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Abstract. In this paper, we analyze and test a high-order compact difference
scheme numerically for solving a two-dimensional nonlinear Kuramoto-Tsuzuki
equation under the Neumann boundary condition. A three-level average tech-
nique is utilized, thereby leading to a linearized difference scheme. The main
work lies in the pointwise error estimate in H2-norm. The optimal fourth-order
convergence order is proved in combination of induction, the energy method
and the embedded inequality. Moreover, we establish the stability of the differ-
ence scheme with respect to the initial value under very mild condition, how-
ever, does not require any step ratio restriction. Extensive numerical examples
with/without exact solutions under diverse cases are implemented to validate
the theoretical results.
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1 Introduction

In this paper, we will study a high-order compact difference scheme for the initial-
boundary value problem of the two-dimensional nonlinear Kuramoto-Tsuzuki (KT)
equation in the form of

uy = (14icy) Autyu— (1+ico)|ulu, (x,y)€Q, 0<t<T, (1l.1a)
u(z,y,0)=o(z,y), ()€, 0<t<T, (1.1b)
ou

=0 0<t<T 1.1
aV Y < — Y ( C)

where u is an unknown complex function. i=+/—1, ¢; and ¢, are two real constants,
which could characterize linear and nonlinear dispersion respectively, see e.g., [2]. v
is a general parameter, which controls the degree of aggregation of solutions. The
calculated domain is on Q=(0,L;)x(0,Ls), and v is the unit normal vector of the
boundary €. 052 is the boundary of the domain. ¢(z,y) is a given function.

The KT equation [6,7] describes the behavior of two branches near the bifurca-
tion point. Many efforts have been made to develop highly effective algorithms
for the KT equation in one dimension. For example, Tsertsvadze [18] applied
Crank-Nicolson method to establish a nonlinear difference scheme for solving the
one-dimensional KT equation with the convergence order O(h%) in the sense of dis-
crete L2-norm. Ivanauskas [5] investigated an effective implicit Crank-Nicolson type
weighted scheme for the KT equation and the convergence was proved. Sun [17] con-
structed a linearized three-level difference scheme, which can be solved by the double-
sweep method and proved that it is uniquely solvable and convergent. Sun [13,14,16]
further developed several new second-order difference schemes and made detailed
analysis at length. Stikonas [12] discussed the root condition of a finite difference
scheme for the KT equation. Omrani [11] analyzed the convergence of Galerkin
method for the KT equation. Wang et al. [19, 20] respectively used semi-explicit
difference scheme and nonlinear difference scheme for solving the KT equation.
Dong [2] gave a fourth-order split-step pseudospectral scheme and Hu et al. [4]
first proposed several fourth-order compact difference schemes for solving the KT
equation.

As far as we know, no research work has been done about the numerical solu-
tions of the high-dimensional KT equation under the Neumann boundary condition.
Therefore, it is necessary to develop effective numerical algorithms for the KT equa-
tion in high dimension. The studies that have been done for high-dimensional KT
equation so far include the following two work. One of them dues to Li et al. [9],
who discussed a type of the high-dimensional KT equation with Dirichlet boundary
condition by Galerkin finite element method and the optimal error estimates are
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obtained in L?-norm. The other one is done by Xu and Chang [21]. They studied
three classes of numerical schemes for the two-dimensional Ginzburg-Landau equa-
tion with the Neumann boundary condition, which involves the two-dimensional KT
equation as its special case. However, both schemes are second-order or third-order
convergent in L2-norm. The pointwise error estimates in H2-norm for the KT equa-
tion with the Neumann boundary condition in two dimension still remain unsolved.
This is the main motivation to start this paper.

The main work aims at that we prove the pointwise error estimate of the present
difference scheme for the two-dimensional KT equation with the Neumann boundary
condition for the first time. Furthermore, the optimal convergence order O(72+hi+
h3) in the maximum norm is obtained, where 7 and hy, hy denote the temporal step
size and spatial step sizes, respectively. In addition, we prove the stability based on
a similar argument to the convergence of the difference scheme.

To achieve these goals, we first prove the L2-norm error estimate by a standard
energy method. Then by taking inner products of different functions with the error
system of linear equations, we obtain the error estimation in H%-norm. More pre-
cisely, we take an inner product with a time difference quotient of the error function
at the 1 time level, and then we take another inner product for all the later lev-
els. The techniques used during the proof include the technical energy method and
detailed induction method. The embedding theorem in two dimensions makes the
proof of the desired result in L°°-norm coming true in the final step.

The rest of the paper is arranged as follows. In Section 2, some notations and
basic lemmas are introduced to facilitate later numerical analysis. In Section 3, a
three-level linearized compact difference scheme for the KT equation is derived at
length. The main results including unique solvability, convergence and stability are
proved in Section 4 followed by several numerical examples with different cases in
Section 5. Some concluding remarks are drawn in Section 6.

2 Notations and auxiliary lemmas

We first introduce some notations and lemmas. Given a positive integer N, let
tr=kr, 0<k<N, where 7=T/N. Denote Q. ={t;|0<k <N} and give a grid
function v={v*|0<k< N} on Q,. Denote

1 P 1
Atvk:—(vkﬂ—vk_l), Uk:—(vk+1—|—vk_1),

2T 2
Uk+%:1(vk+1_|_vk>7 5tvk+%:l<vk+l_vk>‘

2 T
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For two given positive integers My, My, let hy = Ly/My, hy = Ly/Ms, and denote
in:ihl, yj:jhg, OSZSMl, OS]SMQ Denote

U ={(2;,y;)|0<i<M;,0<j <M}, Q=Q,0Q, 0Q,=0,NN.
Define

o={(i,/)|0<i< My, 0<j< My}, w={(4,7)](z:,y;) €W},

8&):@\(,0, Vh:{U|U:{UZ‘j}, OSZSMh OSJSMQ},
and
1, 1<i<M;—1, 1, 1<j<My—1,
wi=491 wij=4 1
57 Z:07M17 ’ 57 ]:OvMZ-
For any grid function u €V, we denote
1 1

Oty g 5= (Ui =tig)s Oythyypy =g (iger = tiy).

Introducing compact difference operators

(5 1 .
EUOJ“’_EUQJ', 1=0,
Agui;= 1—12(Ui1,j+1()uij+ui+1,j), 1<i< M, —1,
\ 1UMl—l,j—l-guj\/fl,j, 1= My,
( h%dxué’j’ 1=0,
5u;; = hil@u%j—(smui;,j), 1<i<My—1,
2

h_1<_5$uM1_%’j)7 Z:Ml

\

Analogously, Ayu;; and § u;; can be defined. Denote
Ahui]’ = 592cuij +(5§Uij, A= Ay5§+Ax5§, A, :AxAy.

Let u, v€ V), the complex inner product of u and v is defined as

My Ma

(u,v) = hthZZwiwjuijmj.

i=0 j=0
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The corresponding norms or seminorms are defined as

Mi—1 M,

[ull =/ (u,u), 6zl = | hahs Y Y w0 2,
i=0 ;=0
My—1M—1

HthH:\/Héqu?JrlléyuH?, | ARull= [ hiha > (Apuy)?,
i=1 j=1

[uli = Vaull, [ullo= _ _ max _lul.

0<i<Mi, 0<j<M>

Similarly, ||0,u|| can be defined.
The following lemmas play important roles in the later numerical analysis.

Lemma 2.1. For any grid function uw€Vy, it holds that

2
m

h2
(Awtt,u) =[ul* = 10l (Ayuu)= [[ul]® = |0l

and
2 2 5 2 2 2
§IIUII < (Azu,u) <|lull*, §IIUII < (Ayu,u) <|Jul]”.

Proof. From the definition of A, and §2, we know A, u;;=(14h?/1262)u;;. According
to the definition of the inner product, we have

My Mo

(Ag,u)=hihy» Y " wi; (Agus; )i
i=0 j=0
M; Mo

:hthZZwle <1 +— i 52) (T

=0 7=0
My Mo M1 Mo 2

:hl h2 Z Zwi@juijﬂij +h1 hz ZZM@ % ((Siul'j)aij

i=0 j=0 i=0 j=0

2 Mo Mi—1
:||u||2+ﬁh P N R LRV
192 2 J 1 745,
7=0 =0
Mi—1 Mo

_H ||2 h1h2 Z ij|5 uz-‘,— ]

=0 75=0

h2
=[lull* =75 1 aul*.
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Similarly,
2 h% 2
(Ayu,u) =lull” = ll8yu]l”
It is easy to know that
(Apu,u) < lul?,  (Ayu,u) < lul®.

In addition,

lel M2

|0au]|*=hihs Y Z@IMH;J!Q
i=0 j=0
M1 1 M2
=hyhs Z Z
=0 j5=0
Myi—1 Mo
<2hihy Y ng 2 (i g PP+ )

=0 75=0

M1 M2

4
h2 hthZzszj|uzg| < h2 ”uH2

=0 57=0

uerl,] uzj

Thus,

h? hi 4

4 2 1 2 2 2 _ 2
T pu— _— 5:(/‘ > .

In the same manner, the inequality for the y-direction holds. This completes this
proof. O]

The proof of the above lemma implies the following lemmas.
Lemma 2.2 ([10]). For any grid function uw€Vy, it holds that
1
(0guu) =—ldeull®,  (Gu,u)=—=lI6yull®,  Slull® < (Anuyu) < [Jul*
Lemma 2.3. For any grid functions u,v€Vy, it holds that
Re(Apu,v) =Re(Apv,u).

Proof. The results can be proved similar to Lemma 2.1. O]
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Lemma 2.4. For any grid function w€Vy, it holds that

1
—(AhU,AhU)Zgwﬁy
h2+h3
12
2
gHAhUH2 < (Apu, Apu) < || Apul®.

(Anu, Apu) = || Apul|*— (11020, +[1020yu]1%),

Proof. This result can be obtained directly as that in [3]. O

Lemma 2.5 ([3]). Assume that the grid function we€Vy, is bounded in H'-seminorm
and L*°-norm, namely there exists a constant ¢ such that |w|; <¢, ||w|le < ¢, then
for any functions u,v €V, it holds that

[(An(wu), Apv)| < V2e( ||l oo+ 1) 0]

Lemma 2.6 ([3]). For any grid function v €V, there exists a positive constant ¢
such that
vl <éllApv]-

Lemma 2.7 ([15]). For any grid function w€V, and arbitrary e >0, it holds that

1 1,1 1
el <ell A+ V3 [g+§(L—1+L—2)] Ml (| Avull+ ul)).

Lemma 2.8 ([15]). Suppose {E*}2° is a nonnegative sequence satisfying
EM'<(14cr)E¥ 419, k=0,1,2,---.
Then it holds
Ekﬁexp(ckr)(Eo—i—g), k=12
c

where ¢ and g are nonnegative constants.

Throughout the whole paper, we assume that the nonlinear KT equation (1.1)
allows a unique solution and the solution u is bounded by

[[wll 2o 0,71, 78 (9) F [ wel [ oo (0,7, 113 (02)) et oo (10,77, 712 02)) + |l 2o (10,77, 71 02 -

However, it is worth noting that several important work by the low-order integra-
tors [1,8] with the harmonic analysis technique have been proposed, which could
weaken this regularity condition.
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3 The derivation of the difference scheme
Defining the mesh functions

UL =u(zi,y;,tr), (i,j)€w, 0<E<N.
Considering (1.1a) at the point (x;,y;,tx), we have

Ut(Imyyatk):(1+101)AU(IZ7%atk)‘i‘VU(«'L’z:yJ7tk)
—(T+ico) [ulzs,yj,te) Pu(zi,yg ty),  (i))€w, 1<k<N-—1. (3.1)

Taking the operator A;, on both sides of (3.1) and using the Taylor expansion, we
have

AnAAUS = (Lie) M US +7 AU = (Liea) A (JUSPUE)
+RY, (1)) €, 1<k<N-1, (3.2)

©J
where
|Rf;| < Cr(T°+hi+h3),

and Cg is independent of 7, h; and hy. Moreover, we have
|AR| < Cr(T?+hi+hy).

For the first level in time, a linearized Crank-Nicolson scheme is utilized. Con-
sidering (1.1a) at the point (xi,yj,t%) and taking the operator A;, on both sides, we
have

1 1 1 1

U7 = (Lien) AU 47 AU — (L+iea) A (0 PUD) + R, (i) €@, (3.3)

where

. T
u?]:UZOJ—I—EUt(fL’“y];O)

and
yR?j|§OR(72+h‘1*+h§).

Noticing the initial condition (1.1b), we have
nggo(xzayj)) (’L,])G(D (34)

Omitting the small terms R}, in (3.2) and Ry, in (3.3), and replacing the exact

solution Ui’; with the numerical solution ufj, the linearized compact difference scheme
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reads
4 1 . 1 1
Andiuf;= (1+161)Ahufj +yApu;
l . . —
(o) A Pud), (i) €o, (3.50)

AhAtUi-cj = (1 +icl)Ahu7],€j +’}/Ahufj

—(1+ie) Ap([ufPul),  (ij)ew, 1<k<N-1, (3.5
| iy = (Ti,45), (i) €. (3.5¢)
4 The numerical analysis
Denote
uk = (ug,07ulf,0>"' 7“1;\/[170715]8,17“]{:,17"' 7u];\41,1>"' 7u§,M2’u]1€,M27"' vuﬁ/ll,Mg)T'
4.1 Unique solvability
Theorem 4.1. Denote
.l 1 X
=75 +3 L3 [,
when < %, the compact difference scheme (3.5a)—(3.5¢c) is uniquely solvable.

Proof. According to (3.5¢), it is easy to know that u° is uniquely determined. Con-
sidering the homogeneous system of Eq. (3.5a), we have

117G

1 1 1
—Ahug»:—(H—icl)Ahu%-%—F—yAhuilA——(1+i02)Ah|ﬁO»|u1 (,7) €. (4.1)
7T T T

Taking the inner product of (4.1) with u! yields

%(Ahul,ul):%(1+icl)(Ahu1,u1)+%(Ahul,ul)—%(1+icz)(/4h(|a0|ul),ul). (4.2)

Noticing Lemma 2.1 and Lemma 2.2, we have
(Apu' ut) :((Axéi—l—flyéi)ul,ul)
=((Audy)u' u')+((Ay07)u' u')
=—((Au0y)u’, dyu’) — ((Ay0:)u',dpu’)
<= 218+ 15 2) =2 (4.3
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Taking the real part on both sides of (4.2), we have

1 1 1
—lut|? S——|u1|?+m||u1||2+—Re{—(1+iCz)(«4h(|ﬁol2u1),u1)}
37 3 2 2

1 kel 1 X R
_§WW?+§4WWV+§ 143 ||a°)? | oo - [ [|* < éo||u' . (4.4)

In other words,
(1—3¢é7)||u'||*<0.

Thus, when 7 < g, |u 0, which implies that uj; =0 for (i,j) €©. Therefore,
(3.5a) and (3.5¢) uniquely determine u'.
Suppose u* and u*~! have been determined. Then, considering the homogeneous

system of Eq. (3.5b), we have

=

1 1
Q_‘A uk—i—l 2(1+1c )AhukH V.A uk—i—l
-

1 N
2(1+102)Ah(\u 2uitt), (i) ew. (4.5)
Taking the inner product of (4.5) with u**!, we have
1 1
(A Yy =2 (1) (At k“)—i-W(AhukH,ukﬂ)
27 2 2
1
—5(1+icg)(,4h]uk]2uk+l,uk“). (4.6)

Taking the real part on both sides of (4.6), and then utilizing
1
(A u k+1)25||uk+1”27

2
(A u k+1)§_§|uk+1|%7
(.A u k+1)< ||uk+1||2
we have

1 1 1 .
§||uk+1||2§_§|uk+1 %+%||uk+1||2—§Re{(1—|—102)(Ah|uk|2uk+1,uk+1)}

<Oljputorpe,

by noticing that

1
—§Re{(1+102)(.,4h|uk]2uk+1,uk+1)}

:—%<Ah|uk|2uk+l,uk+l) <0.
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Namely,
(1=3]y|7) " *<0.

Thus, if v=0, the above inequality implies that uff’l =0 naturally. If v£0, we

have ||uf||=0 when 7 < ﬁ Therefore, u**! has been uniquely determined. By
induction, this completes the proof. O

4.2 Convergence

Denote
CU: 77t Y
(xvy)ergvaéiétST‘U(xy )‘
and
. . .
clz|’y\+§+cm/1+c%, Ga=1/1+c3(3C%+3C,+2),
1
63:3(1+2|’}/|+262), 64: 3(6—|—6—)Texp(263T)\/L1LQCR,
3
. 381 .
6525[’72+(1—|—Cg)”|ﬂ0|2”g@]—|—27, ¢e=18+2TC%,
67:6666Xp(665T), égzé(é4+é7)

We have the following convergence result.

Theorem 4.2. Suppose that {U};|(i,j) €@, 0<k<N} is the solution of (1.1a)~(1.1c)
and {ufj|(z,]) cw, 0<Ek< N} is the solution of the linearized compact difference
scheme (3.5a)—(3.5¢). Denote

e, =Ul—ul, (i,j)ew, 0<E<N.
When 2+ hi+h3<1/¢s and 7<1, then we have
le¥ oo < Es(2+hi+h3), 0<E<N. (4.7)

Proof. Subtracting (3.5a)—(3.5¢) from (3.2)—(3.4), we have the following error system

( Ahétei%j:(1+icl)Ahe§j+7Ahe§j—(1+icz)Ah(|ﬁ?j 26%)
+R;,  (i,))€w, (4.8a)
Apveli = (1ier) Al -y Apels — (1ics) A ([UE PUE —uk | 2uk)
+R;, (ij)ew, 1<k<N-I, (4.8b)
L€}, =0, (i,j) Ew. (4.8¢)
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The proof is divided into three steps.

Step 1: ||-|| error estimate. By (4.8¢), we have ||°||=0. Taking the inner product
of (4.8a) with ez, we have

(Ahéte%,e%) :(1+icl)(Ahe%,e%)—l—’y(.Ahe%,e%)

— (1+ic) (An(|2°Pe2),e2 )+ (RO, e2). (4.9)
Noticing that
( 1 11
(Ah5te2,e2)—Z(Ahe e,
1 1 2 1
(Ah€§>e§)§_5‘62|%7

(An(ja°e2),e2) < ||| oo-le2 |2 <colleZ |2,

1 1 1 1 1
IR e <R[zl < S IR+ lle2 I,

and taking the real part of (4.9) yields

]_ 2 1 1 1 1
Z(Ahel,el) §—§|65 24+1v]-]|le2 H2+Re{—(1+102>(./4h(|ﬁ0|265),(25)}+R6(R0,6

N[
~—r

<[yl 1+ 1“3”6%||2+%||R°H2+%||65H2
<aulled 451
Noticing that
(Ane )= 37
we have
H61H2§6617”6%H2—|—3THR0”2§gélTHelHZ_i_BTHROHQ’

namely,
3.
(150 ) et |2 < 37| R°)1.
When %éﬁg %, we have

le!|? <67||R°||> <67 Ly LoCa(T*+hi+h3)> (4.11)
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Next, we assume that (4.7) holds for 1 <k <I<N—1. Then we need to prove that
it holds for k=[+1. According to inductive hypothesis, when 72+h{+h3<1/ég, we
have

[ [loe = U = (U" =) |oo < [U*[loc+ €[l < Cut1, 1<k<L. (4.12)
Therefore, we have
lu*lloe < (Cut 1), [[1UM6F|loo S Cu(Cut1), IIUMP e <CE, 1<K
Taking the inner product of (4.8b) with e, we have
(Anie®,ef) =(1+icr) (Ane®,eh) 4y (Anet, ) = (1ieo) (A ([U*PU* —[u* Put), )

+(RFe"), 1<k<N-1. (4.13)
By Lemmas 2.3 and 2.2, we have
i 1
Re(AhAtek,ek):4—[(Ahek+1,ek“)—(Ahekfl,ek’l)], (4.14a)
T
- 2 _ o _
(Ane® ) <—2lell, - (Anete) <lle"]”. (4.14b)

Noticing that
|Uk|2Ul_c_ |uk|2uE:(|Uk|2Ul_c_ |Uk|2ul_c)+(|Uk|2ul_c_ |uk|2uE)
=|U* ek + (UFUF —uFuF)u®
=|U*2eP + (UFU* — UFuF + UFuk —uFub )

=|U* ek + (UFeF 4P ub)u®,

we have
(Ah(’Uk|2UE_’uk|2uE)7eié)

<[ (AR(U*PeR),F) | +] (AR (UFeFu) eF) |+ | (An(eFuFul) eb)|

<[|AR(U* PR - leF N4 1A eFu) |- €|+ | An(eFuFu) |- 1€

SquH@EH'||€E||+Cu(0u+1)||€k||'|[€E\|+(Cu+1)2||€k||'||€E||

<(CoACU(Cut 1)+ (Cut D) ([P +1€™1%). (4.15)
Taking the real part of (4.13) and inserting (4.14a)—(4.15), we have

%[(Ahek+17ek+1)_(Ahek—l,ek—l)}

<=2l leF P —Red (i) (An(U* U = [t Pu), ) b+ Re( R, )

<|yl-[leF 124/ 1+ 3(3C2+3C,+2) (" ||+ le* %)+ |RF|| -], 1<k<L.
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Denote
Fk+1 = (Ahek+lvek+1) + (Ah€k76k)'

According to Lemma 2.2, we have

FR — F* <drfy|-|[eM*+4réa([le*|*+ [|e*|*) +4r | RF||- 1|
<27 (1+2]y]+2é) ([l*|* + [|€*|*) +27 || R¥|)*
<37 (14207 +28) [(Ane ") +2(Ape”, )+ (Ape 1 M) 27 | RY|1?
<esm(F*T 4 FRY427|| RF|1?, 1<k<I

When é37< %, we have

FMU<(14+4és7) FP 447 R*|?
<(1+4637)FF 447 Ly LoCR (T2 +hi+h3)?, 1<k<I.

Using the Gronwall inequality, when 7 <1, we have
1
FF <exp(déskr) [Fl +TL1L20;(72+h§+h3)2]
C3
1
<exp(4¢3T) [(Ah€1,€1)+6—3L1L20?z(72+h411+h421)2}
1 A 2/,.2 74 14\2
§<6+T>Texp(403T)L1LgCR(T TRIERY?, 1<k<l.
C3
Thus, we have

1
e+ 12 g3(6+6—3)Texp(4egT)L1L20;(T2+h;*+h;*)2
=2 (T2 hi+hy)?, 1<k<l. (4.16)

Step 2: ||Anef|| error estimate. Taking the inner product of (4.8a) with —§,Ajez
at the 15 time level, we have

(Andee?, —8:Ape?) =(1+icy)(Ane?, 6 Ane? )+ (Ape?, — 5 Ape?)
— (14ico) (An(ja°e2),—6;Ape? )+ (R, —6,Apez).  (4.17)
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Using Lemma 2.4, we have

(

1
372
(Ahel Ahe )

(Ah(st(i% y _5tAh6%) > ‘(5156% |2 =

|12

W

(Apez,—6,Ape2) =—

l\.’)|,_I

1 1 1 1
Re(Apez, —0;Apez) = —ZRG(AhelAhel) < ZHAWIH ARl < ;Helﬂ JlARe!,

012 L 1 L. 1.
(An(|2°%e2),0,Ape2) < ol |00 oo | ARt |- [[ Anet || < ol 80P oo lle!]]- | Ane ],

1 1
Re(R®,—6,Apez) = ——Re(R’, Ape) < —|[R)| || Ape']l

\

Taking the real part of (4.17), and combining Lemma 2.4 with the above inequalities,
we have

Lo 1 1 o, s 1
R < — L .
gale iS5 Re(Ane, —Anet)+ e[| Ane]]

+Re{ (1+ie2) (A ([P e?), 88001 f+Re(R®, 6, Ape?)

1 lnl

— A 2 ity 1. A 1
ol Ane [P llen ] [ Ane|
1 N 1
o\ TSI o et 11 Ane! |4+~ IR Anet . (4.18)

Rearranging (4.18) and when 7 <1, we have

Sanet 2 <t 4 20 e ||A ak
+§<1+c2>mu|u H61H+ e RO
Thus, we have
| Apet||> < es Ly LyCh(T>+hi+h3)*. (4.19)

Next, taking the inner product of (4.8b) with —A;A,e* for the time level 1<Ak<N—1,
we have

- (AhAtek,AtAh€k>

—(14icr) (Ape® Ay Aye™) —y(Ape®, A A )

+ (1+ico) (An((UFPUR = [uFPuF), Ay AReF) — (RF Ay Ape?), 1<k<N—1. (4.20)
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Denote
Gk—H = (Ah6k+1,Ah€k+1) + (Ahek,Ath).

Noticing that
1
- (AhAt€k7AtAh€k) > §|At€k %,

I 1
(Ahek,AtAhek) — (Ah(ekJrl_i_ekfl)’Ah(ekJrl _ekfl))

47
1
— E[(Ahek—’—l,AhelH—l)—(Ahek_l,Ahek_l)]
_i k+1 _ ~k
_4T(G ")
and
|(AR(|UMPU* = [uFPul), Ay Ay eb) |
< (AU PeR), A AReR) |+ [ (An(UFeFuF), A Apek)| + [ (An(eFuFu), A Ape) |
<V2(3C243C,+2)(||e" oo+ 1€Moo+ ¥ |1+ €F]1) | Are® 1,

in which Lemma 2.5 is used. Taking the real part of (4.20) and combining Lemmas
2.6 and 2.7, we have

1 1
§|At€k %+E(Gk+1 —Gk)

<—Re(Ane®, AAnet)+v/28; 2611 Ane |+ Anetl]) + (14 €41 | Are]s
—Re(R*,AyApe®)

- . 1
§—'yRe(Ahek,AtAhek)+2\/§é-62 <51(HAh6kH+HAhekH)2+—4€ ]Atek %)
1
z 1
+1/2¢-¢y (@(HekH+\|ek\|)2+4—|Atekﬁ) —Re(R*,AyApe®), 1<k<l.
€2
Taking

2V2¢¢5 1 206 1
4e; 67 4dey 6

we have for 1 <k <]
1

Ar (Gk+1 —Gk) S —’}/RG(Ah€]_€,AtAh€k) + 12é2é§(|lAh€E ||2+ ||Ah€k ||2)

+38232(||" 1+ ||€*]|>) = Re(R*, Ay Ape®). (4.21)
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Replacing k£ with n in (4.21) and summing up for n from 1 to k, we have

k k
1 7 A2 A n n
E(GHI—GI)S—yReZ(Ahe”,AtAhe”)+120%§Z(||Ahe 12+ || Ane™|?)
n=1 n=1
k k
323> (€™ P+lle" () —Re Y (R"AAue"), 1<k<L.
n=1 n=1

Noticing by Lemma 2.3 that
Re(Ane™ 1 Ape™ ) =Re(Ape™ 1 Ape™), 1<n<k,

we have

k
Re) (Ane™, AAge™)
=1

k
1
:EZRG(Ah(en-H+€n—l)’Ah(€n+1_en—l))
n=1

:% [Re(Ah6k+1,Ah€k+1) +Re(Ahek7Ahek) —Re(.Ahel,Ah@l)]

1
<A [ Ane™ I+ [ Ane |- [ Ane® [+ Ane |- [ Ane™])

S%(Hekﬂll'||Ah€'“€+1||+||€k||'||Ah€k||+||€1||-||Ah€1||)
1
4T
In addition, we have
k

> (R A AL

n=1
1
27

??‘

-1
—[(R*, A ™)+ (R Ape?) = (R?, Ape’) — (RY, Ape®) ] =y (AR", Ape™)

n

Il
V)

k—1
1 13 n
<oo(IRE- AR IR Ane® IR - Anel]) +ZHAtR [ Ane™l

1 1

2

\]

k—1
1 n n
+§Z(HAtR 12+ {1 Ane™][).
n=2

65

1
<—(EII P el Ane P ||6’“|| +€4||Ahek||2) o= (et P+ l12me' ).

1 1 _
IR P Hesl| Ane™ P4 — R esl Ane®l|* ) +— (1R + ]| Ane[1*)
455 486
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Let ye3+2e5 =3, ves+2e6=13, we have
2
§(HAh€k+1H2+HAh€kH2)

SGlﬂ%lle’“ﬂ||2+M||e*”/||2+2|v|<||e1||2+||Ahel||2>

+48@%§TZ ([[ARE™ 24| Ane™ (1) +12&2e§TZ (|1e™1*+]le™ 1)

n=1
k—1
+21 > (AR )+ Ane™| )+—|IR’“H +to HR’“ HPHA(IR?]P+ ][ Ane' ()
n=2

+§(!|Ah€k“H2+|!Ah6'“!|2), 1<k<I.
Rearranging the above formula, we have

1
A" P+ Anet]?)
k
<ésTy (| Ane™ [P+l Ane™ )+ (r*+hi+h3)*

n=1

oS (A A 4 A B4y (AR, 1<k <L

n=1
Thus, we have

k
(1=3¢57)[|ARe™ 2 <357 Y || Ape™|*+366(T2+hi+h3)?, 1<k<l.  (4.22)

n=1
When 3é57 < %, combining (4.22) with the Gronwall inequality, we have
| Ape™™ || <6cgexp(665T) (T3 +hi+h3)? <[e7(r?+hi+hd)]?, 1<k<L
Therefore,
AR <ér (T2 +hi4+hy), 1<I<SN-1. (4.23)

Step 3: |||« error estimate. Based on (4.16), (4.23) and the interpolation
inequality in Lemma 2.7, we have

! loo <Es(T2+hi+RE), 1<I<N.

This completes this proof. O
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4.3 Stability

In what follows, we discuss the stability of the linearized compact difference scheme
(3.5a)—(3.5¢). Let {v};|(4,j) €@, 0<k<N} be the solution of the following difference
scheme

AhAtv —(1—|—101)Ahv +7Ahv — (1+ico) Ap(Jvf; 21}5), (1,7) ew, 1<k<N-1,

Ahﬁtv —(1+101)Ahv +7Ahv — (L+ico) Ap (|09 [Pogy), (i) €w
—ul]+¢w, (1,7) Ew.
k

Denote X ----- —u”,

and we have the following perturbation system

( AhAtij =(1 +icl)Ahxfj—|—7Ahxfj —(1 +102)Ah(|vfj 2k

—|uf; 2ufj) (i,j)ew, 1<k<N-1, (4.25a)
Ah(stXU (1+1CI)AhXU+’Y.AhX” (1+102)Ah(|?7?j 20
— i Puy),  (i,5) €@, (4.25Db)
. X?j: ?jv (i,j) €w, (4.25¢)
where
|Ufj QUZ—WZ —\UU| X,]+Ufjufjxf]+|um| ij'

Theorem 4.3. Suppose
16°]l <Cih ™7 hy*e

with Cy, o being positive constants. Let {ij|(z,]) €w, 0<E<N} be the solution of
the difference scheme (4.25a)—(4.25¢). Denote

Cy=/30exp(12¢,7T)

with
Co=|y|+1/1+3[(Cut+1)2+(Cpu+1)-(Cy+2)+(Cy +2)3].
When 2C,C5h{hg <1, we have

X< Call0°]l, 0<Kk<N.

Proof. By using (4.25¢), we easily know that Theorem 4.3 holds for k=0. We will
divide the proof into two steps below in order to obtain the stability.
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Step 1: Stability in the first level. Taking the inner product of (4.25b) with
X%, we have

(Andix?,x2) =(1+ier) (Ax?,x2)+7(Anx 2, x?)

— (14ica) (An([0°]P0° =@ Pu®), x ). (4.26)
Then, we estimate each term in (4.26).
Noticing
‘ 1
Re(Andix2,x2)= 5 LA X ) = (Anx x")] (4.27a)
11 2, 1
(Anx? x?) < =27, (4.27D)
< 1 1 1
(Anxz,x3) <|xz|1%, (4.27c)
[(AR(8° o =0 Pu®), x )|
N A0 ~ N 1
< (NP A0 oo+ NP2 X[ - (4.27d)

Taking the real part of (4.26) and inserting (4.27a)—(4.27d) yield

1
o= (A X = (Anx” X))
.

1 N A0 A~ N 1
<Pz 1244/ 13 (Pl A+ 1300 oo + 12 PIZ) X - 2]
<égIX°[|*+eéslix[1?
<3és(Anx"',x")+3es(Anx",X°).

Thus,
(1—6cs7) (Anx, X" < (14+6657) (Anx®,x°).
When 6¢37 < %, we have
SIS (A 1) £ (1 2466) (A ) <3P
Therefore,
1 <9l (4.28)

Step 2: Stability for 1<k <I<N. Now, we assume that the conclusion holds for
1<k<I<N-—1. Therefore, we have

N2 <4hTthyt||XF||? <4C2C2hIhg <1, 1<Ek<I. (4.29)
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According to induction hypothesis, we have
[uF|?<(Cy+1)?, 1<k<L
Therefore, we have
0¥ oo = 11(0* = *) + 0¥ [loo < X F oo+ [0 oo < Cut2, 1<R<L
Next, taking the inner product of (4.25a) with y*, we have

(AR An® ) =(1ie) (Anx® )+ (Anx® xF)

— (Lien) (A" [0F = [uf Puf), 1 ). (4.30)
Noticing
Re(AnAn*,x") = % (AR X = (A X )], (4.31a)
(Anx" M) < —g\x’“ ; (4.31D)
(Anx® x5 <P, (4.31¢)
and

(An (2o = ) )
<[ AR PR X)) (Ao xE 8 [+ [ (AP 2XE xR |
<V2[(Cut 1)+ (Cu+1)(Cu+2) +(Cu+2)2] P11 (4.32)

Thus, taking the real part of (4.30) and substituting (4.31a)—(4.32) into (4.30), we
have

1 - _ . —
E[(Ahxkﬂ,xkﬂ)—(flhxk XTH] < el (4.33)

Let
Hk+1:(Ahxk+1’xk+1)+(Ath’Xk)’

(4.33) becomes
H*— HY < 4ég7||xF||? <667 (H ' + HY).
In other words,

(1—6¢o7) H* < (1+6697) HF.
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When 6¢97 < %, we have
HM < (1+24¢97)HE.
In combination of the Gronwall inequality with (4.28), we have

H <exp(24éokt)H?
<exp(24é9T) [(Anx", x") + (Anx®,x°)]
<exp(24¢4T) “X 12+11x°) }
<10exp(24¢9T)]|¢°|1*.

According to Lemma 2.2, we have
IX*HHP <3HET < 30exp(24¢9T) 16717

This completes this proof. O

5 Numerical experiment

To verify the accuracy and stability of the difference scheme (3.5a)—(3.5¢), three
numerical examples are test.

Example 5.1. Consider the following KT equation
uy = (1+1) Autu— (1+i)|ul*u+ f(z,y,t), (2,9)€(0,L)*, 0<t<1.
f(z,y,t), initial and boundary conditions are determined by the exact solution
u(x,y,t)=cos(mx)cos(my)exp(—it).

e Convergence test in space. Firstly, we test the spatial convergence orders of
the compact difference scheme (3.5a)—(3.5¢) with L =1, namely, fixing the temporal
step and reducing spatial step half by half (h=1/4, 1/8, 1/16, 1/32, 1/64), here we
take h:hlzhg.

In Table 1, we list the L?-norm errors and L*-norm errors and their correspond-

ing spatial convergence orders. As we observe from Table 1, the scheme (3.5a)—(3.5¢)
is of order four approximately.
e Convergence test in time. Then we test the temporal convergence order with
L=1. We set h=h; =hy=1/128 and reduce the temporal step 7 half by half,
respectively. Numerical results are shown in Table 2, which is consistent with the
theoretical results.
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Table 1: Example 5.1: L2-norm and L*>-norm errors behavior versus space-grid size reduction with

7=1/10000.

h

Es(h,T)

Ord}

E(h,)

Ord,

1/4
1/8
1/16
1/32
1/64

1.1728e—3
6.0096e—5
3.3685e—6
1.9877e—-7
1.2098e—8

4.2866
4.1571
4.0830
4.0383

1.5485¢—3
9.5175e—5
9.9217e—6
3.6976e—7
2.3179e—-8

4.0242
4.0065
4.0014
3.9957

Table 2: Example 5.1: L?-norm and L>-norm errors behavior versus time-grid size reduction with

h=1/128.

T Es(h,T) Ordy  Ex(h,7) Ordl,
1/20  2.3552e—5 — 6.5360e—5 —
1/40 3.776le—6 2.6409 6.7088e—6 3.2843
1/80 9.4326e—7 2.0012 1.8427e—6 1.8641
1/160 2.3619e—7 1.9977 4.6141e—7 1.9978
1/320 5.9431e—8 1.9906 1.1610e—7 1.9907

e Stability test.

Numerical error with logarithmic scale

Next, we test the stability of the compact difference scheme
(3.5a)—(3.5¢). The numerical results are demonstrated in Fig. 1. Each error curve in
Fig. 1 is obtained by the reduced spatial step h=1/2, 1/4, 1/8, 1/16, 1/32 and the
fixed temporal step size. We observe that the numerical errors of each curve tend

102

10°F

—.—-1/8
—A—-1/16

7=1/32
——=1/64

== 7=1/128
7=1/256

L 4

L 2

10"

5 10

15

20 25

Space grid size

30 35

Figure 1: Example 5.1: The chart of the unconditional stability test.



72 Q. Zhang and L. Zhang / Ann. Appl. Math., 39 (2023), pp. 49-78

|U(,y,1)|

Yy A0 -0 z

(a) [U(z,y,1)| (b) Contour profile

Yy -0 o ® Yy 40 o =

(c) Real(U) (d) Imag(U)

Figure 2: Example 5.3: (a) the modulus of numerical solution U; (b) the contour profile of the numerical
solution U; (c) the real part of U; (d) the imaginary part of U. In the calculation, we take L =10,
t=1, M;=M>=60 and N =100.

to a fixed value as the spatial grids refine gradually. The main reason is that the
control error under this situation originates mainly from the temporal discretization.
This demonstrates that the compact difference scheme (3.5a)—(3.5¢) is stable and
independent of the step ratio.

Example 5.2. Then we consider a problem below, in which the exact solution is
unknown.

u = (14+0.51) Au+yu—(1+i)|ul*u, (z,y)€(~L,L)* 0<t<l1.
The corresponding initial condition is Gaussian pulse

o(x,y) =exp(—2(a”*+y?)) exp(—iSo(z,y))
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Y RN} z

(a) [U(z,y,1)] (b) Contour profile

y RUIT 7 % y Rl 7 #
(c) Real(U) (d) Imag(U)

Figure 3: Example 5.3: (a) the modulus of numerical solution U; (b) the contour profile of the numerical
solution U; (c) the real part of U; (d) the imaginary part of U. In the calculation, we take L =10,
t=3, M;=M>=60 and N =100.

with
So(z,y) =1/ (exp(z+y)+exp(—(z+y))).
Here we take L=4 and y=-5,0,5, respectively.

Convergence test in space and time. In Table 3, we see that all the convergence
orders in space are fourth-order accuracy whatever the parameter « is negative, zero,
or positive. In Table 4, convergence in time is tested and the convergence order is
approximately second-order accurate. The parameter v determines the degree of
the aggregation and divergence for the solutions.
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|U(,y.5)|

Yy A0 -0 z

(a) [U(z,y,1)| (b) Contour profile

Y 100 0 V x Y -0 0 x
(c) Real(U) (d) Imag(U)

Figure 4. Example 5.3: (a) The modulus of numerical solution U; (b) The contour profile of the
numerical solution U; (c) The real part of U; (d) The imaginary part of U. In the calculation, we take
L=10, t=5, M;=M>=60 and N =100.

Example 5.3. We finally simulate a KT problem (1.1) with an initial value
p(x,y) =sech(z)sech(y) exp(i(z+y))

on a large domain Q=[—10,10>. The coefficients in the problem are chosen as
c1=co=7=1. The exact solution is unknown.

Convergence test in space and time. The numerical results with t=1 are listed
in Table 5 and Table 6. Similar convergence orders are demonstrated even if the
computation is on a larger domain with a rough grid.

Simulation at different time. We simulate the evolution of the solution at the
time t=1,3,5, and clear evolution surfaces are shown, respectively, in Figs. 2—4.
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Table 3: Example 5.2: L?-norm and L>-norm errors versus space-grid size reduction with 7=1/16.

h Ey(h,7)  Ordd  Ex(h,r)  Ordh
2/5 — — — —
1/5 1.0567e—4  —  9.1639%e—5  —
y==5]1/10 8.0917e—6 3.7069 7.4098¢—6 3.6284
1/20 4.8783e—7 4.0520 4.7790e—7 3.9547
1/40  3.0072e—8 4.0199 3.0182e—8 3.9850
1/80 1.8725e—9 4.0054 1.8811e—9 4.0040
2/5 — - -

1/5  1.1663e—4  —  8.7459e—5  —
y=0 | 1/10 8.6631e—6 3.7510 7.8130e—6 3.4847
1/20 5.2384e—7 4.0477 4.6997e—7 4.0553
1/40 3.2317e—8 4.0188 2.9956e—8 3.9717
1/80 2.0122e—9 4.0055 1.8702e—9 4.0016
275 - - - -
1/5  1.2768e—2  —  5.3820e—3  —
y=5 | 1/10 7.2237e—4 4.1436 3.062le—4 4.1356
1/20 44182 —5 4.0312 1.8800e—5 4.0257
1/40 2.7430e—6 4.0096 1.1696e—6 4.0067
1/80 1.7105e—7 4.0033 7.3013e—8 4.0017

These results indicate the present compact difference scheme can perform well even
in the long time simulation.

6 Concluding remarks

In summary we numerically study a linearized difference scheme for solving the KT
equation in two dimensions under the Neumann boundary condition. The pointwise
error estimate and stability for the present scheme are proved at length. Several
numerical examples with nice portraits demonstrate good performance of the high-
order compact scheme.
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Table 4: Example 5.2: L?-norm and L°°-norm errors versus space-grid size reduction with h=1/16.

T Ey(h,T) Ord;  Ex(h,7) Ordl,
1/20 - - -
1/40  2.0249e—4 — 1.1163e—4 —
vy=-=51| 1/80 5.1202e—5 1.9835 2.2375e—5 2.3187
1/160 1.285le—5 1.9943 5.6613e—6 1.9827
1/320 3.2133e—6 1.9998 1.4185e—6 1.9968
1/640 8.0304e—7 2.0005 3.5471e—7 1.9996
1/20 - - - -
1/40 7.1771le—4 — 1.5421e—4 —
v=0 1/80 1.9132e—4 1.9074 4.1365e—5 1.8984
1/160 4.9477e—5 1.9511 1.0715e—5 1.9487
1/320 1.2556e—5 1.9783 2.7196e—6 1.9782
1/640 3.1599e—6 1.9905 6.8435e—7 1.9906
1/20 - - - -
1/40  6.4187e—1 — 1.3329e—1 —
Y=5 1/80 1.754le—1 1.8716 4.3395e—2 1.6190
1/160 4.7526e—2 1.8839 1.3616e—2 1.6722
1/320 1.2422¢—2 1.9358 3.7499¢—3 1.8604
1/640 3.1772e—3 1.9671 9.8047e—4 1.9353

Table 5: Example 5.3: L?-norm and L°°-norm errors versus space-grid size reduction with 7=1/4.

h Ey(h,7)  Ordd  Ex(h,r)  Ordh
4/3 - - - -
2/3  1.6973e—1  —  7.5635e—2  —
1/3  1.1359e—2 3.9013 7.7754e—3 3.2821
1/6  6.3896e—4 4.1520 4.1838c—4 4.2160
1/12 3.8885¢—5 4.0384 2.6130e—5 4.0010
1/24 2.4299¢—6 4.0003 1.6174e—6 4.0139

Table 6: Example 5.3: L?-norm and L°°-norm errors versus time-grid size reduction with h=>5/32.

T Es(h,T) Ord}  Ex(h,7) Ordl,
1/10 — - - -
1/20  2.8548e—2 - 7.0178e—3 —
1/40 6.3852¢e—3 2.1606 1.3167e—3 2.4141
1/80 1.5849e—3 2.0103 3.4139e—4 1.9474
1/160 3.9649e—4 1.9990 8.7107e—5 1.9705
1/320 9.9255e—5 1.9981 2.2025e—5 1.9837




Q. Zhang and L. Zhang / Ann. Appl. Math., 39 (2023), pp. 49-78 7

tion of China (No. 12271518), Natural Science Foundation of Jiangsu Province
(No. BK20201149), and the Fundamental Research Funds of Xuzhou (No. KC21019).

References

1]

[6]

[7]

G. Bai, B. Li and Y. Wu, A constructive low-regularity integrator for the one-
dimensional cubic nonlinear Schrodinger equation under Neumann boundary condi-
tion, IMA J. Numer. Anal., (2022), https://doi.org/10.1093/imanum/drac075.
X. Dong, A fourth-order split-step pseudospectral scheme for the Kuramoto-Tsuzuki
equation, Commun. Nonlinear Sci., 17 (2012), pp. 3161-3168.

Z.-P. Hao, Z.-Z. Sun and W. Cao, A three-level linearized compact difference scheme
for the Ginzburg-Landau equation, Numer. Meth. Partial Differential Equations, 31
(2015), pp. 876-899.

X. Hu, S. Chen and Q. Chang, Fourth-order compact difference schemes for 1D
nonlinear Kuramoto-Tsuzuki equation, Numer. Meth. Partial Differential Equations,
31 (2015), pp. 2080-2109.

F. Ivanauskas, On convergence of difference schemes for nonlinear Schrodinger equa-
tions, the Kuramoto-Tsuzuki equation, and reaction-diffusion type systems, Lith.
Math. J., 34 (1994), pp. 32-51.

D. A. Kulikov, Periodic solutions of a finite-difference approximation to the
Kuramoto-Tsuzuki equation, Differential Equations, 43 (2007), pp. 1016-1020.

Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-
difiusion systems: Reductive perturbation approach, Prog. Theor. Phys., 54 (1975),
pp. 687-699.

B. Li and Y. Wu, An unfiltered low-regularity integrator for the KdV equation with
solutions below H!, https://doi.org/10.48550/arXiv.2206.09320.

D. Li, W. Cao, C. Zhang and Z. Zhang, Optimal error estimates of a linearized Crank-
Nicolson Galerkin FEM for the Kuramoto-Tsuzuki equations, Commun. Comput.
Phys., 26 (2019), pp. 838-854.

H.-L. Liao and Z.-Z. Sun, Maximum norm error bounds of ADI and compact ADI
methods for solving parabolic equations, Numer. Meth. Partial Differential Equations,
26 (2010), pp. 37-60.

K. Omrani, Convergence of Galerkin approximations for the Kuramoto-Tsuzuki equa-
tion, Numer. Meth. Partial Differential Equations, 21 (2005), pp. 961-975.

A. gtikonas, The root condition for polynomial of the second order and a spectral
stability of finite-difference schemes for Kuramoto-Tsuzuki equation, Math. Model.
Anal., 3 (1998), pp. 214-226.

Z.-7. Sun, A generalized Box scheme for the Kuramoto-Tsuzuki equation, J. South-
east Univ., 26 (1996), pp. 87-92.

Z.-Z. Sun, A linear difierence scheme for the Kuramoto-Tsuzuki equation, J. Comput.
Math., 14 (1996), pp. 1-7.



78
[15]
[16]
[17]

[18]

[19]

[20]

[21]

Q. Zhang and L. Zhang / Ann. Appl. Math., 39 (2023), pp. 49-78

Z.-7. Sun, Finite Difference Methods for Nonlinear Evolutionary Equations, Science
Press, Beijing, (2018) (in Chinese).

Z.-7Z. Sun, On L,-convergence of a linearized difierence scheme for the Kuramoto-
Tsuzuki equation, Nanjing Univ. J. Math., 14 (1997), pp. 5-9.

Z.-7Z. Sun and Q. Zhu, On Tsertsvadze’s difference scheme for the Kuramoto-Tsuzuki
equation, J. Comput. Appl. Math., 98 (1998), pp. 289-304.

G.Z. Tsertsvadze, On the convergence of difference schemes for the Kuramoto-
Tsuzuki equation and reaction-difiusion type systems, Comput. Math. Math. Phys.,
31 (1992), pp. 40-47.

S. Wang, T. Wang, L. Zhang and B. Guo, Convergence of a nonlinear finite difference
scheme for the Kuramoto-Tsuzuki equation, Commun. Nonlinear Sci., 16 (2011), pp.
2620-2627.

T. Wang and B. Guo, A robust semi-explicit difference scheme for the Kuramoto-
Tsuzuki equation, J. Comput. Appl. Math., 233 (2009), pp. 878-888.

Q. Xu and Q. Chang, Difference methods for computing the Ginzburg-Landau equa-
tion in two dimensions, Numer. Meth. Partial Differential Equations, 27 (2011), pp.
507-528.



