensors under
Einstein product. We separate the quadratic form of random tensors into diagonal
summation and coupling (non-diagonal) summation parts. For the diagonal part, we
can apply Bernstein inequality to bound the tail probability of the maximum eigen-
value [11] of the summation of independent random Hermitian tensors directly. For
coupling summation part, we have to apply decoupling method first, i.e., decoupling
inequality to bound expressions with dependent random Hermitian tensors with in-
dependent random Hermitian tensors, before applying Bernstein inequality again to
bound the tail probability of the maximum eigenvalue of the coupling summation
of independent random Hermitian tensors. Previous works are based on tensors
with Einstein products. Since Kilmer et al. introduced the new multiplication
method between two third-order tensors around 2008 and third-order tensors with
such multiplication structure are also called as T-product tensors [12], T-product
tensors have been applied to many fields in science and engineering, such as tensor
computations [13–20], signal processing, image feature extraction, machine learning,
computer vision, and the multi-view clustering problem, etc. The discussion about
concentration behaviors based on T-product tensors can also be found in [21–23].

Inspired by operator mean theory (also called Kubo–Ando theory), we try to
consider other operations besides + (arithmetic mean) among tensors [24]. The
matrix mean for double operators can be expressed by Eq. (5:1:2) in [24], which has
the same formation of double operator integral theory discussed in [25]. In this work,
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we begin to define double tensor integrals (DTI) and consider the tail bound for the
unitarily invariant norm of random DTI, see Theorem 3.1. This bound can help us
to establish tail bounds for various types of tensor means besides arithmetic mean.
Since DTI can be used to express perturbation formula, i.e., an formula to relate the
tensor-valued function difference with respect the difference of the function input
tensors, we establish Lipschitz estimate for random tensors by the tail bound format,
see Theorem 4.1. We also generalize Lipschitz estimate for random tensors with
another quasi-commutator tensor, D by providing the tail bound for the unitarily
invariant norm of D?N f(A)−f(B)?ND in Theorem 4.2, where A,B are random
Hermitian tensors. We also establish a continuity for random DTI in the sense of
convergence in the random tensor mean. This continuity property helps us to obtain
the tail bounds for the unitarily invariant norm of the derivative of the tensor-valued
function under vanilla case and quasi-commutator case.

We define double tensor integrals (DTI) and randomness of DTI in Section 2.
The tail bound for the unitarily invariant norm of random DTI and its applica-
tions to obtain various tail bounds for different types of double tensors means like
arithmetic mean, geometric mean, harmonic mean, and general mean, are discussed
in Section 3. In Section 4, we establish Lipschitz estimates for random tensors by
the tail bound format for vanilla case and quasi-commutator case. We will estab-
lish continuity of random DTI based on the convergence in tensor mean of random
Hermitian tensors in Section 5. The application of DTI theory to acquire the tail
bound for the unitarily invariant norm of the derivative of the tensor-valued function
is presented by Section 6. Finally, the conclusions are given in Section 7.

2 Random double tensor integrals

The purpose of this section is to define random double tensor integrals (DTI). We
begin with the definition of DTI in Section 2.1. In Section 2.2, we will present what
are randomness objects at DTI discussed at this work.

Without loss of generality, one can partition the dimensions of a tensor into two
groups, say M and N dimensions, separately. Thus, for two order-(M+N) tensors:

X def
=(xi1,···,iM ,j1,···,jN )∈CI1×···×IM×J1×···×JN ,

Y def
=(yi1,···,iM ,j1,···,jN )∈CI1×···×IM×J1×···×JN ,

according to [26,27], the tensor addition X+Y∈CI1×···×IM×J1×···×JN is given by

(X+Y)i1,···,iM ,j1,···,jN
def
=xi1,···,iM ,j1,···,jN +yi1,···,iM ,j1,···,jN . (2.1)
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On the other hand, for tensors

X def
=(xi1,···,iM ,j1,···,jN )∈CI1×···×IM×J1×···×JN ,

Y def
=(yj1,···,jN ,k1,···,kL)∈CJ1×···×JN×K1×···×KL ,

according to [26, 27], the Einstein product (or simply referred to as tensor product
in this work) X ?NY∈CI1×···×IM×K1×···×KL is given by

(X ?NY)i1,···,iM ,k1,···,kL
def
=
∑

j1,···,jN

xi1,···,iM ,j1,···,jNyj1,···,jN ,k1,···,kL . (2.2)

One can find more preliminary facts about tensors based on Einstein product in [7,
26,27]. In the remaining of this paper, we will represent the scalar value I1×···×IN
by IN1 .

In order to define Hermitian tensor, the conjugate transpose operation (or Her-
mitian adjoint) of a tensor is specified as follows.

Definition 2.1. Given a tensor

A def
=(ai1,···,iM ,j1,···,jN )∈CI1×···×IM×J1×···×JN ,

its conjugate transpose, denoted by AH , is defined by

(AH)j1,···,jN ,i1,···,iM
def
=ai1,···,iM ,j1,···,jN , (2.3)

where the overline notion indicates the complex conjugate of the complex number
ai1,···,iM ,j1,···,jN . If a tensor A satisfies AH=A, then A is a Hermitian tensor. A ran-
dom Hermitian tensor is a Hermitian tensor with diagonal entries are real random
variables, and non-diagonal entries are complex random variables.

Definition 2.2. Given a tensor

A def
=(ai1,···,iM ,j1,···,jM )∈CI1×···×IM×J1×···×JM ,

if

AH ?MA=A?MAH =I ∈CI1×···×IM×J1×···×JM , (2.4)

then A is a unitary tensor.

Definition 2.3. Given a square tensor

A def
=(ai1,···,iM ,j1,···,jM )∈CI1×···×IM×I1×···×IM ,
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if there exists X ∈CI1×···×IM×I1×···×IM such that

A?MX =X ?MA=I, (2.5)

then X is the inverse of A. We usually write

X def
=A−1

thereby.

We also list other crucial tensor operations here. The trace of a tensor is equiv-
alent to the summation of all diagonal entries such that

Tr(A)
def
=

∑
1≤ij≤Ij , j∈[N ]

Ai1,···,iM ,i1,···,iM . (2.6)

The inner product of two tensors A, B∈CI1×···×IM×J1×···×JN is given by

〈A,B〉 def=Tr
(
AH ?MB

)
. (2.7)

2.1 Double tensor integrals

From Theorem 3.2 in [26], every Hermitian tensor H∈CI1×···×IN×I1×···×IN has the
following decomposition

H=

IN1∑
i=1

λiUi?1UHi with 〈Ui,Ui〉=1 and 〈Ui,Uj〉=0 for i 6=j

def
=

IN1∑
i=1

λiPUi , (2.8)

where Ui∈CI1×···×IN×1, and the tensor PUi is defined as Ui?1UHi . The values λi are
named as eigevalues. A Hermitian tensor with the decomposition shown by Eq. (2.8)
is named as eigen-decomposition. A Hermitian tensor H is a positive definite (or
positive semi-definite) tensor if all its eigenvalues are positive (or nonnegative).

Let A,B ∈ CI1×···×IN×I1×···×IN be Hermitian tensors with the following eigen-
decompositions:

A=

IN1∑
i=1

λiUi?1UHi
def
=

IN1∑
i=1

λiPUi , (2.9)
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and

B=

IN1∑
j=1

µjVi?1VHj
def
=

IN1∑
j=1

µjPVj . (2.10)

We define double tensor integrals (DTI) with respect to tensorsA, B and the function
ψ :R2→R, denoted by TA,B,ψ(X ), which can be expressed as

TA,B,ψ(X )=

IN1∑
i=1

IN1∑
j=1

ψ(λi,µj)PUi?NX ?NPVj . (2.11)

Lemma 2.1. Let ψ,φ:R2→R be two functions, we have following relationships about
TA,B,ψ(X ): Given ψ is a constant function to one, we have

(1) TA,B,1 =I. (2.12)

We also have:

(2) TA,B,ψ(φ)(X )=TA,B,ψ(X )◦TA,B,φ(X ), (2.13)

where ◦ is the entrywise product (Hadamard product), and ψ(φ) is the composition
of the function ψ and the function φ. Finally, we have

(3) TA,B,aψ+bφ(X )=aTA,B,ψ(X )+bTA,B,φ(X ), (2.14)

where a, b are two complex numbers.

Proof. Given a tensor X ∈CI1×···×IN×I1×···×IN with orthgonal unitary tensors {Ui}
and {Vj} such that

A=

IN1∑
i=1

λiUi?1UHi and B=

IN1∑
j=1

µjVj?1VHj ,

we define the scaler xi,j associated to X as

xi,j =〈X ?NVj,Ui〉. (2.15)

After selecting two specific indices i′ and j′, we have

〈TA,B,ψ(X )?NVj′ ,Ui′〉=ψ(λi′ ,µj′)〈X ?NVj′ ,Ui′〉=ψ(λi′ ,µj′)xi′,j′ . (2.16)

From Eq. (2.16) and the Hadamard product properties, we have properties provided
by Eqs. (2.12), (2.13) and (2.14) according to the identity matrix, matrix multipli-
cation and linearity of matrix operations properties.
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2.2 Random DTI

According to the DTI definition provided by Eq. (2.11), the random DTI considered
in this work is to assume that tensors A, B are random Hermitian tensors and
the remaining parameters ψ and X are deterministics. Therefore, we have the
randomness at the following terms in Eq. (2.11): ψ(λi,µj), PUi and PVj . If we are
provided more detailed probability density functions for entries of random Hermitian
tensors A, B, all bounds derived in this work can be improved with more dedicated
expressions associated with parameters of probability density functions.

3 Tail bound for random tensor integral norms

3.1 Unitarily invariant tensor norms

Let us represent the Hermitian eigenvalues of a Hermitian tensor H ∈
CI1×···×IN×I1×···×IN in decreasing order by the vector

~λ(H)=(λ1(H),··· ,λIN1 (H)).

We use R≥0(R>0) to represent a set of nonnegative (positive) real numbers. Let ‖·‖ρ
be a unitarily invariant tensor norm, i.e.,

‖H?NU‖ρ=‖U ?NH‖ρ=‖H‖ρ ,

where U is any unitary tensor. Let ρ:RIN1
≥0→R≥0 be the corresponding gauge function

that satisfies Hölder’s inequality so that

‖H‖ρ=‖|H|‖ρ=ρ(~λ(|H|)), (3.1)

where

|H| def=
√
HH ?NH.

We will provide several popular tensor norm examples which can be treated as
special cases of unitarily invariant tensor norm. The first one is Schatten p-norm
for tensors, denoted by ‖X‖p, is defined as:

‖X‖p
def
=(Tr|X |p)

1
p , (3.2)

where p≥1. If p=1, it is the trace norm.
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Given a Hermitian tensor X ∈CI1×···×IN×I1×···×IN , the second norm about such
tensor X is k-trace norm, denoted by Trk[X ]. It is defined in [28] as

Trk[X ]
def
=

∑
1≤i1<i2<···ik≤r

λi1λi1 ···λik , (3.3)

where 1≤k≤r and r=
∏N

i=1Ii. If k=1, Trk[X ] is reduced as trace norm.
The third one is Ky Fan k-norm [29] for tensors. For k∈{1,2,··· ,IN1 }, the Ky

Fan k-norm [29] for tensors X ∈CI1×···×IN×I1×···×IN , denoted by ‖X‖(k), is defined as:

‖X‖(k)

def
=

k∑
i=1

λi(|X |). (3.4)

If k=1, the Ky Fan k-norm for tensors is the tensor operator norm, denoted by ‖X‖.
In this work, we will apply the symbol ‖X‖ρ to represent any unitarily invariant
tensor norm for the tensor X .

In the following theorem, we will present the tail bound of unitarily invariant
tensor norm for a given tensor integral TA,B,ψ(X ). Given two random Hermitian
tensors A and B, they are independent if any entry of the random tensor A is
independent of any entry of the random tensor B.

Theorem 3.1. Let A,B∈CI1×···×IN×I1×···×IN be independent random Hermitian ten-
sors with

A=

IN1∑
i=1

λiUi?1UHi and B=

IN1∑
j=1

µjVj?1VHj ,

then, for any θ>0, we have

Pr
(
‖TA,B,ψ(X )‖ρ≥θ

)
≤
(
IN1
)2‖X‖ρ
θ

IN1∑
i=1

IN1∑
j=1

E(|ψ(λi,µj)|), (3.5)

where E is the expectation.

Proof. Since we have the following norm estimation for ‖TA,B,ψ(X )‖ρ:

‖TA,B,ψ(X )‖ρ=

∥∥∥∥∥∥
IN1∑
i=1

IN1∑
j=1

ψ(λi,µj)PUi?NX ?NPVj

∥∥∥∥∥∥
ρ

(3.6)
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≤1

IN1∑
i=1

IN1∑
j=1

|ψ(λi,µj)|
∥∥PUi?NX ?NPVj∥∥ρ

=2

IN1∑
i=1

IN1∑
j=1

|ψ(λi,µj)|‖X‖ρ , (3.7)

where ≤1 comes from triangle inequality of the unitarily invariant norm and =2

comes from the definition of the unitarily invariant norm.
Then, we have the following bound for Pr(‖TA,B,ψ(X )‖ρ≥θ)

Pr
(
‖TA,B,ψ(X )‖ρ≥θ

)
≤1 Pr

 IN1∑
i=1

IN1∑
j=1

|ψ(λi,µj)|‖X‖ρ≥θ


≤

IN1∑
i=1

IN1∑
j=1

Pr

(
|ψ(λi,µj)|≥

θ

‖X‖ρ(IN1 )
2

)

≤2

‖X‖ρ
(
IN1
)2

θ

IN1∑
i=1

IN1∑
j=1

E(|ψ(λi,µj)|), (3.8)

where ≤1 comes from the inequality obtained by Eq. (3.6), and the ≤2 is based on
Markov inequality.

We will consider several important examples of ψ, which will represent different
tensor means. Given two random Hermitian tensors

A=

IN1∑
i=1

λiUi?1UHi , B=

IN1∑
j=1

µjVj?1VHj ,

we use pλi( ) and pµj( ) to represent the probability density functions for eigenvalues
λi and µj, respectively. From Section 2.2. in [26], one can apply unfolding tech-
nique to convert a random Hermitian tensor into a Hermitian matrix. If we have
Assumption 3.1 in [30], we are able to obtain the i-th eigenvalue distribution of a
positive definite Hermitian tensor, see Corollary 3.3 in [30].

Corollary 3.1 (Arithmetic Mean). Under conditions provided by Theorem 3.1, if
the function ψ has the following form:

ψ(x,y)=
x+y

2
, (3.9)
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we have

Pr

(∥∥∥TA,B,ψ=x+y
2

(X )
∥∥∥
ρ
≥θ
)
≤
(
IN1
)2‖X‖ρ
2θ

IN1∑
i=1

IN1∑
j=1

[E(|λi|)+E(|µj|)], (3.10)

where

E(|λi|)=

∫ ∞
0

t[pλi(t)+pλi(−t)]dt, (3.11)

and

E(|µj|)=

∫ ∞
0

t
[
pµj(t)+pµj(−t)

]
dt. (3.12)

Proof. The key is to evaluate E(|ψ(λi,µj)|), we have

E(|ψ(λi,µj)|)=E
(∣∣∣∣λi+µj2

∣∣∣∣)
≤1

2
E(|λi|)+

1

2
E(|µj|). (3.13)

This corollary is proved by the following fact for a random variable Y = |X|, where
|·| is the abolute value operator:

FY (y)=

{
FX(y)−FX(−y), y≥0,

0, y<0,
(3.14)

where FY (y) and FX(y) are CDFs of random variables Y and X. The variables y
in FY (y) and FX(y) are function arguments in CDFs FY (y) and FX(y).

Corollary 3.2 (Geometric Mean). Under conditions provided by Theorem 3.1 with
the assumption that A and B are random positive definite tensors, if the function ψ
has the following form:

ψ(x,y)=
√
xy, (3.15)

we have

Pr
(∥∥TA,B,ψ=

√
xy(X )

∥∥
ρ
≥θ
)
≤
(
IN1
)2‖X‖ρ
θ

IN1∑
i=1

IN1∑
j=1

[
E
(√

λi

)
E
(√

µj
)]
, (3.16)

where

E
(√

λi

)
=

∫ ∞
0

√
tpλi(t)dt, E

(√
µj
)

=

∫ ∞
0

√
tpµj(t)dt. (3.17)
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Proof. To evaluate E(
√
λiµj), we have

E(|ψ(λi,µj)|)=E
(√

λiµj

)
=E
(√

λi

)
E
(√

µj
)
. (3.18)

Thus, we complete the proof.

Corollary 3.3 (Harmonic Mean). Under conditions provided by Theorem 3.1 with
the assumption that A and B are random positive definite tensors, if the function ψ
has the following form:

ψ(x,y)=
2

x−1+y−1
, (3.19)

we have

Pr

(∥∥∥TA,B,ψ= 2
x−1+y−1

(X )
∥∥∥
ρ
≥θ
)
≤

2
(
IN1
)2‖X‖ρ
θ

IN1∑
i=1

IN1∑
j=1

∫ ∞
0

Hλi(t)Hµj(t)dt, (3.20)

where

Hλi(t)=

∫ ∞
0

e−tw

w2
pλi (1/w)dw, Hµj(t)=

∫ ∞
0

e−tz

z2
pµj (1/z)dz. (3.21)

Proof. Let X and Y are two positive random variables with distribution functions
fX(x) and fY (y). Then, we have

E
(

2

X−1+Y −1

)
=1E

(
2

W+Z

)
=2E

(∫ ∞
0

exp(−t(W+Z))dt

)
=2

∫ ∞
0

E(exp(−t(W+Z)))dt

=2 2

∫ ∞
0

E(exp(−tW ))E(exp(−tZ))dt, (3.22)

where we set W =X−1 and Z = Y −1 at =1 and we use independent assumptions
of random variables W =X−1 and Z =Y −1 at =2. This corollary is proved since
we have following distribution functions for random variables W and Z, which will
correspond to random variables λi and µj, expressed as

f(w)=
1

w2
pλi (1/w), f(z)=

1

z2
pµj (1/z). (3.23)

Thus, we complete the proof.
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We have to prepare a lemma about the expectation of ratio between two depen-
dent random variables before presenting the next corollary.

Lemma 3.1. Given two random variables X and Y such that Y 6=0 always, we have

E
(
X

Y

)
=
E(X)

E(Y )
+lim
ε→0

∞∑
i=1

(−1)i
[
E(X)E(Ý i)+E(X́Ý i)

]
i∏

j=0

(E(Y )+jε)

, (3.24)

where we define the following random variables:

X́
def
=X−E(X), Ý

def
=Y −E(Y ). (3.25)

Proof. We have the following expression about E(X
Y

), it is

E
(X
Y

)
=E

E(X)

E(Y )
×

1+ X́
E(X)

1+ Ý
E(Y )


=
E(X)

E(Y )
E

(1+
X́

E(X)

)(
1+

Ý

E(Y )

)−1


=
E(X)

E(Y )
E

(1+
Ý

E(Y )

)−1
+

1

E(Y )
E

X́(1+
Ý

E(Y )

)−1
. (3.26)

Given a real function g, we have the following approximation form:

g(a+x)=lim
ε→0

∞∑
i=0

xi∆i
εg(a)

εii!
, (3.27)

where ∆i
ε is the finite difference operator of degree i and the step size ε is defined as

∆i
εg(a)=

i∑
j=0

(−1)j
(
i

j

)
g(a+(i−j)ε). (3.28)

If we apply Eq. (3.27) to the following function at Ý =0

g(Ý )=

(
1+

Ý

E(Y )

)−1

, (3.29)
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we will get (
1+

Ý

E(Y )

)−1

=lim
ε→0

∞∑
i=0

(−1)i(Ý )iE(Y )
i∏

j=0

(E(Y )+jε)

. (3.30)

This lemma is proved by applying Eq (3.30) to Eq. (3.26).

Following corollary is about the unitarily invariant norm tail bound for the two
tensors mean general format. Note that we have logarithmic mean if α→ 1 in
Eq. (3.32).

Corollary 3.4 (General Mean). Under conditions provided by Theorem 3.1 with the
assumption that A and B are random positive definite tensors, if the function ψ has
the following form:

ψ(x,y)=
α−1

α

xα−yα

xα−1−yα−1
, (3.31)

where α∈R and x 6=y (if x=y, this situation has measure zero). Then we have

Pr

(∥∥∥∥TA,B,ψ=α−1
α

xα−yα
xα−1−yα−1

(X )

∥∥∥∥
ρ

≥θ

)
(3.32)

≤
(
IN1
)2‖X‖ρ(α−1)

θα

×
IN1∑
i=1

IN1∑
j=1


E
(
Xλi,µj

)
E
(
Yλi,µj

) +lim
ε→0

∞∑
ı=1

(−1)ı
[
E(Xλi,µj )E((Ýλi,µj )

ı)+E(X́λi,µj (Ýλi,µj )
ı)
]

ı∏
=0

(E(Yλi,µj )+ε)

,
where random variables Xλi,µj and Yλi,µj are defined by

Xλi,µj =λαi −µαj , (3.33)

and

Yλi,µj =λα−1
i −µα−1

j . (3.34)

Proof. Since |ψ(λi,µj)| is

ψ(λi,µj)=
α−1

α

λαi −µαj
λα−1
i −µα−1

j

=
α−1

α

Xλi,µj

Yλi,µj
, (3.35)

this corollary is proved by applying Lemma 3.1 to the expectation of Eq. (3.35).

Note that each of the following terms E
(
Xλi,µj

)
, E
(
Yλi,µj

)
, E((Ýλi,µj)

ı) and

E(X́λi,µj(Ýλi,µj)
ı) can be evaluated exactly since we know all density distributions

pλi( ) and pµj( ).
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4 Tail bounds for random Lipschitz estimates

In this section, we will try to provide tail bounds for the Lipschitz estimate for the
unitarily invariant norm for a given function, which is the main result of this section.
We will begin with the perturbation lemma. The vanilla case is discussed in Sec-
tion 4.1. The case about considering quasi-commutator is provided by Section 4.2.

4.1 Vanilla case

We will begin by providing a perturbation formula for DTI.

Lemma 4.1. Let A,B∈CI1×···×IN×I1×···×IN be Hermitian tensors with

A=

IN1∑
i=1

λiUi?1UHi and B=

IN1∑
j=1

µjVj?1UVj .

Also, let f :R→R such that f ′(x) exists, we define the bivariate function f [1] as

f [1](x,y)=


f(x)−f(y)

x−y
, x 6=y,

f ′(x), x=y.

(4.1)

Then, we have

f(A)−f(B)=TA,B,f [1] (A−B). (4.2)

Proof. Since we have

A=

IN1∑
i=1

λiUi?1UHi , B=

IN1∑
j=1

µjUj?1UHj , (4.3)

then, we will obtain the following

f(A)=

IN1∑
i=1

f(λi)Ui?1UHi , f(B)=

IN1∑
j=1

f(µj)Vj?1VHj . (4.4)

Because, we also have

f(A)?NUi=f(λi)?NUi, f(B)?NVj =f(µj)?NVj, (4.5)
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then, we have

〈(f(A)−f(B)?NVj,Ui)〉=f [1](λi,µj)〈(A−B)?NVj,Ui〉. (4.6)

By applying Eq. (2.11) definition and Eq. (2.16) to Eq. (4.6), thus this Lemma is
proved.

From perturbation formula given by Lemma 4.1, we can have the following theo-
rem about the tail bounds of the unitarily invariant norm for the Lipschitz estimate
of tensor-valued function with random tensors as inputs.

Theorem 4.1. Let A,B∈CI1×···×IN×I1×···×IN be independent random Hermitian ten-
sors with

A=

IN1∑
i=1

λiUi?1UHi and B=

IN1∑
j=1

µjVj?1VHj ,

moreover, we are given a real valued function f(x) for x∈R such that
∣∣f [1](x,y)

∣∣ is
bounded by a positive number denoted by Ωf [1]. Then, for any θ>0, we have

Pr
(
‖f(A)−f(B)‖ρ≥θ

)
≤
(
IN1
)2

Ωf [1]

θ
E
(
‖A−B‖ρ

)
. (4.7)

Proof. We have

‖f(A)−f(B)‖ρ=
∥∥TA,B,f [1] (A−B)

∥∥
ρ

=

∥∥∥∥∥∥
IN1∑
i=1

IN1∑
j=1

f [1](λi,µj)PUi?N (A−B)?NPVj

∥∥∥∥∥∥
ρ

≤1

IN1∑
i=1

IN1∑
j=1

∣∣f [1](λi,µj)
∣∣∥∥PUi?N (A−B)?NPVj

∥∥
ρ

=2

IN1∑
i=1

IN1∑
j=1

∣∣f [1](λi,µj)
∣∣‖A−B‖ρ

≤3

(
IN1
)2

Ωf [1]‖A−B‖ρ , (4.8)

where ≤1 comes from triangle inequality of the unitarily invariant norm, =2

comes from the definition of the unitarily invariant norm, and ≤3 is due to that∣∣f [1](λi,µj)
∣∣≤Ωf [1] (mean value theorem of divide difference).
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Then, we have the following bound for Pr(‖f(A)−f(B)‖ρ≥θ)

Pr
(
‖f(A)−f(B)‖ρ≥θ

)
≤1 Pr

((
IN1
)2

Ωf [1]‖A−B‖ρ≥θ
)

≤2

(
IN1
)2

Ωf [1]

θ
E
(
|A−B|ρ

)
, (4.9)

where ≤1 comes from the inequality obtained by Eq. (4.8), and the ≤2 is based on
Markov inequality.

Since the upper bound Ωf [1] depends on f(x), we will consider the following two
corollaries about special types of the function f(x).

Corollary 4.1 (Lipschitz Estimate for Polynomial Functions). Let A,B ∈
CI1×···×IN×I1×···×IN be independent random Hermitian tensors with

A=

IN1∑
i=1

λiUi?1UHi and B=

IN1∑
j=1

µjVj?1VHj .

Besides, we are given a real polynomial function f(x) with degree m over an interval
[a,b]. For any θ>0, we have

Pr
(
‖f(A)−f(B)‖ρ≥θ

)
≤ 1

θ

(
IN1
)2

m∑
k=1

∣∣∣f (k)(x∗(k))
∣∣∣(b−a)k

k!
E
(
‖A−B‖ρ

)
, (4.10)

where x∗(k) is the maximizer to reach the maximum value for the function |f (k)(x)|,
i.e., the absolute value of the k-th derivative, in the interval [a,b].

Proof. If we perform Tayler expansion for the function f at x, we have

f(y)=f(x)+f ′(x)(y−x)+f ′′(x)
(y−x)2

2!
+f ′′′(x)

(y−x)3

3!
+··· , (4.11)

which is equivalent to have

f(y)−f(x)

y−x
=f ′(x)+f ′′(x)

(y−x)

2!
+f ′′′(x)

(y−x)2

3!
+··· . (4.12)

Because the polynomial function f has degree m, from Eq. (4.11), we have the
following bound from triangle inequality:∣∣∣∣f(y)−f(x)

y−x

∣∣∣∣=
∣∣∣∣∣
m∑
k=1

f (k)(x)(y−x)k

k!

∣∣∣∣∣
≤

m∑
k=1

∣∣∣f (k)(x∗(k))
∣∣∣(b−a)k

k!
, (4.13)
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where x∗(k) is the maximizer to reach the maximum value for the function |f (k)(x∗(k))|
in the interval [a,b]. This corollary is proved by Theorem 4.1.

Following corollary is about Lipschitz estimate for polygamma functions. Recall
that a digamma function ω(x) is defined as

ω(x)=
Γ′(x)

Γ(x)
, (4.14)

where Γ(x)=
∫∞

0
e−ttx−1dt [31]. Then polygamma functions are defined as the k-th

derivative ω(k)(x) for any k∈N.

Corollary 4.2 (Lipschitz Estimate for Polygamma Functions). Let A,B ∈
CI1×···×IN×I1×···×IN be independent random positive definite tensors with

A=

IN1∑
i=1

λiUi?1UHi and B=

IN1∑
j=1

µjVj?1VHj .

Besides, we are given a polygamma function ω(k)(x) for any k∈N and x> 0. For
any θ>0, we have

Pr
(∥∥ω(k)(A)−ω(k)(B)

∥∥
ρ
≥θ
)
≤
(
IN1
)2

Ωω[k+1]

θ
E
(
‖A−B‖ρ

)
, (4.15)

where

Ωω[k+1] =max

{
ω(k+1)

(
1

e

(
(b∗)b

∗

(a∗)a∗

) 1
b∗−a∗

)
, ω(k+1)(x∗)

}
. (4.16)

The values a∗ and b∗ are the maximizers of the function

ω(k+1)

(
1

e

(
bb

aa

) 1
b−a
)

given a 6=b and a,b>0. The value x∗ is the maximizer of the function ω(k+1)(x) given
x>0.

Proof. This corollary is proved according to Theorem 4.1 by applying Theorem 1
from [31] to Eq. (4.14).



18 S. Chang and Y. Wei / Ann. Appl. Math., 39 (2023), pp. 1-28

4.2 Quasi-commutator case

In this section, we will extend the perturbation formula provided by Lemma 4.2
to the quasi-commutator D?A−B?D. Tail bouns based on the quasi-commutator
D?A−B?D will be given in this section.

Lemma 4.2. Let A,B∈CI1×···×IN×I1×···×IN be random Hermitian tensors with

A=

IN1∑
i=1

λiUi?1UHi and B=

IN1∑
j=1

µjVj?1VHj .

Besides, we have the function f :R→R such that f ′(x) exists, then, we have

D?N f(A)−f(B)?ND=TA,B,f [1] (D?NA−B?ND), (4.17)

where f [1] has been defined by Eq. (4.1).

Proof. Since we have

A=

IN1∑
i=1

λiUi?1UHi , B=

IN1∑
j=1

µjVj?1VHj , (4.18)

then, we will obtain the following

D?NA=TA,I,λi?ND, B?ND=TI,B,µj ?ND. (4.19)

By applying Lemma 2.1, we have

TA,B,f [1] (D?NA−B?ND)

=TA,B,f [1]
(
TA,I,λi?ND−TI,B,µj ?ND

)
=TA,B,f [1](λi,µj)(D)

=TA,B,f(λi)−f(µj)(D)

=D?N f(A)−f(B)?ND. (4.20)

This completes the proof.

Following theorem is the tail bound for D?N f(A)−f(B)?ND.

Theorem 4.2. Let A,B∈CI1×···×IN×I1×···×IN be independent random Hermitian ten-
sors with

A=

IN1∑
i=1

λiUi?1UHi and B=

IN1∑
j=1

µjVj?1VHj ,
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moreover, we are given a real valued function f(x) for x∈R such that f ′(x) exists
and |f ′(x)| is bounded by a positive number denoted by Ωf [1]. Then, for any θ>0,
we have

Pr
(
‖D?N f(A)−f(B)?ND‖ρ≥θ

)
≤
(
IN1
)2

Ωf [1]

θ
E
(
‖D?NA−B?ND‖ρ

)
. (4.21)

Proof. From Lemma 4.2, we have

‖D?N f(A)−f(B)?ND‖ρ
=
∥∥TA,B,f [1] (D?NA−B?ND)

∥∥
ρ

=

∥∥∥∥∥∥
IN1∑
i=1

IN1∑
j=1

f [1](λi,µj)PUi?N (D?NA−B?ND)?NPVj

∥∥∥∥∥∥
ρ

≤1

IN1∑
i=1

IN1∑
j=1

∣∣f [1](λi,µj)
∣∣∥∥PUi?N (D?NA−B?ND)?NPVj

∥∥
ρ

=2

IN1∑
i=1

IN1∑
j=1

∣∣f [1](λi,µj)
∣∣‖D?NA−B?ND‖ρ

≤3

(
IN1
)2

Ωf [1]‖D?NA−B?ND‖ρ , (4.22)

where ≤1 comes from triangle inequality of the unitarily invariant norm, =2

comes from the definition of the unitarily invariant norm, and ≤3 is due to that∣∣f [1](λi,µj)
∣∣≤Ωf [1] (mean value theorem of divide difference).

Then, we have the following bound for Pr(‖D?N f(A)−f(B)?ND‖ρ≥θ)

Pr
(
‖D?N f(A)−f(B)?ND‖ρ≥θ

)
≤1Pr

((
IN1
)2

Ωf [1]‖D?NA−B?ND‖ρ≥θ
)

≤2

(
IN1
)2

Ωf [1]

θ
E
(
‖D?NA−B?ND‖ρ

)
, (4.23)

where ≤1 comes from the inequality obtained by Eq. (4.22), and the ≤2 is based on
Markov inequality.

Similar to Corollaries 4.1 and 4.2, we have following two corollaries for Lipschitz
estimate for polynomial and polygamma under quasi-commutator case.
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Corollary 4.3 (Lipschitz Estimate for Polynomial Functions, Quasi-Commutator
Case). Let A,B∈CI1×···×IN×I1×···×IN be independent random Hermitian tensors with

A=

IN1∑
i=1

λiUi?1UHi and B=

IN1∑
j=1

µjVj?1VHj .

Besides, we are given a real polynomial function f(x) with degree m over an interval
[a,b]. For any θ>0, we have

Pr
(
‖D?N f(A)−f(B)?ND‖ρ≥θ

)
≤1

θ

(
IN1
)2

m∑
k=1

∣∣∣f (k)(x∗(k))
∣∣∣(b−a)k

k!
E
(
‖D?NA−B?ND‖ρ

)
, (4.24)

where x∗(k) is the maximizer to reach the maximum value for the function |f (k)(x∗(k))|
in the interval [a,b].

Proof. If we perform Tayler expansion for the function f at x, we have

f(y)=f(x)+f ′(x)(y−x)+f ′′(x)
(y−x)2

2!
+f ′′′(x)

(y−x)3

3!
+··· , (4.25)

which is equivalent to have

f(y)−f(x)

y−x
=f ′(x)+f ′′(x)

(y−x)

2!
+f ′′′(x)

(y−x)2

3!
+··· . (4.26)

Because the polynomial function f has degree m, from Eq. (4.11), we have the
following bound from triangle inequality:∣∣∣∣f(y)−f(x)

y−x

∣∣∣∣=
∣∣∣∣∣
m∑
k=1

f (k)(x)(y−x)k

k!

∣∣∣∣∣≤
m∑
k=1

∣∣∣f (k)(x∗(k))
∣∣∣(b−a)k

k!
, (4.27)

where x∗(k) is the maximizer to reach the maximum value for the function |f (k)(x∗(k))|
in the interval [a,b]. This corrollary is proved by Theorem 4.2.

Corollary 4.4 (Lipschitz Estimate for Polygamma Functions: Quasi-Commutator
Case). Let A,B∈CI1×···×IN×I1×···×IN be independent random positive definite tensors
with

A=

IN1∑
i=1

λiUi?1UHi and B=

IN1∑
j=1

µjVj?1VHj .
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Besides, we are given a polygamma function ω(k)(x) for any k∈N and x> 0. For
any θ>0, we have

Pr
(∥∥D?Nω(k)(A)−ω(k)(B)?ND

∥∥
ρ
≥θ
)

≤
(
IN1
)2

Ωω[k+1]

θ
E
(
‖D?NA−B?ND‖ρ

)
, (4.28)

where

Ωω[k+1] =max

{
ω(k+1)

(
1

e

(
(b∗)b

∗

(a∗)a∗

) 1
b∗−a∗

)
, ω(k+1)(x∗)

}
. (4.29)

The values a∗ and b∗ are the maximizers of the function

ω(k+1)

(
1

e

(
bb

aa

) 1
b−a
)

given a 6=b and a,b>0. The value x∗ is the maximizer of the function ω(k+1)(x) given
x>0.

Proof. This corollary is proved by applying Theorem 1 from [31] to Eq. (4.14) and
Theorem 4.2.

5 Continuity of random tensor integral

In this section, we will establish continuity of DTI. We need the following definition
to define the convergence in mean for random tensors.

Definition 5.1. We say that a sequence of random tensor {Xn} converges in the
r-th mean towards the random tensor X with respect to the tensor norm ‖·‖ρ, if we
have

E
(
‖Xn‖rρ

)
exists, E

(
‖X‖rρ

)
exists, (5.1)

and

lim
n→∞

E
(
‖Xn−X‖rρ

)
=0. (5.2)

We adopt the notation Xn
r−→X to represent that random sequence of tensors {Xn}

converges in the r-th mean to the random tensor X with respect to the tensor norm
‖·‖ρ.
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Besides random tensor convergence definition, we also need to define triple tensor
integral and second-order divide difference.

We define triple tensor integrals (TTI) with respect to Hermitian tensorsA,B,C∈
CI1×···×IN×I1×···×IN such that

A=

IN1∑
i=1

λiUi?1UHi
def
=

IN1∑
i=1

λiPUi ,

B=

IN1∑
j=1

µjVj?1VHj
def
=

IN1∑
j=1

µjPVj ,

C=

IN1∑
k=1

νkWj?1WH
j

def
=

IN1∑
k=1

νkPWk
.

Given the function ϕ :R3→R, the TTI associated with tensors A, B, C and the
function ϕ, denoted by TA,B,C,ϕ(X ,Y), can be expressed as

TA,B,C,ϕ(X ,Y)=

IN1∑
i=1

IN1∑
j=1

IN1∑
k=1

ϕ(λi,µj,νk)PUi?NX ?NPVj ?NY?NPWj
, (5.3)

where X ,Y∈CI1×···×IN×I1×···×IN .
The second-order divide difference for a function f(x) (All functions f discussed

in this work involving divide difference are assumed to be differentiable at any orders
over the whole real domain), denoted by f [2](x,y,z), can be defined as

f [2](x,y,z)
def
=
f [1](y,z)−f [1](x,y)

z−x
. (5.4)

Lemma 5.1. Given three Hermitian tensors A,B,C∈CI1×···×IN×I1×···×IN such that

A=

IN1∑
i=1

λiUi?1UHi
def
=

IN1∑
i=1

λiPUi ,

B=

IN1∑
j=1

µjVj?1VHj
def
=

IN1∑
j=1

µjPVj ,

C=

IN1∑
k=1

νkWj?1WH
j

def
=

IN1∑
k=1

νkPWk
,
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and the function f(x) with f [2](x) bounded by Ωf [2], we then have the following norm
estimate for TA,B,C,ϕ(X ,Y):

‖TA,B,C,ϕ(X ,Y)‖ρ≤
(
IN1
)3

Ωf [2]‖X‖ρ ·‖Y‖ρ . (5.5)

Proof. Since we have

‖TA,B,C,ϕ(X ,Y)‖ρ=

∥∥∥∥∥∥
IN1∑
i=1

IN1∑
j=1

IN1∑
k=1

ϕ(λi,µj,νk)PUi?NX ?NPVj ?NY?NPWj

∥∥∥∥∥∥
ρ

≤1

IN1∑
i=1

IN1∑
j=1

IN1∑
k=1

|ϕ(λi,µj,νk)|
∥∥PUi?NX ?NPVj ?NY?NPWj

∥∥
ρ

≤2

IN1∑
i=1

IN1∑
j=1

IN1∑
k=1

|ϕ(λi,µj,νk)|‖X‖ρ ·‖Y‖ρ

≤
(
IN1
)3

Ωf [2]‖X‖ρ ·‖Y‖ρ , (5.6)

where ≤1 comes from triangle inequality of the unitarily invariant norm and ≤2

comes from the definition of the unitarily invariant norm and submultiplicative prop-
erty of any unitarily invariant norm.

Following theorem is about the continuity of a tensor integral.

Theorem 5.1. Let An,A,Bn,B∈CI1×···×IN×I1×···×IN be random Hermitian tensors
such that

An
r−→A and Bn

r−→B, (5.7)

where 1≤ r<∞. Moreover, a real-valued function f(x) for x∈R such that f [2](x)
exists and bounded by Ωf [2], respectively. Then, we have

TAn,Bn,f [1](X )
r−→TA,B,f [1](X ), (5.8)

where X ∈CI1×···×IN×I1×···×IN is a fixed tensor.

Proof. From Lemma 4.1 and telescoping summation, we have the following:∥∥TAn,Bn,f [1](X )−TA,B,f [1](X )
∥∥
ρ

=
∥∥TAn,Bn,f [1](X )−TA,Bn,f [1](X ) +TA,Bn,f [1](X )−TA,B,f [1](X )

∥∥
ρ

=1

∥∥TAn,A,Bn,f [2](An−A,X )+TA,Bn,B,f [2](X,Bn−B)
∥∥
ρ

≤Ωf [2]‖An−A‖ρ‖X‖ρ+Ωf [2]‖Bn−B‖ρ‖X‖ρ , (5.9)
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where =1 is obtained from the f [2] definition given by Eq. (5.4), and the ≤ comes
from Lemma 5.1 and triangle inequality.

By raising the power r and taking the expectation at the both sides of the
inequality provided by Eq. (5.9), we have proved this theorem by conditions given
by Eq. (5.7) and the following inequality:

(a+b)r≤2r(ar+br) given a,b≥0. (5.10)

Thus, we complete the proof.

6 Applications of tensor integral

In this section, we will apply Theorem 5.1 and perturbation formulas provided by
Lemma 4.1 and Lemma 4.2 to bound the tail probability of the derivative of tensor-
valued function norm.

Given a fixed perturbation tensor X ∈CI1×···×IN×I1×···×IN with respect to the
random Hermitian tensor A∈CI1×···×IN×I1×···×IN , and a tensor-valued function f(x),
we define the derivative of f(x) at A with respect to the perturbation X , represented
by f ′X (A), as

f ′X (A)
def
=lim
t→0

f(A+tX )−f(A)

t
. (6.1)

Following theorem is about the tail bound for the norm of f ′X (A).

Theorem 6.1. Given a fixed perturbation tensor X ∈CI1×···×IN×I1×···×IN and a ran-
dom Hermitian tensor A∈CI1×···×IN×I1×···×IN with a tensor-valued function f(x).
Suppose we have

A=

IN1∑
i=1

λiPUi .

Then, we have the tail bound for ‖f ′X (A)‖ρ as

Pr
(
‖f ′X (A)‖ρ≥θ

)
≤
(
IN1
)2‖X‖ρ
θ

IN1∑
i=1

IN1∑
j=1

E
(∣∣f [1](λi,λj)

∣∣). (6.2)

Proof. From Lemma 4.1, we have

f(A+tX )−f(A)=TA+tX ,A,f [1] (A+tX−A). (6.3)
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Then, we have

f(A+tX )−f(A)

t
=TA+tX ,A,f [1] (X ). (6.4)

From Theorem 5.1, we have

f ′X (A)=lim
t→0

f(A+tX )−f(A)

t

r−→TA,A,f [1] (X ). (6.5)

Since the convergence in the r-th mean implies the convergence in probability, we
then have

Pr
(
‖f ′X (A)‖ρ≥θ

)
=Pr

(∥∥TA,A,f [1] (X )
∥∥
ρ
≥θ
)

≤
(
IN1
)2‖X‖ρ
θ

IN1∑
i=1

IN1∑
j=1

E
(∣∣f [1](λi,λj)

∣∣), (6.6)

where the inequality comes from Theorem 3.1

The commutator of a tensor A∈CI1×···×IN×I1×···×IN with respect to the tensor
B∈CI1×···×IN×I1×···×IN if we have A?NB=B?NA.

Given a fixed perturbation tensor X ∈CI1×···×IN×I1×···×IN with respect to the
random Hermitian tensor A∈CI1×···×IN×I1×···×IN , and a tensor-valued function f(x),
we define the derivative of f(x) at A with respect to the perturbation X and the
commutator tensor D∈CI1×···×IN×I1×···×IN of A, represented by f ′X |D(A), as

f ′X |D(A)
def
=lim
t→0

D?N f(A+tX )−f(A)?ND
t

. (6.7)

Following theorem is about the tail bound for the norm of f ′X |D(A).

Theorem 6.2. Given a fixed perturbation tensor X ∈CI1×···×IN×I1×···×IN and a ran-
dom Hermitian tensor A∈CI1×···×IN×I1×···×IN with a tensor-valued function f(x).
Suppose we have

A=

IN1∑
i=1

λiPUi

and the tensor D∈CI1×···×IN×I1×···×IN is the commutator of the tensor A. Then, we
have the tail bound for ‖f ′X |D(A)‖ρ as

Pr
(∥∥f ′X |D(A)

∥∥
ρ
≥θ
)
≤
(
IN1
)2‖D?NX‖ρ

θ

IN1∑
i=1

IN1∑
j=1

E
(∣∣f [1](λi,λj)

∣∣). (6.8)
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Proof. From Lemma 4.2, we have

D?N f(A+tX )−f(A)?ND=TA+tX ,A,f [1] (D?N (A+tX )−A?ND). (6.9)

Also, from D?NA=A?ND, we also have

D?N f(A+tX )−f(A)?ND
t

=TA+tX ,A,f [1] (D?NX ). (6.10)

From Theorem 5.1, we have

f ′X |D(A)=lim
t→0

D?N f(A+tX )−f(A)?ND
t

r−→TA,A,f [1] (D?NX ). (6.11)

Since the convergence in the r-th mean implies the convergence in probability, we
then have

Pr
(∥∥f ′X |D(A)

∥∥
ρ
≥θ
)

=Pr
(∥∥TA,A,f [1] (D?NX )

∥∥
ρ
≥θ
)

≤
(
IN1
)2‖D?NX‖ρ

θ

IN1∑
i=1

IN1∑
j=1

E
(∣∣f [1](λi,λj)

∣∣), (6.12)

where the inequality comes from Theorem 3.1 again.

7 Conclusions

We first define the definition of the random DTI and derive the tail bound of the
unitarily invariant norm for a random DTI. This bound assists us to establish tail
bounds of the unitarily invariant norm for various types of dual tensor means, e.g.,
arithmetic mean, geometric mean, harmonic mean, and general mean. The random
DTI is also being applied to build the random Lipschitz estimate in contexts of
random tensors. Finally, we derive the continuity property for random DTI in the
sense of convergence in the random tensor mean, and apply this fact to obtain the
tail bound of the unitarily invariant norm for the derivative of the tensor-valued
function. Possible future works will be to extend DTI to multiple tensor integrals.
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