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Abstract. In this study, we develop a set of ordinary differential equations that
represents the dynamics of an ecosystem with two predators and one prey, but
only the first predator population is affected by an infectious disease. The Lotka-
Volterra predator-prey system’s model stability have been examined using the
Takagi-Sugeno (T-S) impulsive control model and the Fuzzy impulsive control
model. Following the formulation of the model, the global stabilities and the
Fuzzy solution are carried out through numerical simulations and graphical rep-
resentations with appropriate discussion for better understanding the dynamics
of our proposed model.
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1 Introduction

One of the most popular subjects in biomathematics is population dynamics. There
has always been an unique interest in the study of population evolution, begin-
ning with populations of a single species and progressing to more realistic models
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where various species coexist and communicate with one another in the same ecosys-
tem. Between these, we can find models that look at predator-prey relationships,
symbiosis, or competitive connections. Since the well-known Lotka-Volterra model
was developed and the major issues with ecological processes were resolved [1, 36],
mathematical models are frequently used by applied mathematicians to analyse the
intricate interactions between predators and prey. The classical ecological models
of interacting populations typically have focused on two species. The literature has
looked into continuous time models of two interacting species in great detail [16].
These models can only display the following two basic patterns mathematically:
approach to a limit cycle or a steady state [17]. However, it has been found that
ecological groups in nature have extremely complicated dynamical tendencies. Ac-
cording to Price et al. [27] community behaviour needs to be based on at least
three trophic levels. There are reports of more intricate patterns in three species
continuous time models [2, 14,20,21,26,32,33,38].

One of the most intriguing areas in mathematical biology is the interaction be-
tween predators and prey. The well-known Lotka-Volterra predator-prey model
is the first mathematical representation of the interaction between predators and
prey [37], which is a two-species model. Some scholars have noted that population
models with two species can’t accurately capture the real world [15,31], and models
with three or more species can only depict a significant number of crucial behaviours.
The advancement of mathematics also demonstrated that three-species food chain
models have significantly more detailed features than two-species models [8, 34].

Since the impact of infectious diseases on the ecological system regulates popu-
lation size, researchers have recently become more interested in the fusion of ecology
and epidemiology. There are a lot of prey-predator models that have infectious in-
fections. The dynamics of the prey-predator system with disease in the prey and
predator populations were hypothesised and examined by [6, 7], Haque and Ven-
turino [22], Haque et al. [23,24], Xiao and Chen [40,41], Zhou et al. [42], Tewa [12],
Hethcote [9], Hudson [28], recently, Deng [25] etc. Additionally, numerous research
studies have explored the dynamic behaviour of the predator-prey system with in-
fection in the predator population. [7]. There are also several scholars who have
studied eco-epidemic models where predator populations are infected through con-
suming prey, such as Anderson and May [30], Hadeler and Freedman [13] etc. The
dynamics of a predator-prey model with disease in both prey and predator pop-
ulations were proposed by Hsieh and Hsiao [43]. Additionally, some researchers
have developed eco-epidemic models with optimal control [3] and with temporal
delays [11,18].

We have witnessed rapidly growing interested in fuzzy control in recent years.
This is largely sparked by the numerous successful applications fuzzy control has
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enjoyed. Despite the visible success, it has been made aware that many basic issues
remain to be addressed. Among them, stability analysis, systematic design, and
performance analysis, to name a few, are crucial to the validity and applicability
of any control design methodology [5, 35]. However, it should be admitted that the
stability of fuzzy logic controller (FLC) is still an open problem. It is important
to point out that there exist many systems, like the predator-prey system, which
cannot commonly endure continuous control inputs, or they have impulsive dynam-
ical behavior due to abrupt jumps at certain instants during the evolving processes.
Hence, it is necessary to extend FLC and reflect these impulsive jump phenomena
in the predator-prey system. As on date a very few papers discussed about the sta-
bility of two dimensional Lotka-Volterra predator-prey system with fuzzy impulsive
control [45].

In this paper, we have considered Lotka-Volterra predator-prey model with one
prey and two predator. We also consider that only first predator population is
infected by an infectious disease, i.e., the first predator population is divided into two
sub-classes: susceptible and infected. To improve the model’s reality we analyze the
global and asymptotic stability as given in [4,29,44] of this model with the help of the
T-S model, then presented the graphical solutions for the problem by considerations.
Only a few articles have looked at the stability of the Lotka-Volterra predator-prey
system with fuzzy impulsive control so far. So, using the T-S mathematical model
and fuzzy impulsive control, the stability of the predator-prey system is examined
with the help of [19,39,45].

2 Model formation

Our mathematical model is based on the following assumptions:

• Let x be the total population density of the prey.

• The initial group of predators is the only one to have an infectious disease.

• The overall population of first predators is split into two subclasses when a
disease is present: (i) the susceptible first predator population (ys) and (ii)
the infected first predator population (yi).

• According to the rule of mass action, the disease in the first predator popula-
tion is spread horizontally from the susceptible to the infected first predator
population at a constant rate of infection β.

• Let the second predator total population density is denoted by z.
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• Let t be the number of years.

The following model is proposed utilising a set of non-linear ordinary differential
equations based on the aforementioned presumptions.

dx

dt
=rx−ex2−P1ysx

a0+x
−P2yix

a0+x
− P3zx

a0+x
, (2.1a)

dys
dt

=
C1P1ysx

a0+x
−C1P1ysz

a1+x
−βysyi−m1ys, (2.1b)

dyi
dt

=βysyi+
C2P2yix

a0+x
−C2P2yiz

a2+x
−m2yi, (2.1c)

dz

dt
=
C3P3xz

a0+x
−C3P3ysz

a1+x
+
C3P3yiz

a2+x
−m3z, (2.1d)

where all of the parameters are positive and initial conditions are x(0)>0, ys(0)>
0, yi(0)> 0, z(0)> 0. Here r is intrinsic growth rate of prey, e is intra-specific
competition, β is infection transmission, P1 is predation rate of susceptible first
predator, P2 is predation rate of infected first predator, P3 is predation rate of second
predator, C1 is efficiency of first susceptible predator, C2 is conversion efficiency of
first infected predator, C3 is conversion efficiency of second predator, m1 mortality
rate of first susceptible predator, m2 mortality rate of first infected predator, m3

mortality rate of second predator, a0, a1, a2 are half-saturation constants, R0 = β
m2

is the basic reproduction number.
A matrix differential equation is stated as follows to analyse the system’s stabil-

ity:
ẋ=Ax+φ(x), (2.2)

where

ẋ=


ẋ(t)
ẏs(t)
ẏi(t)
ż(t)

, A=


r 0 0 0
0 −m1 0 0
0 0 −m2 0
0 0 0 −m3

,

φ(x)=



−ex2−P1ysx

a0+x
−P2yix

a0+x
− P3zx

a0+x
C1P1ysx

a0+x
−C1P1ysz

a1+x
−βysyi

βysyi+
C2P2yix

a0+x
−C2P2yiz

a2+x
C3P3zx

a0+x
−C3P3ysz

a1+x
+
C3P3yiz

a2+x


.
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3 T-S fuzzy model with impulsive effects

3.1 Lemma

ẋ=f(x(t)), here the state variable is x(t)∈Rn, and f∈C[Rn,Rn] fulfils the condition
f(0) = 0, is a compact vector field defined in W⊆Rn. Using the techniques proposed
by Tanaka and Wang [10], We can build a fuzzy model for system 2.1 as shown below.

Control Rule i (i= 1,2,··· ,r): IF z1(t) is Mi1, z2(t) is Mi2,··· , and zp(t) is Mip.
THEN ẋ(t)=Aix(t), where r is no. of T-S fuzzy rules, z1(t), z2,··· , zp(t) are the
premise variables, each Mij is a fuzzy set and Ai⊆Rn∗n is a constant matrix. Thus,
the non-linear equations can be transformed into the following linear equation.

If x(t) is Mi then

ẋ(t)=Aix(t), t 6=τj, i=1,2,3,··· ,r; j=1,2,··· , (3.1a)

∆(x)=Kijx(t), t=τj, i=1,2,3,··· ,r; j=1,2,··· , (3.1b)

where

Ai=



r−ex− P1ys
a0+x

− P2yi
a0+x

− P3z

a0+x
0 0 0

C1P1ys
a0+x

−C1P1z

a1+x
−βyi−m1 0 0

C2P2yi
a0+x

βyi −C2P2z

a2+x
−m2 0

C3P3z

a0+x
−C3P3z

a1+x

C3P3z

a2+x
−m3


and z1, z2, z3, z4, z5, z6, z7, z8, z9 are related to the values of x(t), ys(t), yi(t), z(t)
(here z1 =ex, z2 = P1ys

a0+x
, z3 = P2yi

a0+x
, z4 = P3z

a0+x
, z5 = P1z

a1+x
, z6 =βyi, z7 = P2z

a2+x
, z8 = P3z

a1+x
,

z9 = P3z
a2+x

). Mi, x(t), Ai∈R4∗4, r is the number of the IF-THEN rules, Ki,j denotes

the control of the jth impulsive instant,

∆(x)|t=τj =x(τj−τj−1).

With center-average de-fuzifier, the overall T-S fuzzy impulsive system can be rep-
resented as:

ẋ(t)=
r∑
i=1

hi(z(t))(Aix(t)), t 6=τj, (3.2a)

∆(x)=
r∑
i=1

hi(z(t))Kij, t=τj, (3.2b)
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where

hi(z(t))=ωi(z(t))
/ r∑

i=1

ωi(z(t)) and ωi(z(t))=

p∏
j=1

Mij(z(t)).

Evidently, hi(z(t))≥0,
∑r

i=1hi(z(t))=1, i=1,2,··· ,r.

4 Stability analysis

We shall now analyse several stability properties of the impulsive fuzzy system 3.2
by considering the following theorems [45].

Theorem 4.1. Assume that λi is the maximum eigen value of [ATi +Ai], (i =
1,2,3,··· ,r). Let λ(α) = maxi{λi}, 0<δj = τj−τj−1<∞ is the impulsive distance.
If λ(α)≥ 0 and there exists a constant scalar ε> 1 and a semi-positive matrix P ,
such that

ln(εβj)+λ(α)δj≤0, PAi=AiP, (4.1)

where

P =CTC, βj =max‖C(I+Ki,j)‖, (4.2)

then the system (3.2) is stable globally and asymptotically.

Theorem 4.2. Assume that λi is the maximum eigen value of [ATi +Ai], (i =
1,2,3,··· ,r). Let λ(α) = maxi{λi}, 0<δj = τj−τj−1<∞ is the impulsive distance.
If λ(α)<0 and a constant scalar 0≤ε<−λ(α), such that

ln(β)−εδj≤0, PAi=AiP, (4.3)

where

βj =max‖C(I+Kij)‖, P =CTC, (4.4)

then the system (3.2) is stable globally and exponentially.

5 Numerical simulation

Since most of the biological systems are complex, they should be modelled using
an expressive description and fuzzy logic. Consequently, the suggested impulsive
T-S design model examines predator-prey systems with functional response and
impulsive effects.
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By using fuzzy impulsive T-S design model on (2.2), the membership func-
tions [10] obtained as

M1 =
z1
ed1

, M2 =
ed1−z1
ed1

, N1 =
z2
P1d2
a0+d1

, N2 =

P1d2
(a0+d1)

−z2
P1d2

(a0+d1)

,

K1 =
z3
P2d3
a0+d1

, K2 =
P2d3
a0+d1

−z3
P2d3
a0+d1

, L1 =
z4
P3d4
a0+d1

, L2 =
P3d4
a0+d1

−z4
P3d4
a+d1

,

O1 =
z5
P1d4
a1+d1

, O2 =
P1d4
a1+d1

−z5
P1d4
a1+d1

, R1 =
z6
βd3

, R2 =
βd3−z6
βd3

,

S1 =
z7
P2d4
a2+d1

, S2 =
P2d4
a2+d1

−z7
P2d4
a2+d1

, T1 =
z8
P3d4
a1+d1

, T2 =
P3d4
a1+d1

−z8
P3d4
a1+d1

,

P1 =
z9
P3d4
a2+d1

, P2 =
P3d4
a2+d1

−z9
P3d4
a2+d1

,

and the matrices A′is are calculated using

Ai=



r−ex− P1ys
a0+x

− P2yi
a0+x

− P3z
a0+x

0 0 0

C1P1ys
a0+x

−C1P1z

a1+x
−βyi−m1 0 0

C2P2yi
a0+x

βyi −C2P2z

a2+x
−m2 0

C3P3z

a0+x
−C3P3z

a1+x

C3P3z

a2+x
−m3


,

i = 1 to 511, and, the Defuzzification can be represented as:

ẋ(t)=
r∑
i=1

hi(z(t))(Aix(t)), (5.1)

here h′is are given as

hi(z(t))=ωi(z(t))
/ r∑

i=1

ωi(z(t)) and ωi(z(t))=

p∏
j=1

Mij(z(t)),

i=1 to 511, j=1 to 9. This Fuzzy model exactly represents the non-linear system
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in the region [0,5]×[0,10]×[0,10].

dx

dt
=rx−ex2−P1ysx

a0+x
−P2yix

a0+x
− P3zx

a0+x
, (5.2a)

dys
dt

=
C1P1ysx

a0+x
−C1P1ysz

a1+x
−βysyi−m1ys, (5.2b)

dyi
dt

=βysyi+
C2P2yix

a0+x
−C2P2yiz

a2+x
−m2yi, (5.2c)

dz

dt
=
C3P3xz

a0+x
−C3P3ysz

a1+x
+
C3P3yiz

a2+x
−m3z. (5.2d)

6 Results and discussion

In this section, the global stability of the considered intra-specific competition
predator-prey model (2.2) is discussed. The fuzzy logical technique with linguistic
description should be used to depict biological systems because they are complicated,
nonlinear, and unpredictable.

Calculations were carried by taking the values of the parameters at r = 1.5,
e=0.2, β=0.4, P1 =0.7, P2 =0.06, P3 =0.8, C1 =0.5, C2 =0.4, C3 =0.36, m1 =0.1,
m2 = 0.5, m3 = 0.4, a0 = 1.0, a1 = 1.0, a2 = 1.0, R0 = 0.8, d1 = 10, d2 = 10, d3 = 10,
d4 = 10 in 3.1 to get the eigen values of [ATi +Ai](i= 1,2,3,··· ,r) as explained in
the Theorems 4.1,4.2. It is found that max(λi) =λ(α) = 1.5, then we have chosen
diag[−0.99,−0.99] as impulsive control matrix, such that βj =‖I+K‖=0.01. It is
noted that the system 3.1 is stable globally (4.1) when ε=1.5, δj=0.1 (at those above
values, ln(εβj)+λ(α)δj =−4.184<0). Further, it is observed that the prey-predator
model is unstable (4.1) when r= 42, e= 5.5, β = 5.5, P1 = 2.8, P2 = 2.8, P3 = 2.0,
C1 =1.8, C2 =2.2, C3 =5.6, m1 =5.2, m2 =5.4, m3 =0.5, a0 =1.0, a1 =1.0, a2 =1.0,
R0 =1.01, d1 =10, d2 =10, d3 =10, d4 =10, since

max(λi)=λ(α)=42 =⇒ ln(εβj)+λ(α)δj =0.001>0

for βj=0.01, ε=1.5, δj=0.1. Table 1 presents the stability of the system at various
values of the present study.

Table 1: Stability analysis by taking different values of the parameters.

r e β P1 P2 P3 C1 C2 C3 m1 m2 m3 a0 a1 a2 d1 d2 d3 d4 max(λi) ln(εβ) conclusions
λ(α) +λ(α)δj

1.5 0.2 0.4 0.7 0.06 0.8 0.5 0.4 0.36 0.1 0.5 0.4 1.0 1.0 1.0 10.0 10.0 10.0 10.0 1.5 -4.184 stable
2.0 0.5 0.5 0.8 0.6 1.0 0.5 0.4 0.6 0.5 0.2 0.5 1.0 1.0 1.0 10.0 10.0 10.0 10.0 2.0 -3.999 stable
2.5 1.5 0.2 1.8 1.6 2.0 0.8 0.2 0.6 0.2 0.4 0.5 1.0 1.0 1.0 10.0 10.0 10.0 10.0 2.5 -3.949 stable
42 5.5 5.5 2.8 2.8 2.0 1.8 2.2 5.6 5.2 5.4 0.5 1.0 1.0 1.0 10.0 10.0 10.0 10.0 42 0.001 unstable
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The impact of the some parameters on Prey-predator system 2.1 with T-S fuzzy
impulsive control model is presented in Figs. 1-10 by fixing few parameters P1=0.7,
P2=0.06, P3=0.8, C1=0.5, C2=0.4286, C3=0.36, a0=1.0, a1=1.0, a2=1.0, m1=0.1.
The dynamical change on prey-predator population (x,y) by varying intrinsic growth
rate of prey (r) parameter under fuzzy impulsive control can be noted in Fig. 1 at
e= 0.2, β= 0.7, m2 = 0.5, m3 = 0.4, d1 = 10, d2 = 10, d3 = 10, d4 = 10. It is observed
from this figure that, increase in r increases population of prey.

The effectiveness by varying intra-specific competition (e) parameter of prey-
predator population (x,y) under fuzzy impulsive control can be noted in Fig. 2 at
r= 1.5, β= 0.7, m2 = 0.5, m3 = 0.4, d1 = 10, d2 = 10, d3 = 10, d4 = 10. This figure
clearly shows that increase in e decreases population of prey, but increases infected
first predator and second predator population. The influence of prey max time d1
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Figure 1: Phase portrait figure showing the effect of intrinsic growth rate of prey (r) parameter on the
prey-predator system under impulsive control.
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Figure 2: Phase portrait figure showing the effect of intra-specific competition (e) parameter on the
prey-predator system under impulsive control.

on prey-predator system is shown in Fig. 3 at r= 1.5, e= 0.2, β = 0.7, m2 = 0.5,
m3=0.4, d2=10, d3=10, d4=10. This graph makes it abundantly evident that as d1
increases, population increases for prey and first predator but decreases for second
predator.

The influence of susceptible first predator max time d2 on prey-predator system is
shown in Fig. 4 at r=1.5, e=0.2, β=0.7, m2=0.5, m3=0.4, d1=10, d3=10, d4=10.
This graph shows that as d2 increases, prey population decreases but predators
population increases. The change on prey-predator system with max time of infected
first predator (d3) is shown in Fig. 5 at r=1.5, e=0.2, β=0.7, m2 =0.5, m3 =0.4,
d1=10, d2=10, d4=10. This figure clearly exhibits that as d3 increases, population
decreases for prey and susceptible first predator.

The outcome with varying max time of second predator (d4) on prey-predator
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Figure 3: Phase portrait figure showing the effect of max time of prey (d1) parameter on the prey-
predator system under impulsive control.

system is shown in Fig. 6 at r= 1.5, e= 0.2, β= 0.7, m2 = 0.5, m3 = 0.4, d1 = 10,
d2 =10, d3 =10. This graph illustrates clearly how increase in second predator max
time decreases prey population and first predator population but second predator
population increases.

The effect of transmission coefficient from susceptible first predator to infected
first predator parameter β on prey-predator system is shown in Fig. 7 at r= 1.5,
e=0.2, m2 =0.5, m3 =0.4, d1 =10, d2 =10, d3 =10, d4 =10. This graph shows that
as transmission coefficient from susceptible first predator to infected first predator
rise, the population of susceptible first predator decreases.

The vital pattern of prey- predator population (x,y) by varying mortality rate of
infected first predator (m2) parameter under fuzzy impulsive control can be noted
in Fig. 8 at r=1.5, e=0.2, β=0.7, m3 =0.4, d1 =10, d2 =10, d3 =10, d4 =10. This
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Figure 4: Phase portrait figure showing the effect of max time of susceptible first predator (d2) parameter
on the prey-predator system under impulsive control.

figure clearly exhibits that as m2 increases, population of susceptible and infected
first predator decreases.

The change on prey-predator system (x,y) by varying mortality rate of second
predator (m3) parameter under fuzzy impulsive control can be noted in Fig. 9 at
r=1.5, e=0.2, β=0.7, m2=0.5, d1=10, d2=10, d3=10, d4=10. This figure clearly
exhibits that as m3 increases, population of prey and second predator decreases but
population of infected first predator increases.

Finally, the nature of prey-predator system without impulsive control is pre-
sented in Fig. 10 by fixing all the parameters obtained from T-S fuzzy model at
r= 1.5, e= 0.2, β= 0.7, P1 = 0.7, P2 = 0.06, P3 = 0.8, C1 = 0.5, C2 = 0.4, C3 = 0.36,
m1=0.1, m2=0.5, m3=0.4, a0=1.0, a1=1.0, a2=1.0, d1=10, d2=10, d3=10, d4=10,
and initial conditions xs(0)>0, xi(0)>0, y(0)>0, z(0)>0, t=10. The figure clearly
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Figure 5: Phase portrait figure showing the effect of max time of infected first predator (d3) parameter
on the prey-predator system under impulsive control.

shows how the prey and predator populations reaches to stability.

7 Conclusions

In many disciplines, including ecology, dynamics, physics, algorithms, and epidemi-
ology, mathematical models are crucial. In this work, a predator-prey model with
two predator populations and one prey population is built, but only the first preda-
tor population is infected. First, a fuzzy impulsive control-based non-linear Lotka-
Volterra predator-prey model was examined. The fuzzy systems based on the T-S
model are used to examine the impulsive control technique, which is found to be
suitable for extremely complex non-linear systems with impulsive effects. Addition-
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Figure 6: Phase portrait figure showing the effect of max time of second predator (d4) parameter on
the prey-predator system under impulsive control.

ally, each local linear impulsive system is combined to create the full impulsive fuzzy
system. In the meantime, numerous stability theorems demonstrate the impulsive
fuzzy system’s asymptotic stability and exponential stability. Finally, to illustrate
the usage of impulsive fuzzy control, a numerical example of predator-prey systems
with impulsive effects is shown. Simulation results show the value of the suggested
method. According to the references already in existence, the current investigation
covers a variety of ecological consequences and got adequate results.

• Intrinsic growth rate of prey effects all the four populations. Increase in intrin-
sic growth rate of prey increases population of prey, and decreases population
of susceptible first predator, infected first predator and second predator.

• Increase in intra-specific competition decreases population of prey, but popu-
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Figure 7: Phase portrait figure showing the effect of transmission coefficient from susceptible first
predator to infected first predator (β) parameter on the prey-predator system under impulsive control.

lation of infected first predator and second predator increases.

• As the mortality rate of infected first predator increases, population of sus-
ceptible first predator and infected first predator decreases.

• Increase in the mortality rate of second predator, decreases population of prey
and second predator.
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