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Abstract. This paper is devoted to the inverse design of strained graphene surfaces for
the control of electrons in the semi-classical optical-like regime. Assuming that charge
carriers are described by the Dirac equation in curved-space and exploiting the fact
that wave propagation can be described by ray-optics in this regime, a general com-
putational strategy is proposed in order to find strain fields associated with a desired
effective refractive index profile. The latter is first determined by solving semi-classical
trajectories and by optimizing a chosen objective functional using a genetic algorithm.
Then, the graded refractive index corresponding to the strain field is obtained by using
its connection to the metric component in isothermal coordinates. These coordinates
are evaluated via numerical quasiconformal transformations by solving the Beltrami
equation with a finite volume method. The graphene surface deformation is finally
optimized, also using a genetic algorithm, to reproduce the desired index of refrac-
tion. Some analytical results and numerical experiments are performed to illustrate
the methodology.
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1 Introduction
Straintronics, the control of electronic states by straining graphene and other 2D mate-
rials, has seen a surge of interest in the last decade because it promises new interesting
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physics [1–6] and because it has potential for applications, such as the Dirac fermion mi-
croscope [7]. When graphene is deformed or stretched, the interatomic distance is locally
modified which in turn, changes the tight-binding description since the value of over-
lap integrals depends on the atomic position. Remarkably, this theoretical framework
reduces to the 2D curved-space Dirac equation in the low-energy limit [8–12], allowing
for analogies between matter-gravity coupling theories and material science [13–15].

Understanding the behaviour of electrons in strained graphene is a challenging task,
even in the low energy limit, because it requires a solution to the curved-space Dirac
equation coupled to an emergent pseudo-electromagnetic field. This equation has been
solved in the time-independent case to characterize static properties of charge carri-
ers [16–19]. In particular, this approach, along with other ones based on the tight-binding
model [20], applied to homogeneously strained graphene has led to the discovery of
Landau-like energy levels generated by large pseudo-magnetic fields that can reach up
to 300 T [21]. The dynamic case, on the other hand, has not been investigated as thor-
oughly, in part because obtaining solutions to the time-dependent curved-space Dirac
equation is more challenging (see [22]). Nevertheless, some recent studies have tackled
this challenge and demonstrated that wave packets can be manipulated by scattering on
strained regions [17,23,24]. For example, using numerical approaches, it was shown that
electron wave packets can be confined [25] or focused [26, 27].

In this work, we consider electron scattering over strained regions in the semi-classical
and low-energy (≲2 eV) limit. The main goal is the inverse design of specific strain fields
to steer and control charge carriers for applications in graphene nanoelectronics. To reach
this goal, a set of numerical techniques is developed. Throughout the article, the effect of
the pseudomagnetic field is neglected, allowing us to introduce isothermal coordinates
to describe the strained surface. The interest of working in isothermal coordinates is that
its metric components can be interpreted physically as a graded index of refraction in the
semi-classical approximation. The counterpart is that the construction of the metric ten-
sor in isothermal coordinates requires the solution to the Beltrami equation, a first order
system of partial differential equations. In this paper, this equation is numerically solved
using a least-square cell-centered finite volume method, which offers a simple and flex-
ible framework to solve partial differential equations with a reasonable accuracy. More
importantly, however, is that it offers a direct connection between the strain field and
the refractive index via semi-classical trajectories. We demonstrate that this feature can
be exploited to inverse design strain fields by combining this approach with a standard
metaheuristic optimization technique.

The paper is organized as follows. In Section 2, the curved-space Dirac equation in
isothermal coordinates and its semi-classical limit are reviewed. In Section 3, we present
the general strategy used for the inverse design of strained surfaces. Section 4 is devoted
to the optimization algorithm allowing to construct a desired graded index of refraction.
A numerical scheme to solve the Beltrami equation is introduced in Section 5. We then
propose an original optimization method for parameterizing the surface corresponding
to the desired index of refraction in Section 6. In Section 7, we propose some numerical



F. Fillion-Gourdeau, E. Lorin and S. Maclean / Commun. Comput. Phys., 34 (2023), pp. 235-260 237

experiments illustrating the overall strategy. We conclude in Section 8.

2 Strained graphene in the semi-classical approximation

In this section we review the mathematical model used to describe the dynamics of
charge carriers in strained graphene and its semi-classical approximation.

2.1 Curved-space Dirac equation

At low energy, for E ≲ 2 eV, the dynamics of charge carriers in strained graphene is
well-described by the massless Dirac equation in curved space-time [4,5,9–12,14,28–31].
This theoretical description of charge carriers is obtained by taking the continuum (low-
energy) limit of a deformed tight-binding model, in which the inter-atomic distance de-
pends on the position. The resulting strain field can then be directly related to parameters
in the curved space Dirac equation, in particular the vielbein and the pseudo-magnetic
field. This equation in covariant form reads [9, 32, 33]

ih̄γ̄µ(q)Dµψ(q)=0, (2.1)

where ψ(q) is the two-component spinor wave function, q=(t,q) is a set of curvilinear
coordinates (bold symbols are 2D vectors), Dµ is the curved-space covariant derivative
and γ̄(q)= (γ̄0(q),γ̄i(q)) are the generalized gamma matrices. The generalized gamma
matrices are related to the metric of the surface via the local Clifford algebra

{γ̄µ(q),γ̄ν(q)}=2gµν(q), (2.2)

where gµν(q) is the metric of the space-time manifold.
In our approach, we write this equation for a general surface deformation using

isothermal coordinates r where the metric is diagonal and yields a length element

ds2=v2
Fdt2−ρ(r)dr ·dr , (2.3)

where vF ≈ c/300 is Fermi’s velocity in graphene and ρ is the metric diagonal compo-
nent. In isothermal coordinates, the 2D massless curved-space static Dirac equation has
a particularly simple form, reminiscent of the Dirac equation in flat space [27]:

ih̄∂tψ(t,r)=−i
h̄vF√
ρ(r)

αi [∂i+Ω̃i(r)−iAi(r)
]
ψ(t,r), (2.4)

where Ai(r) is an emergent electromagnetic pseudo-vector potential that appear because
the material is deformed and where Ω̃i(r) =− 1

4 ∂i ln
(
ρ(r)

)
. The flat space Dirac matri-

ces are given by αi = σi (for i= 1,2) and β= σ3 (σi are Pauli matrices). In graphene, the
emergent electromagnetic potential (responsible for pseudo-magnetic fields) and the spin
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connection appear naturally when the low energy limit of the tight-binding model is per-
formed [11]. For simplicity, this pseudo-gauge field is neglected (Ai(r)= 0) throughout
this work. Physically, this corresponds to the presence of another external electromag-
netic field that compensates for the emergent pseudo-electromagnetic field. Generating
such an electromagnetic field would however be challenging experimentally. Adapting
the numerical techniques described in subsequent sections to take the pseudo-potential
into account will be the subject of future studies.

Isothermal coordinates can be obtained for a given strained surface parametrized in
Cartesian coordinates x, by using quasi-conformal transformations characterized by the
Beltrami equation [27, 34]:

P(x)∇r1(x)= JP(x)∇r2(x), (2.5)

where

P(x)=
1√

1−|µ(x)|

[
1−µR(x) −µI(x)
−µI(x) 1+µR(x)

]
, J=

[
0 1
−1 0

]
, (2.6)

and

µ(x)=
E(x)−G(x)+2iF(x)

E(x)+G(x)+2
√

E(x)G(x)−F2(x)
. (2.7)

This assumes that the 2D surface S embedded in a 3D space is parameterized by the
displacement field

u⃗(x)=(X(x),Y(x),Z(x)), (2.8)

where the notation v⃗ stands for 3D vectors. Then, the metric in Cartesian coordinates
yields

ds2=v2
Fdt2−E(r)dx2−F(r)dxdy−G(r)dy2, (2.9)

with components 
E(x)=(∂xX)2+(∂xY)2+(∂xZ)2,
G(x)=(∂yX)2+(∂yY)2+(∂yZ)2,
F(x)=(∂xX)(∂yX)+(∂xY)(∂yY)+(∂xZ)(∂yZ).

(2.10)

Once the Beltrami equation is solved, we can get the metric component in isothermal
coordinates using

ρ(x)=
E(x)+F(x)+2

√
E(x)G(x)−F2(x)

[∂xr1(x)+∂yr2(x)]2+[∂xr2(x)−∂yr1(x)]2
. (2.11)
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2.2 Semi-classical approximation

When the typical scale for deformation is much larger than the lattice constant (xS ≫
a), where the lattice constant is a ≈ 1.4 Å, the semi-classical approximation accurately
reproduces the dynamics of the curved-space Dirac equation [26]. This semi-classical
limit of (2.4), is evaluated by using the semi-classical ansatz

ψ(t,r)= ei
S(t,r)

h̄

∞

∑
n=0

h̄nun(t,r), (2.12)

where the amplitude u is a bi-spinor and S is a (real) phase [35]. Collecting the O(h̄0)
terms results in the following system of equations:[

∂tS(t,r)+
vFαi√

ρ(r)
[∂iS(t,r)]

]
u0(t,r)=0, (2.13)

which can be solved by computing the determinant (in spinor-space). We get:

∂tS(t,r)=h±(r,p)=± vF√
ρ(r)

|∇S(t,r)|, (2.14)

where h± is the classical Hamiltonian. Eq. (2.14) is the so-called eikonal equation for the
curved-space Dirac equation. It can be expressed in Cartesian coordinates by performing
a change of variable r→ x:

∂tS(t,x)=± vF√
ρ(x)

|∇S(t,x)|. (2.15)

Particle-like trajectories can be obtained from this equation via the method of characteris-
tics. Letting p=∇S, they are given explicitly by Hamilton’s equations (we consider only
positive solution h=h+):

dx
dt

=∇ph(x,p)=
vF

n(x)
p(t,x)
|p(t,x)| , (2.16)

dp
dt

=−∇xh(x,p)=vF

(
∇n(x)
n2(x)

)
|p(t,x)|, (2.17)

where we defined n(x)=
√

ρ(x). This function n(x) can be interpreted as a graded index
of refraction by evaluating the speed using Eq. (2.16): |v(x)|= |ẋ|= vF

n(x) . Thus, the metric
component in isothermal coordinates has a direct effect on the wave propagation.

Finally, it is possible to express the equation of motion in a Newton-like form, by
taking the time-derivative of the velocity (2.16). We find

ẍ=
v2

F
n3(x)

∇n(x). (2.18)
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Changing the time variable from t to a, such that |dx/da|= n(x) (following Evans’ for-
mulation [36]), the equation of motion simply becomes

d2x
da

=∇
[

n2(x)
2

]
,∣∣∣dx(0)

da

∣∣∣=n(x0),

x(0)= x0.

(2.19)

Thus, the semi-classical trajectories can be evaluated from this differential equation. Phys-
ically, these trajectories are important because they are orthogonal to wavefronts.

3 Control of charge carriers in graphene

The main objective of this paper is to use computational methods to design strained
graphene surfaces in the semi-classical regime which passively control the trajectories
of electrons. Such control is interesting from an application point of view because it al-
lows for quantum lensing or waveguide effects [6, 23, 37–41]. The typical configuration
under consideration is a free incoming electron wave packet that scatters on a locally
deformed region.

In order to achieve this goal, we assume that the system is in the semi-classical regime,
where typical deformations vary slowly compared to the electron wave function. Then,
we can benefit from the isomorphism between the index of refraction n(x) and the sur-
face parametrization given in Eq. (2.8) via the solution of the Beltrami equation (2.5) and
the metric component in isothermal coordinates (2.11). Exploiting this connection, we
proceed in two steps:

1. A desired graded refractive index n(x) is chosen.

2. The displacement field u⃗(x) corresponding to the desired graded index profile is
determined.

The first step is to choose a particular index profile such that electronic rays, that obey
the classical-like equation (2.19), are directed in some given direction or follow some
specific trajectories. This is a classic inverse problem in transformation optics [42] and is
solved here using a metaheuristic algorithm, as described in Section 4.

The second step is to determine the displacement field that corresponds to the desired
index profile. It is challenging to obtain the displacement field u⃗(x) and deformations
X,Y and Z associated to a specific strain-induced refractive index profile. Mathematically,
this requires the inversion of Eq. (2.11), which non-linearly depends on the solution of
the Beltrami equation (2.5). Although this inversion is very challenging and may even be
impossible analytically in the general case, it can accurately be performed numerically by
solving an inverse minimization problem. A numerical scheme to solve (2.5) is proposed
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in Section 5 while a metaheuristic algorithm is used in Section 6 to find the displacement
field.

4 Optimization of the graded refractive index profile

In this section, we discuss the construction of the desired graded refractive index. The
specific index profile depends on the considered application. Here, we are specifically
interested in designing graphene surfaces that behave like gravitational lenses [43, 44]
where each “electron-ray” (usually referred to as ray hereafter) is focused to a single
point.

More specifically, we consider R>1 rays, {xi}1⩽i⩽R satisfying Eq. (2.19) with distinct
initial conditions {x0;i}1⩽i⩽R. Our objective is to determine a parametrized graded in-
dex of refraction nπ, where the v-dimensional parameter vector π belongs to a bounded
search space Π⊂Rv, such that the rays intersect at (or close to) a given target point xT.
We also want this point to be reached at the same “final time” σ (which will also be an
optimization parameter). The objective function minimization hence reads

argminπ;σ

R
∑
i=1

∥xi(σ)−xT∥2 . (4.1)

In other words, we need to simultaneously optimize the function ρ, but also the “crossing
stepping time” denoted by σ.

The rays are evaluated numerically. We denote by Xk
i a finite difference approxima-

tion of xi(ak), where a0 = 0,a1,··· ,ak,··· with ak = k∆a. For instance, we can consider the
second order approximation, for k>1

Xk+1
i −2Xk

i +Xk−1
i =

∆a2

2
∇n2

π(Xk
i ), (4.2)

with X0
i = x0;i. For k=1 and using the initial condition, a natural approximation is

X1
i = x0;i+∆a×n(x0;i)+

∆a2

2
∇n2

π(x0;i).

The minimization of the discrete cost function hence reads (with Nσ∆a=σ),

F=argminπ∈Π;1⩽k⩽Nσ

R
∑
i=1

∥Xk
i −xT∥2 . (4.3)

The problem presented in Eq. (4.3) is a single-objective optimization problem on contin-
uous variables in a (v+1)-dimension hypercube search space. Metaheuristic algorithms
are particularly well-suited for these types of problem [45]. Accordingly, an evolutionary
algorithm (EA) is chosen to explore the parameter space and find a solution close to a
minimum.
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In a nutshell, EAs are population-based and proceed as follows. At the beginning, a
number of random “individuals” are created forming the first generation. Each individ-
ual corresponds to one point in parameter space with a specific set of parameters (π,σ).
Then, a sequence of new population is generated, where the fittest individuals are more
likely to be passed to the next generation. The fitness value is directly related to the value
of the objective function: in our case, higher fitness is associated to a lower value of F .
These individuals are then randomly modified (mutation) or combined (crossover) to cre-
ate new individuals in the population. New generations are created until some stopping
criterion is reached. Individuals with the highest fitness are then selected as champions.

There exists several variants of EAs. In this article, the standard population-based ge-
netic algorithm [43,44] implemented in MATLAB is chosen, in which individual mutations
are performed by adding a random Gaussian distributed vector while the crossovers are
accomplished by a random weighted average of the parents.

4.1 Numerical example: Gaussian index profile

In this first numerical experiment, we consider 3 rays, initially located at x0;i = (0.4+
0.1i,0) (i=1,2,3). We assume that the index profile is a Gaussian function parameterized
by π=(A,wx,wy) such that

n2
π(x)=1+Aexp

(
−wx(x−0.5)2−wy(y−1)2). (4.4)

The target point is selected as xT = (0.5,2) and the 4-dimensional search space is given
by

(
π,σ

)
∈ [0.05,0.15]×[2,20]×[2,10]×[1.9,2.1]. When the chosen stopping criterion is

fulfilled, the genetic algorithm provides the following champion

(π∗,σ∗)=(A,wx,wy,σ)=(0.0599,17.3786,7.9505,1.9948).

In Fig. 1, the graph of ρπ∗ =n2
π∗ is displayed along with the logarithm of the fittest indi-

vidual as a function of the total number of iterations of the genetic algorithm. We also
report the semi-classical trajectories of the champion in Fig. 2. This figure demonstrates
that the trajectories are intersecting at the target point.

5 Solution to the Beltrami equation

As argued in Section 3, the Beltrami equation (2.5) needs to be solved to evaluate the
displacement field. A least-square finite-element method was proposed in Ref. [27] to
reach this goal. In this section, we derive a simple second-order accurate least-square
cell-centered finite volume method.
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Figure 1: (Left) Graph of optimized effective refractive index ρπ∗ =n2
π∗ for the Gaussian function (4.4). (Right)

Value of the best discrete objective function (π∗,σ∗) as a function of total number of iterations of the genetic
algorithm.
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Figure 2: (Left) Semi-classical trajectories for particles propagating on a deformation characterized by the
champion Gaussian index of refraction ρπ∗ . (Right) Close-up on the trajectories in the vicinity of the target
point.

5.1 Least-square finite volume framework

We here introduce a conforming finite volume mesh Ωh=∪Nj
j=1Kj covering the domain Ω,

where the volumes Kj are typically chosen as rectangles or triangles [46]. The polygonal
boundary of Ωh is denoted by Γh. We also use the following notation:

• The edges of a finite volume Kj are denoted {ej;i}e
i=1, where e (=3,4) is the number

of edges.

• The outward norm vector to the edge ej;i is denoted by nji and dσj;i(x) (practically
Lebesgue’s measure) denotes the measure along ej;i.

• The area of the volume Ki is denoted |Ki|, and the length of ej;i is denoted by |ej;i|.
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• The volume having the edge ej;i in common with Kj is denoted Kji , where 1⩽ ji⩽Nj
and ji ̸= j.

In order to solve (2.5), we search for cell-center finite volume functions R1, R2 of the form

R1(x)=
Nj

∑
j=1

aj1Kj(x), R2(x)=
Nj

∑
j=1

bj1Kj(x),

where {aj}j and {bj}j are the approximate values of r1 and r2 on the volume {Kj}j, and 1K
denotes the characteristic function on K. We also denote by aj;i (resp. bj;i) the approximate
values of r1 (resp. r2) on ej;i. Then, we integrate (2.5) over Ωh. The left-hand-side reads

∫
Ωh

P(x)∇r1(x)dx=
Nj

∑
j=1

∫
Kj

P(x)∇r1(x)dx

=
Nj

∑
j=1

e

∑
i=1

∫
ej;i

P(x)nj;ir1(x)dσj;i(x)−
Nj

∑
j=1

∫
Kj

∇P(x)⊗r1(x)dx, (5.1)

while the right-hand-side reads

∫
Ωh

Q(x)∇r2(x)dx=
Nj

∑
j=1

∫
Kj

Q(x)∇r2(x)dx

=
Nj

∑
j=1

e

∑
i=1

∫
ej;i

Q(x)nj;ir2(x)dσj;i(x)−
Nj

∑
j=1

∫
Kj

∇Q(x)⊗r2(x)dx, (5.2)

where Q= JP and where we have denoted

∇P(x)⊗r1(x)=
[

∂xP11+∂yP12
∂xP21+∂yP22

]
r1(x). (5.3)

We next denote for any matrix valued function T

Tj;i =
1

|ej;i|

∫
ej;i

T(x)dσj;i(x), ∇Tj =
1

|Kj|

∫
Kj

∇T(x)dx.

5.2 Finite volume approximation for interior volumes

In this subsection, we focus on the finite volume approximation for volumes not hav-
ing a common edge with the boundary Γh (designated as interior volumes). From (5.1)
and (5.2), we then propose the following finite volume approximation on each interior
volume Kj:

e

∑
i=1

|ej;i|Pj;inj;iaj;i−|Kj|∇Pj⊗aj =
e

∑
i=1

|ej;i|Qj;inj;ibj;i−|Kj|∇Qj⊗bj .
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In order to get an explicit expression of the scheme as a function of {aj}1⩽j⩽J and
{bj}1⩽j⩽Nj , we also propose a standard approximation of the edge values, as follows

aj;i =
aj|Kj|+aji |Kji |
|Kji |+|Kj|

, bj;i =
bj|Kj|+bji |Kji |
|Kji |+|Kj|

,

where |Kji | is the area of the neighboring volume Kji to Kj, having ej;i as a common edge.
The finite volume scheme, hence reads for each interior volume: search for {aj}j, and
{bj}j such that

e

∑
i=1

|ej;i|Pj;inj;i
aj|Kj|+aji |Kji |
|Kji |+|Kj|

−|Kj|∇Pj⊗aj

=
e

∑
i=1

Qj;inj;i
bj|Kj|+bji |Kji |
|Kji |+|Kj|

−|Kj|∇Qj⊗bj . (5.4)

The above expression is hence an algebraic system with {aj}1⩽j⩽Nj and {bj}1⩽j⩽Nj as
unknowns.

5.3 Boundary conditions

We now detail the treatment of Dirichlet boundary conditions. For k=1,2, we impose

rk(x)= gk(x), on Γ,

where gk are given functions. For finite volumes Kj sharing an edge ej;i with Γh (that is
ej;i ⊂Γh), we approximate aj;i by

aj;i ≃
aj+g1;j

2
,

where g1;j is the mean of (an extension of) g1 on a ghost volume (cell), symmetric to Kj
with respect to ej;i.

In fine, the finite volume scheme can simply be written in the form

Kaa+Fa =Kbb+Fb , (5.5)

where i) a∈RNj and b∈RNj are the unknown coefficients of R1 and R2, ii) Ka,b ∈RNj×Nj ,
and iii) Fa,b ∈RNj are the boundary condition contributions in (5.4).

In order to solve (5.5), we use a standard least-square method. More specifically, we
compute

argmin
(a,b)∈R

Nj×R
Nj ∥Kaa−Kbb+Fa−Fb∥2 .

The least-square problem is finally solved using a quasi-Newton function minimizer, us-
ing the matlab function called fminunc.



246 F. Fillion-Gourdeau, E. Lorin and S. Maclean / Commun. Comput. Phys., 34 (2023), pp. 235-260

5.4 Mathematical analysis of the least-square finite-volume method

In this subsection, we present some analytical properties of the least-square finite-volume
method introduced in this paper. More specifically, we first focus on the order of consis-
tency. Let us consider a smooth function f defined on a two-dimensional rectangle finite
volume K=[−∆x/2,∆x/2]×[−∆y/2,∆y/2] of area |K|=∆x∆y and centered at 0. We de-
note by fK the mean function of f over K. We prove the following result on the accuracy
of our finite-volume method for a flat surface (with P=1) and for a curved surface. Note
that in the former, the Beltrami equation degenerates into the Cauchy-Riemann equation.

Proposition 5.1. The approximation of the Cauchy-Riemann (resp. Beltrami on a smooth
surface) equation with Dirichlet boundary conditions, using the cell-center finite volume
method (5.6) with rectangle cells is second (resp. first) order accurate.

Proof. First, we recall that for K=[−∆x/2,∆x/2]×[−∆y/2,∆y/2]

fK =
1
|K|

∫
K f (x)dx=

1
∆x∆y

∫ ∆x/2
−∆x/2

∫ ∆y/2
−∆y/2 f (x,y)dxdy= f (0)+O(∆x2+∆y2).

Hence by Taylor’s expansion of f about 0, we also get for x∈K

f (x)= fK+O(∆x+∆y).

Let us denote by Li (i=1,2,3,4) the neighboring volume sharing the edge ei=K∩Li with K,
such that nKL1 =−nKL3 =(1,0)T, and nKL2 =−nKL4 =(0,1)T. By a slight change of notation,
we will also denote by fLi the constant value of the function f in the volume Li. Then

∫
∪4

i=1ei

f (x)ndσ(x)=
∫ ∆x/2

−∆x/2
f
(

x,
∆y
2

)
− f

(
x,−∆y

2

)
dx+

∫ ∆y/2

−∆y/2
f
(∆x

2
,y
)
− f

(
−∆x

2
,y
)

dy

=
∫ ∆x/2

−∆x/2
f
(

x,
∆y
2

)
− f

(
x,−∆y/2)dx+

∫ ∆y/2

−∆y/2
f
(∆x

2
,y
)
− f

(
−∆x

2
,y
)

dy

=
∫ ∆x/2

−∆x/2
∂y f (x,0)dx+

∫ ∆y/2

−∆y/2
∂x f (0,y)dy+O(∆x∆y2+∆y∆x2)

=∆x∂y f (0)+∆y∂x f (0)+O(∆x∆y2+∆y∆x2+∆x3+∆y3)

=
∆x
2∆y

( fL3+ fL1)+
∆y

2∆x
( fL4+ fL2)+O(∆x∆y2+∆y∆x2+∆x3+∆y3).

The latter equation is hence second-order consistent with (5.6).
In the case of the Beltrami equation, we theoretically loose one order of accuracy

due to the contribution of the smooth matrices P and Q (we skip the details which are
trivially a consequence of standard Taylor’s expansions). The first order term is hence
only proportional to ∥∇P∥∞ (as ∥∇Q∥∞=∥∇P∥∞), and more specifically to ∥∇P∥∞(∆x+
∆y). This concludes the proof.
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It is interesting to notice that for Gaussian surfaces (Beltrami equation case), as P is
constituted by Gaussian-like functions, the first order term coefficient is proportional to
the sup-norm of the derivative of Gaussian functions, so that an order 2-like behavior is
still expected.

5.5 Numerical examples

We propose in this subsection, a series of numerical experiments to illustrate the pro-
posed least-square finite volume method.

5.5.1 Flat surface

In the following experiment, we consider the case of a flat surface Ω = [xmin,xmax]×
[ymin,ymax]. As mentioned above, the Beltrami equation degenerates into the Cauchy-
Riemann equation

∇r1(x)= J∇r2(x), (5.6)

with the following boundary conditions

r1|∂Ωl = xmin, r1|∂Ωr = xmax,
r1|∂Ωd =y, r1|∂Ωt =y, (5.7)
r2|∂Ωl = x, r2|∂Ωr = x,
r2|∂Ωd =ymin, r2|∂Ωt =ymax, (5.8)

where ∂Ωl,r,d,t are the left, right, down and top boundaries of the rectangular domain,
respectively. In this case, the exact solution is given by r1(x)= x and r2(x)=y.

The test is performed on Ω=[−1,1]2 with an initial guess given by r1(x)= r2(x)=1,
and we report the error functions (r1(x)−x, r2(x)−y) obtained with 202 volumes on Fig. 3.
The corresponding ℓ2-error ∥R1−x∥2+∥R2−y∥2 is 2×10−11 and the ℓ∞-norm is given by
3×10−6.

5.5.2 Curved Gaussian surface

In this experiment, we assume that the surface is defined from the displacement field
u⃗(x)=(x,Z(x)) with Z(x)=10−1exp

(
−10∥x−c∥2), and Ω=[−1,1]2. We report the graph

of r1(x)−x and r2(x)−y, with 602 finite volumes on Fig. 4. The solution is consistent
with [27].

6 Evaluation of the displacement field

In this section, we develop a method to find the displacement field associated to a target
refractive index profile. The starting point is the surface SΛ characterized by the follow-
ing displacement field u⃗Λ(x)=(XΛ(x),YΛ(x),ZΛ(x)). Here, Λ denotes a set of parameters
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Figure 3: Numerical error functions of the finite volume Beltrami solver for a flat surface. (Left) Graph of
error function for the first isothermal coordinate r1. (Right) Graph of error function for the second isothermal
coordinate r2.

Figure 4: Solution obtained from the finite volume Beltrami solver for a curved Gaussian surface. (Left) Graph
of the first isothermal coordinate r1(x)−y (Right) Graph of the second isothermal coordinate r2(x)−y.

that parametrizes the strained surface. These parameters are optimized in a search space
denoted by L. Then, we set the target index of refraction to

√
ρT(x) = nT(x) = nπ(x),

where nπ is the refractive index obtained in Section 4. Therefore, to obtained the corre-
sponding strained surface, we minimize the cost function

argminΛ∈L∥ρT−ρΛ∥2,

subject to: CI ⩽0,
CE =0,

where the computation of ρΛ for given a Λ, is performed via the solution to a Beltrami
equation as explained in Section 5 or in [27]. Notice in particular, that the construction of
ρΛ we will require to compute intermediate functions EΛ,FΛ,GΛ as in (2.10).
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The vectors CI and CE are sets of constraints. Their explicit form will depend on the
displacement field parametrization and on the physical configuration which is consid-
ered. For example, one physical constraint that should always be taken into account is
that the strain should never be larger than the maximum strain that graphene can sustain
ϵmax≈0.25, see [47]. This can be formulated as

CI,0=max
x

[E(x)]−ϵmax⩽0, (6.1)

where E is the norm of some strain measure. Obviously, other constraints can be imple-
mented to faithfully represent physical or experimental limitations.

In order to keep a total flexibility on the size of the searched space containing Λ,
we propose to use the same genetic algorithm as in Section 4. The overall scheme is
summarized in Algorithm 1.

Algorithm 1 Optimization problem for the displacement field
1: Define the bounded search space L and the constraints.
2: Compute ρΛ numerically for Λ∈L.

• For Λ∈L, compute the solution to the Beltrami equation (see details in Section
5).

• Function ρΛ is given by Eq. (2.11).

3: Estimate the cost function ∥ρT−ρΛ∥2.
4: Until a stopping criterion is reached, stochastically update Λ∈L.

6.1 Mathematical analysis

We are interested in the design of a graphene surface having a desired index of refraction
to control charge carriers. However, there is no guarantee that the optimization algorithm
will find the global minimum, rather it will only capture local minima. Therefore, in the
first proposition, we prove that if the surfaces ST and SΛ are close enough, their metric
in isothermal coordinates will also be close. Here, the index T (resp. Λ) is used to refer
to the target (resp. estimated or optimized) quantities ρT, ST={(x,ZT(x))}, ET, etc (resp.
ρΛ, SΛ={(x,ZΛ(x))}, EΛ, etc). This proposition is proven to ensure that even if the global
minimum is not found, we obtain a displacement field that is close to the correct one.

We denote by rT
i (resp. rΛ

i ) the solution to (6.2) on ST (resp. SΛ).

Proposition 6.1. Assume that there exists a small ε>0, MT >0, MΛ>0, such that ∥∇Z−
∇ZΛ∥∞<ε, ∥∇ZT∥∞<MT, ∥∇ZΛ∥∞<MΛ. Moreover, for i=1,2, we denote by RT,L (resp.
rT,L) an upper (lower) bound of ∇rT,L

i , that is

rT ⩽∥∇rT
i ∥∞⩽RT, rΛ⩽∥∇rΛ

i ∥∞⩽RΛ .
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Then there exists a constant C=C(MT,MΛ,RT,rT)>0, such that

∥ρT−ρΛ∥∞ <Cε.

Proof. We consider the Beltrami equation written in the form

P̃(x)∇r1(x)= JP̃(x)∇r2(x), (6.2)

where

P̃(x)=
[

1−µR(x) −µI(x)
−µI(x) 1+µR(x)

]
, J=

[
0 1
−1 0

]
. (6.3)

The proof requires several intermediate estimates. We first notice that

∥ET−EΛ∥∞ =∥(∂xZT)
2−(∂xZΛ)

2∥∞

=∥∂xZT+∂xZΛ∥∥∂xZT−∂xZΛ∥∞

⩽(MT+MΛ)ε.

The same results hold for ∥GT−GΛ∥∞. Regarding ∥FT−FΛ∥∞, we notice that

∥FT−FΛ∥∞ =∥(∂xZT)(∂yZT)−(∂xZΛ)
2(∂yZΛ)∥∞

=∥(∂xZT)(∂yZT)−(∂xZT)(∂yZΛ)+(∂xZT)(∂yZΛ)−(∂xZΛ)(∂yZΛ)∥∞

⩽(MT+MΛ)ε.

Next, we remark that for any x, as ET(x)⩾1, EΛ(x)⩾1, GT(x)⩾1, GΛ(x)⩾1, we easily
deduce that there exists C(MT,MΛ)>0 such that

∥µT−µΛ∥∞⩽Cε. (6.4)

We now focus on error estimates related to the modified Beltrami equation (6.2). Let us
denote si =RT

i −rΛ
i for i=1,2. Then, from (6.2) for rT

i and rΛ
i we get

∇s1(x)=P̃−1
Λ (x)JP̃(x)∇s2(x)

+ P̃−1
Λ (x)J

(
P̃T(x)− P̃Λ(x)

)
∇rT

2 (x)− P̃−1
Λ (x)

(
P̃T(x)− P̃Λ(x)

)
∇rT

1 (x).

As EΛ(x)⩾1, GΛ(x)⩾1 and using (6.4), we easily show that there exists a constant C=
C(MT,MΛ,RT)>0 such that ∥P̃∥∞ <Cε, so that

∥P̃−1
Λ J

(
P̃T− P̃Λ

)
∇rT

2 − P̃−1
Λ

(
P̃T− P̃Λ

)
∇rT

1 ∥∞⩽Cε.

Moreover, as the solution to

P̃(x)∇s1(x)= JP̃(x)∇s2(x),
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with null Dirichlet boundary conditions is null, we easily deduce that there exists C =
C(MT,MΛ,RT)>0 such that

∥∇rT
i −∇rΛ

i ∥⩽Cε. (6.5)

Finally, setting ∆ρ=ρT−ρΛ, we get

∆ρ=

(
[∂xrΛ

1 +∂yrΛ
2 ]

2+[∂xrΛ
2 −∂yrΛ

1 ]
2)(ET+FT+2

√
ETGT−F2

T
)(

[∂xrT
1 +∂yrT

2 ]
2+[∂xrT

2 −∂yrT
1 ]

2
)(
[∂xrΛ

1 +∂yrΛ
2 ]

2+[∂xrΛ
2 −∂yrΛ

1 ]
2
)

−

(
[∂xrT

1 +∂yrT
2 ]

2+[∂xrT
2 −∂yrT

1 ]
2)(EΛ+FΛ+2

√
EΛGΛ−F2

Λ
)(

[∂xrT
1 +∂yrT

2 ]
2+[∂xrT

2 −∂yrT
1 ]

2
)(
[∂xrΛ

1 +∂yrΛ
2 ]

2+[∂xrΛ
2 −∂yrΛ

1 ]
2
),

=

(
[∂xrΛ

1 +∂yrΛ
2 ]

2+[∂xrΛ
2 −∂yrΛ

1 ]
2)(ET+FT+2

√
ETGT−F2

T−EΛ−FΛ−2
√

EΛGΛ−F2
Λ
)(

[∂xrT
1 +∂yrT

2 ]
2+[∂xrT

2 −∂yrT
1 ]

2
)(
[∂xrΛ

1 +∂yrΛ
2 ]

2+[∂xrΛ
2 −∂yrΛ

1 ]
2
)

+

(
[∂xrΛ

1 +∂yrΛ
2 ]

2+[∂xrΛ
2 −∂yrΛ

1 ]
2−[∂xrT

1 +∂yrT
2 ]

2−[∂xrT
2 −∂yrT

1 ]
2)(EΛ+FΛ+2

√
EΛGΛ−F2

Λ
)(

[∂xrT
1 +∂yrT

2 ]
2+[∂xrT

2 −∂yrT
1 ]

2
)(
[∂xrΛ

1 +∂yrΛ
2 ]

2+[∂xrΛ
2 −∂yrΛ

1 ]
2
) ,

and combining estimates of ∥ET−EΛ∥∞, ∥GT−GΛ∥∞ and (6.5), we deduce the existence
of a constant C=C(Mt,MΛ,Rt,rT)>0 such that

∥ρT−ρΛ∥∞ <Cε.

This concludes the proof.

6.2 Numerical example: Gaussian target function

We propose a simple test illustrating the optimization scheme summarized in Algorithm
1. We assume that the domain is [−1/2,1/2]2 and we fix the target function to

ρT(x)= c1exp(−c2x2−c3y2), (6.6)

where c1=1/20, c2=60, c3=80. To reproduce this target function, the displacement field
is parametrized as uΛ(x)=(x,ZΛ(x)), where

ZΛ(x)=Aexp
(
−wxx2−wyy2).

Thus, the 3 unknown parameters Λ=(A,wx,wy) are the optimization parameters. We use
a total of 1600 (then 3600) square finite volumes on which i) we project the target func-
tion ρT, and ii) we solve the Beltrami equation. Initially, we take Λ=(0.01,5,5) and the
3-dimensional search space is L= [0.005,1.1]×[1,45]×[1,45]. We report in Fig. 5 (upper
left) the target function, (upper right) the optimized functions, and (lower middle) the
error function ρT−ρΛ. The local minima obtained with the code are Λ∗=(A∗,w∗

x,w∗
y)=

(0.0409,19.2634,21.8627), for 1600 finite volumes (and (0.0468,12.6860,14.9177) for 3600
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Figure 5: (Upper left) Graph of the Gaussian target function for the refractive index ρT, given by Eq. (6.6).
(Upper right) Graph of the optimized function ρΛ∗ obtained from the optimization algorithm. (Lower middle)
Error function between the target and optimized function ρT−ρΛ.

finite volumes). We report in Fig. 6 (left) the objective functions as a function of the
total number of iterations of the optimization algorithm. The corresponding surface
(x,ZΛ∗(x)) with x ∈ [−1/2,1/2]2 is finally reported in Fig. 6 (right). We see that the
method and the surface parametrization are able to reproduce the target function with
a relatively small error O(10−3). We also see that a finer discretization reduces the error.

7 Experiments in refractive optics on strained graphene surfaces

In this section, we propose two complete tests in which a desired index of refraction is
determined from the technique of Section 4 and the corresponding surface is obtained
from the method in Section 6.

7.1 Lens without aberration

The main goal of this example is to produce an aberration-free lens, i.e. a lens where all
the rays meet at the same target point. To design a strained surface with such an effect



F. Fillion-Gourdeau, E. Lorin and S. Maclean / Commun. Comput. Phys., 34 (2023), pp. 235-260 253

0 100 200 300 400 500

2

3

4

5

6

7

8

9

10

11

10
-3

Figure 6: Gaussian target function. (Left) Best discrete objective function as a function of total number of
iterations of the genetic algorithm for 1600 and 3600 finite volumes. (Right) Surface deformation ZΛ∗ obtained
by optimizing the target function ρT.

on charge carriers, five rays are considered and are initially located at x0;i=(0.4+0.05i,0).
Physically, they represent the wavefront of an incoming wave packet propagating at a
certain velocity in the y-direction.

Step 1. The first step is to search for a target function ρT = n2
T parameterized with π =

(A,wx,wy) and σ, such that

ρT(x)=1+Aexp
(
−wx(x−0.5)2−wy(y−1)2).

The target point where the trajectories are crossing is xT =(0.5,2) and the 4-dimensional
search space is given by

(
π,Nσ

)
∈ [0.05,0.15]×[2,20]×[2,20]×[1.9,2.1]. When one of

the stopping criteria is reached, the genetic algorithm provides the following champion
(π∗,σ∗)=(0.0779,14.1926,9.9920,1.9959). We report in Fig. 7 (left), the electron-rays cross-
ing at the target and the corresponding function ρπ∗ .

Step 2. Next, we next want to determine the surface S that will reproduce ρπ∗ obtained
in Step 1. We choose an out-of-plane Gaussian deformation where the surface is SΛ∗ =
{(x,ZΛ(x))}, with

ZΛ(x)=Aexp
(
−wx(x−0.5)2−wy(y−1)2). (7.1)

Again, the optimization parameters are Λ=(A,wx,wy) and the search space [0.05,0.2]×
[2,10]×[2,10]. The optimization algorithm provides the champion: Λ∗ = (A∗,w∗

x,w∗
y) =

(0.1293,3.3860,2.9065). The index of refraction is displayed in Fig. 8 and the surface ZΛ∗

is reported in Fig. 9. Again, we can see that our approach allows us to reproduce the
desired index of refraction and to control the behavior of trajectories.

Finally, in Fig. 10, we compare the electron-rays obtained in Step 1 (with ρT) to the
ones on the optimized surface obtained in Step 2 (with ρΛ∗). We conclude that the surface
which was parameterized in Step 2 indeed possesses the searched refractive properties.
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Figure 7: Optimization of the effective index of refraction to obtain a lens without aberrations. (Left) Crossing
of semi-classical trajectories in the optimized graded index of refraction. (Right) Graph of optimized ρπ∗ .

Figure 8: Surface optimization to obtain the target index of refraction for the lens without aberration. (Upper
left) Graph of the target function for the refractive index ρT. (Upper right) Graph of the optimized function
ρΛ∗ obtained from the optimization algorithm. (Lower middle) Error function between the target and optimized
function ρT−ρΛ.
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Figure 9: Graph of optimized the surface ZΛ∗ for the lens without aberration.
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Figure 10: Comparison of semi-classical trajectories between the target and optimized refractive index for the
lens without aberration.

7.2 Electron control

In the following, we propose a simple test in which an electronic ray is guided from a
known initial point to a final target point using 2 Gaussian surfaces.
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Figure 11: Electron control with 2 Gaussian deformations. (Left) Semi-classical trajectory in the optimized
index of refraction. The trajectory reaches the target final position from its fixed initial position. (Right) Best
discrete objective function as a function of total number of iterations of the genetic algorithm to optimize the
index of refraction for the control of the trajectory.

Step 1. A ray initially located in x0 =(0.4,0) is guided to xT =(0.4,5) on a surface consti-
tuted by two Gaussian surfaces centered in (0.5,1) and (0.5,4). The widths (w1,w2) and
the amplitudes (A1,A2) of the Gaussian surfaces are numerically optimized as well as the
stepping, using the same approach as before. The functional form of the desired index of
refraction is chosen as

ρπ(x)=1+A1exp
(
−w1(x−0.5)2−w1(y−1)2)+A2exp

(
−w2(x−0.5)2−w2(y−4)2).

After optimization, the champion is given by

(w∗
1 ,A∗

1 ,w∗
2 ,A∗

2 ,σ∗)=(12.1517,0.1269,17.3673,0.3416,4.9467),

see Fig. 11.

Step 2. The next step is then to parameterize the surface. The out-of-plane deformation is
chosen as

ZΛ(x)=A1exp
(
−w1(x−0.5)2−w1(y−1)2)+A2exp

(
−w2(x−0.5)2−w2(y−4)2).

The genetic algorithm provides the following optimized values:

(w∗
1 ,A∗

1 ,w∗
2 ,A∗

2)=(4.2651,0.1634,3.6072,0.2375).

The graph of the optimized surface is reported in Fig. 12 (left).
Finally, we compare the guided trajectory from Step 1 (from ρπ) on the optimized

surface obtained in Step 2. This surface has refractive index characterized by ρΛ∗ . We
display in Fig. 12 (right), the target trajectory using ρπ∗ computed in Step 1, and the
optimized one using ρΛ∗ as computed in Step 2. This shows that the method is working
well, up to a certain accuracy (related to the finite volume method accuracy, convergence
of the optimization algorithm, etc).
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Figure 12: Control of electron with 2 Gaussian deformation. (Left) Graph of the optimized surface ZΛ∗ that
reproduces the target index of refraction. (Right) Comparison between trajectories in the target and optimized
index of refraction.

8 Conclusion

In this paper, we have developed and analyzed a general strategy to design graphene
surfaces to control electron trajectories. Our approach uses isothermal coordinates, for
which the metric tensor is diagonal and related to a graded refractive index in the semi-
classical limit. Working in isothermal coordinates however requires the solution of the
Beltrami equation, which is efficiently and accurately performed in this paper, thanks to
a least-square finite volume method. By combining this numerical scheme to optimiza-
tion algorithm, we have demonstrated that it is possible to inverse engineer a strained
graphene surface with some desired scattering properties. Some numerical experiments
have shown the accuracy of our approach to parameterize graphene surface with re-
fractive optics-like properties. Simple surface parametrizations have been considered to
construct aberation-free lenses and to control electrons. Obviously, more intricate con-
figurations are possible, which may allow to design refractive optical-like elements. This
may be important to the development of new nanoelectronic devices.

Our optimization technique could be also be extended to more accurate models.
The most important extension of our work would be to consider the emergent pseudo-
potential because the latter has significant effects on the dynamics of charge carriers. The
semi-classical approach based on trajectories could be adapted to solve such problem.
This will be the topic of future investigations. Going beyond the semi-classical approx-
imation is also possible, in principle. To reach this goal, one possibility is to consider
Bohm-like trajectories [48, 49] and optimize these trajectories on some objective. How-
ever, this requires a full solution of the Dirac equation (possibly with numerical methods
presented in [50, 51]), which is computationally much more expensive than solving the
semi-classical equations of motion.
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[7] Peter Bøggild, José M Caridad, Christoph Stampfer, Gaetano Calogero, Nick Rübner Papior,
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