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Dynamics of a Stochastic SIR Epidemic Model
with Logistic Growth∗

Yubo Liu1, Jianli Li1,† and Daipeng Kuang1

Abstract In this paper, a stochastic SIR epidemic model with saturated
treatment function, non-monotone incidence rate and logistic growth is stud-
ied. First, we prove that the stochastic model has a unique global positive
solution. Next, by constructing a suitable Lyapunov function, we can show
that there exists an ergodic stationary distribution in the random SIR model.
Then, we show that a sufficient condition can make the disease tend to ex-
tinction. Finally, some numerical simulations are used to prove our analytical
result.
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1. Introduction

Infectious diseases are caused by pathogens and spread through air, water, food and
other vectors. In 1927, the Black Death broke out in London. Through the study of
the Black Death, the classical SIR model was developed by Kermack and Mckendrick
[14]. Later, they proposed the threshold theory based on the study of this model,
which laid foundation for researchers who study the epidemic model. From then on,
many researchers had begun to analyze epidemics through mathematical models [6,
11,21,29]. In the study of infectious diseases, mathematical models have contributed
to the prediction and control of infectious diseases (see [3, 38]).

In the dynamics of infectious diseases, the SIR model divides the total popula-
tion into the following three categories: Susceptible, Infected and Removed. SIR
epidemic model can be used to simulate the behavior of some infectious diseases,
such as HIV/AIDS, tuberculosis (TB), measles and dengue [24]. In traditional stud-
ies, the authors usually assumed that the incidence of infectious diseases is bilinear
g(I)S = βIS [28]. However, in real life, when an infectious disease infects a signifi-
cant number of people, bilinear incidence is not suitable for the study of this situ-
ation. Therefore, in order to deal with different situations, many researchers have
further investigated the incidence of infectious diseases. Liu, Levin and Iwasa [25]
proposed the general nonlinear incidence g(I)S = KIpS

1+aIq , where K, a, p, q > 0. In
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1973, there was an outbreak of cholera in southern Italy. Capasso and Serio studied
it, and found that a saturated incidence rate g(I)S = KIS

1+aI was more suitable for

studying the infectious disease of Bari, where g(I) = KI
1+aI and KI represented the

infectious ability of the disease [2,18,30,44]. We make I large enough, and then g(I)
tends to a saturation level. In addition, many authors have explored more varied
incidences [4, 13,34,37,41,42].

COVID-19 (Corona Virus Disease 2019) has higher transmissibility than SARS
(severe acute respiratory syndrome) [37, 42]. In December 2019, there was an out-
break of COVID-19 in Wuhan, China. The Chinese government has taken effective
control measures such as isolating the source of infection, quarantining citizens at
home and preventing the gathering of people. The outbreak has been effectively
controlled. Interventions have reduced economic losses in the long run. Therefore,
the control measures of the government are necessary for the face of the rampant
epidemic [7]. In order to simulate this phenomenon, Xiao and Ruan proposed the
following incidence [36]

g(I) =
KI

1 + aI2
. (1.1)

Compared with the nonlinear incidence rate proposed by Capasso and Serio, this
incidence rate can measure some psychological effects on the population. When
there are many infected people in an area, the population often choose to reduce
their exposure to the outside world, which leads to a decrease in the infection force
of the disease [18,44]. The specific description is shown in Figure 1 in [36].

Different from the exponential growth model, the logistic growth model focuses
on the growth of population over time. At the same time, carrying capacity is
also considered with limited resources. Therefore, we have found that studying the
logistic growth model is more realistic [23,43], and it is also reasonable to consider
non-monotonic incidence to simulate government interference [17].

Treatment of infected individuals is indispensable for better epidemic control. In
classical epidemic models, the authors often use T (I) = αI as a treatment function.
It follows that the treatment function T (I) is proportional to I. However, when the
infected population is sufficiently large, many people cannot be properly treated
due to limited social resources. Thus, Wang and Ruan [35] introduced a constant
treatment function, and Wang [33] showed a segmented treatment function. In this
paper, we will use a nonlinear treatment function as follows

T (I) =
aI

1 + bI
.

It has the advantage of describing the situation, in which the treatment rate will
reach the saturation value a

b due to the lack of medical resources and treatment
experience [10]. Thus, we can know that the nonlinear treatment function is more
reasonable.

According to the above analysis, Ghosh et al. [10] introduced an SIR epidemic
model with logistic growth, saturated treatment function as

dS =
[
rS
(
1− S

K

)
− βSI

1+aI2 − νS
]

dt,

dI =
[
βSI

1+aI2 − (ρ+ v + γ)I − αuI
1+buI

]
dt,

dR =
[
αuI

1+buI + γI + νS − δR
]

dt.

(1.2)



Dynamics of a Stochastic SIR Epidemic Model 75

In addition to being controlled by a special growth rate r, the susceptible are also
determined by the carrying capacity K. δ, v are the transition rates from recovered
to susceptible status and the mortality due to infectious diseases respectively. β,
γ are the transmission rates of the infectious disease and the transition rate from
susceptible to recovered respectively. a is saturation factor representing the effect
of psychological factors due to the disease. ρ is the natural death rate. α, u, b, ν are
the cure rates, the treatment control parameter, the delayed parameter of treatment
and the vaccination rate of susceptible respectively. Compared with the model in
[11,29], our model takes into account the saturated treatment function and the non-
monotonic incidence rate, which can be used to describe the government’s control
on the spread of infectious diseases and the limited social medical resources. We
assume that all parameters of the above system are positive, and we can derive the
basic reproduction number of model (1.2) by using the method of Ma and Zhou [26],

R0 = βK(r−ν)
r(ρ+v+γ+αu) . In this paper, we denote R3

+ = {(x1, x2, x3)|xi > 0, i = 1, 2, 3}.
When studying the spread of epidemics, researchers now consider the impact

of environmental noise such as high temperature, freezing, drought, humidity and
hurricanes. Besides, they show that the existence of random factors such that
the development of infectious diseases can be interfered [8,20,22,31,32,40]. The s-
tochastic model can make up for the shortcomings of the deterministic model. Gard
pointed out that the population dynamics is often disturbed by random perturba-
tions [9], Cai et al. revealed that the outbreak of diseases can be suppressed by
white noise [1, 39]. In this article, we will take environmental noise into account
because of its impact on infectious diseases, and we can get the following system

dS =
[
rS
(
1− S

K

)
− βSI

1+aI2 − νS
]

dt+ σ1SdB1(t),

dI =
[
βSI

1+aI2 − (ρ+ v + γ)I − αuI
1+buI

]
dt+ σ2IdB2(t),

dR =
[
αuI

1+buI + γI + νS − δR
]

dt+ σ3RdB3(t),

(1.3)

where B1(t), B2(t), B3(t) are independent standard Brownian motions, and σi >
0, (i = 1, 2, 3) denotes the intensity of the Gaussian environmental noise.

The innovation points of this paper are as follows.

• Stochastic model with logistic growth and non-monotonic incidence have no
relevant studies. More importantly, due to the complexity of model (1.3), if the
treatment rate of model (1.3) is linear, i.e., b = 0, we can obtain a threshold.

• Compared with the proof of Theorem 1 in [11], not only we are consider-
ing a more complex non-monotonic incidence, but also we can obtain that the
system obeys a stationary distribution without considering the condition λ0 :=
µ− 1

2 (σ2
1 ∨σ2

2 ∨σ2
3), which means that we can get the same conclusion after remov-

ing a condition.

• For the incidence g(I) = KI
1+aIn (n = 0, 1, 2), it is worth noting that we can

also use our method to draw corresponding conclusions. Therefore, in this article,
we promote the relevant studies.

Throughout this paper, let (Ω,F, {Ft}t≥0 ,P) be a complete probability space
with a filtration {Ft}t≥0 , and let {Ft}t≥0 satisfy the usual conditions (i.e., it is
increasing and right continuous, while F0 contains all P -null sets). Here, B(t) is
a d-dimensional standard Wiener process defined on this complete probability. Let
a∨b = max(a, b), a∧b = min(a, b). Next, using the above definition, we can consider
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the d-dimensional Itô′s process, and it has the following form

dX(t) = f̃(X(t), t)dt+ g̃(X(t), t)dB(t), (1.4)

and the initial value of this equation is X(0) = X0 ∈ Rd, f̃(t) ∈ Ψ1(R+,Rn),
g̃(t) ∈ Ψ2(R+,Rn×m) are measurable functions, Ψ1(R+,Rn) is absolutely integrable
function space, and Ψ2(R+,Rn×m) is quadratic absolutely integrable function space.
Denote the differential operator L of (1.4) as

L =
∂

∂t
+

d∑
i=1

f̃i(X, t)
∂

∂Xi
+

1

2

d∑
i,j=1

[g̃T (X, t)g̃(X, t)]ij
∂2

∂Xi∂Xj
.

Letting V (X, t) ∈ C2,1(Rd × [t0,∞);R+) and making L act on a function V (X, t),
we obtain

LV (X, t) = Vt(X, t) + VX(X, t)f̃(X, t) +
1

2
trace[g̃T (X, t)VXX(X, t)g̃(X, t)],

where

Vt =
∂V

∂t
, VX = (

∂V

∂X1
, . . . ,

∂V

∂Xd
), VXX =

(
∂2

∂Xi∂Xj

)
d×d

.

If X(t) ∈ Rd, then the Itô′s formula is given by

dV (X(t), t) = LV (X(t), t)dt+ VX(X(t), t)g(X(t), t)dB(t).

The rest of this article is organized as follows. In Section 2, we show the existence
and uniqueness of the global positive solution of a stochastic system with white
noise. In Section 3, we obtain a sufficient condition that the random system has an
ergodic stationary distribution by constructing the Lyapunov function. In Section
4, we show that a sufficient condition can make the disease tend to extinction. In
Section 5, we use some numerical simulations to summarize our results and make
assumptions about our future research.

2. Existence and uniqueness of the positive solution

Studying the long-term behavior of system (1.3) requires us to know whether this
model has a unique global positive solution. Obviously, S(t), I(t), R(t) are non-
negative. Next, we need to reveal the existence of a global positive solution (the
solution will not explode in a finite time) for system (1.3). It is easy to derive the
following theory.

Theorem 2.1. For any initial condition (S(0), I(0), R(0)) ∈ R3
+, there is a unique

solution (S(t), I(t), R(t)) of the stochastic system (1.3) for t ≥ 0, and the solution
will remain in R3

+ with probability one.

Proof. Since the proof of this theorem is similar to that of Theorem 2.1 in [29],
we omit it.
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3. Existence of the stationary distribution

An aspect of studying epidemic models is to find what conditions make the disease
persistent. For deterministic models, we often show the global attractiveness of the
endemic equilibrium. For random models, we usually prove that the corresponding
model has an ergodic stationary distribution, which implies that the disease will be
persistent.

Leting X(t) be a time-homogeneous Markov process in Rl+ (denote l-dimensional
Euclidean space), and X(t) is described by the SDEs

dX(t) = b(X)dt+

k∑
r=1

fr(X)dBr(t),

and this diffusion matrix is defined as

A(x) = (aij(x)), aij(x) =

k∑
r=1

fri (x)frj (x).

There exists a bounded domain D ⊂ R3
+ with the regular boundary Γ, and D has

the following properties.
(A1) For any x ∈ D, ξ = (ξ1, ξ2, ξ3) ∈ R3

+, there is a positive constant M̃ such that∑k
i,j=1 ai,jξiξj ≥ M̃ | ξ |2.

(A2) For any x ∈ R3
+ \D, there exists a nonnegative C2-function V (X, t) such that

LV < 0.

Lemma 3.1 ( [15]). If (A1) and (A2) hold, then the Markov process X(t) has a
stationary distribution µ(·). Let f(·) be a integrable function with respect to the
measure µ(·). Then,

Px
{

lim
T→∞

1

T

∫ T

0

f(X(t))dt =

∫
R3

+

f(x)µ(dx)

}
= 1,

for all x ∈ R3
+.

Lemma 3.2 (Lemma 3, [11]). For any λ > 1, a ≥ 0, x ≥ 0, the next inequality

holds: x ≤ axλ + a
1

1−λ .

Theorem 3.1. If Rs0 > 1, assume the initial value (S(0), I(0), R(0)) ∈ R3
+. Then,

the solution of system (1.3) admits a unique stationary distribution µ(·), and it has
the ergodic property, where

Rs0 =
βK(r − ν − 1

2σ
2
1)

r(ρ+ v + γ + αu+ 1
2σ

2
2)
. (3.1)

Proof. In order to reveal that system (1.3) has a unique stationary distribution,
we need to verify both conditions (A1) and (A2). First, we prove condition (A1).
The diffusion matrix of system (1.3) is expressed as

A =


σ2

1S
2

σ2
2I

2

σ2
3R

2

 .
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Let M̃ = min(S,I,R)∈D̃α⊂R3
+

{
σ2

1S
2, σ2

2I
2, σ2

3R
2
}
, then

3∑
i,j=1

ai,j(S, I,R)ξiξj =
(
σ1Sξ1, σ2Iξ2, σ3Rξ3

) 
σ1Sξ1

σ2Iξ2

σ3Rξ3


= (σ1S)2ξ2

1 + (σ2I)2ξ2
3 + (σ3R)2ξ2

3 ≥ M̃
∥∥ξ2
∥∥ .

For any (S, I,R) ∈ D̃α, ξ = (ξ1, ξ2, ξ3) ∈ R3
+, where

D̃α = [
1

α
, α]× [

1

α
, α]× [

1

α
, α],

α is sufficiently large constant.
Therefore, condition (A1) is satisfied.
Next, we need to construct a non-negative C2-function V (S, I,R).
We construct a suitable C2-function W (S, I,R) as

W (S, I,R) = MV1 + V2 + V3, (3.2)

V1 = − ln I − b1 lnS + b2I, (3.3)

V2 = − lnR, (3.4)

V3 =
1

1 + θ
(S + I +R)1+θ, (3.5)

where b1 = βK
r , b2 = β2K

r(ρ+v+γ) , 0 < θ < (ρ+v)∧δ
3θ2(σ2

1∨σ2
2∨σ2

3)
.

For simplicity, we set

ξ = (Rs0 − 1)

(
ρ+ v + γ + αu+

1

2
σ2

2

)
> 0,

and let M be sufficiently large. Therefore,

−Mξ + δ +
1

2
σ2

3 +N ≤ −2, (3.6)

where N will be determined later.
In fact, W (S, I,R) is a continuous function which follows

lim inf
m→∞,(S,I,R)∈R3

+\Um
W (S, I,R) = +∞,

where Um = [ 1
m ,m]× [ 1

m ,m]× [ 1
m ,m].

Therefore, a non-negative C2-function V (S, I,R) is defined by

V (S, I,R) = W (S, I,R)−W (S0, I0, R0),

where (S0, I0, R0) ∈ R3
+ is the minimum point of W (S, I,R).

By Itô′s formula, we obtain

LV1 =− 1

I

[
βSI

1 + aI2
− (ρ+ v + r)I − αuI

1 + buI

]
+

1

2
σ2

2



Dynamics of a Stochastic SIR Epidemic Model 79

− b1
S

[
rS

(
1− S

K

)
− βSI

1 + aI2
− νS

]
+
b1
2
σ2

1

+ b2

[
βSI

1 + aI2
− (ρ+ v + γ)I − αuI

1 + buI

]
=− βS

1 + aI2
+

[
ρ+ v + γ +

1

2
σ2

2

]
+

αu

1 + buI

− b1
[
r − ν − 1

2
σ2

1

]
+
b1rS

K
+

b1βI

1 + aI2

+
b2βSI

1 + aI2
− b2(ρ+ v + γ)I − b2αuI

1 + buI
.

From − βS
1+aI2 = −βS + aβSI2

1+aI2 , we have

LV1 =−
[
β − b1r

K

]
S +

[
ρ+ v + γ +

1

2
σ2

2 +
αu

1 + buI

]
− b1

[
r − ν − 1

2
σ2

1

]
+

b1βI

1 + aI2
+

aβSI2

1 + aI2
+

b2βSI

1 + aI2
− b2(ρ+ v + γ)I − b2αuI

1 + buI
.

By b1 = βK
r , b2 = β2K

r(ρ+v+γ) , we get

LV1 ≤
[
ρ+ v + γ + αu+

1

2
σ2

2

]
−
βK(r − ν − 1

2σ
2
1)

r

+
β2KI

r
+

aβSI2

1 + aI2
+

β3KSI

r(ρ+ v + γ)(1 + aI2)
− β2KI

r

=− (Rs0 − 1)

[
ρ+ v + γ + αu+

1

2
σ2

2

]
+

aβSI2

1 + aI2
+

β3KSI

r(ρ+ v + γ)(1 + aI2)
. (3.7)

Moreover, using a2 + b2 ≥ 2ab, we obtain

LV1 ≤− (Rs0 − 1)

[
ρ+ v + γ + αu+

1

2
σ2

2

]
+

√
aβ

2
SI +

β3K

r(ρ+ v + γ)
SI

=− (Rs0 − 1)

[
ρ+ v + γ + αu+

1

2
σ2

2

]
+

[√
aβ

2
+

β3K

r(ρ+ v + γ)

]
SI. (3.8)

Similarly, one has

LV2 =− αuI

R(1 + buI)
− γI

R
− νS

R
+ (δ +

1

2
σ2

3)

≤− γI

R
+ (δ +

1

2
σ2

3). (3.9)

From a2 + b2 + c2 ≤ (a+ b+ c)2, −(a+ b+ c)θa ≤ −aθ+1, similarly, we derive

LV3 =(S + I +R)θ
[
rS(1− S

K
)− (ρ+ v)I − δR

]
+
θ

2
(S + I +R)θ−1(σ2

1S
2 + σ2

2I
2 + σ2

3R
2)
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≤(S + I +R)θ
[
rS(1− S

K
)− (ρ+ v)I − δR

]
+
θ

2
(S + I +R)θ+1(σ2

1 ∨ σ2
2 ∨ σ2

3)

≤rS(S + I +R)θ − r

K
Sθ+2 − (ρ+ v)Iθ+1

− δRθ+1 +
θ

2
(S + I +R)θ+1(σ2

1 ∨ σ2
2 ∨ σ2

3). (3.10)

Using |
∑K
i=1 ai |n≤ Kn−1

∑K
i=1 | ai |n, for ∀n ≥ 1, we obtain

(S + I +R)1+θ ≤ 3θ(Sθ+1 + Iθ+1 +Rθ+1)

and

LV3 ≤rS(S + I +R)θ − r

K
Sθ+2 − (ρ+ v)Iθ+1 − δRθ+1

+
3θθ

2
(Sθ+1 + Iθ+1 +Rθ+1)(σ2

1 ∨ σ2
2 ∨ σ2

3)

≤rS(S + I +R)θ − r

2K
Sθ+2 − δ

2
Rθ+1 − r

2K
Sθ+2 − δ

4
Rθ+1

+
3θθ

2
Sθ+1(σ2

1 ∨ σ2
2 ∨ σ2

3)−
[
ρ+ v

4
− 3θθ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
Iθ+1

−
[
δ

4
− 3θθ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
Rθ+1 − ρ+ v

4
Iθ+1 − ρ+ v

2
Iθ+1

≤rS(S + I +R)θ − r

2K
Sθ+2 − ρ+ v

2
Iθ+1 − δ

2
Rθ+1 − r

2K
Sθ+2

+
3θθ

2
Sθ+1(σ2

1 ∨ σ2
2 ∨ σ2

3)− ρ+ v

4
Iθ+1 − δ

4
Rθ+1.

Then,

LV3 ≤ −
r

2K
Sθ+2 − ρ+ v

2
Iθ+1 − δ

2
Rθ+1 +N, (3.11)

where N is defined as

N = sup
(S,I,R)∈R3

+

{
rS(S + I +R)θ − r

2K
Sθ+2 − δ

4
Rθ+1

+
3θθ

2
Sθ+1(σ2

1 ∨ σ2
2 ∨ σ2

3)− ρ+ v

4
Iθ+1

}
<∞.

Next, we will construct a compact sunset Dε such that condition (A2) holds.
Define the bounded closed set

Dε =

{
(S, I,R) ∈ R3

+ : ε3 ≤ S ≤ 1

ε3
, ε ≤ I ≤ 1

ε
, ε2 ≤ R ≤ 1

ε2

}
,

where ε > 0 satisfies the following conditions

ε ≤ r

2MK
, (3.12)



Dynamics of a Stochastic SIR Epidemic Model 81

−2 +Mβε+
Mβ3Kε

2
√
ar(ρ+ v + γ)

≤ −1, (3.13)

−2 +

[√
aβ

2
+

β3K

r(ρ+ v + γ)

] 1
2+θ

Mε ≤ −1, (3.14)

−2− γ

ε
+ L1 ≤ −1, (3.15)

−2− r

4Kε3θ+6
+ L1 ≤ −1, (3.16)

−2− (
ρ+ v

4εθ+1
) + L1 ≤ −1, (3.17)

−2− (
δ

4ε2θ+2
) + L1 ≤ −1, (3.18)

where

L1 = sup
(S,I,R)∈R3

+

{ Mβ3KS

2
√
ar(ρ+ v + γ)

+MβS −
r

4K
Sθ+2 −

ρ+ v

4
Iθ+1 −

δ

4
Rθ+1

}
<∞.

We can divide R3
+ \Dε into six domains,

D1 =
{

(S, I,R) ∈ R3
+ : 0 ≤ S ≤ ε3

}
, D2 =

{
(S, I,R) ∈ R3

+ : 0 ≤ I ≤ ε
}
,

D3 =
{

(S, I,R) ∈ R3
+ : 0 ≤ R ≤ ε2, I ≥ ε

}
, D4 =

{
(S, I,R) ∈ R3

+ : S ≥ 1

ε3

}
,

D5 =

{
(S, I,R) ∈ R3

+ : I ≥ 1

ε

}
, D6 =

{
(S, I,R) ∈ R3

+ : R ≥ 1

ε2

}
.

Clearly,
Dc
ε = D1 ∪D2 ∪D3 ∪D4 ∪D5 ∪D6.

Next, we will show
LV ≤ −1 on Dc

ε .

From the above findings, we only need to prove that LV ≤ −1 holds in Di(i =
1, 2, 3, 4, 5, 6).

LV (S, I,R) =MLV1 + LV2 + LV3

≤−M(Rs0 − 1)

[
ρ+ v + γ + αu+

1

2
σ2

2

]
+

Mβ3KSI

r(ρ+ v + γ)(1 + aI2)

+
MaβSI2

1 + aI2
− γI

R
+ δ +

1

2
σ2

3 −
r

2K
Sθ+2 − ρ+ v

2
Iθ+1 − δ

2
Rθ+1 +N

=−Mξ +
MaβSI2

1 + aI2
+

Mβ3KSI

r(ρ+ v + γ)(1 + aI2)
− γI

R
+ δ

+
1

2
σ2

3 −
r

2K
Sθ+2 − ρ+ v

2
Iθ+1 − δ

2
Rθ+1 +N.

Case 1. If (S, I,R) ∈ D1,

LV ≤−Mξ +
MaβSI2

1 + aI2
+

Mβ3KSI

r(ρ+ v + γ)(1 + aI2)
− γI

R

+ δ +
1

2
σ2

3 −
r

2K
Sθ+2 − ρ+ v

2
Iθ+1 − δ

2
Rθ+1 +N
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≤− 2 +MβS +
Mβ3KS

2
√
ar(ρ+ v + γ)

≤− 2 +Mβε+
Mβ3Kε

2
√
ar(ρ+ v + γ)

.

By using (3.13), we have

LV ≤ −1.

Case 2. If (S, I,R) ∈ D2, following Lemma 3.2, we can obtain

LV ≤−Mξ +
M
√
aβ

2
SI +

Mβ3KSI

r(ρ+ v + γ)
− γI

R
+ δ

+
1

2
σ2

3 −
r

2K
Sθ+2 − ρ+ v

2
Iθ+1 − δ

2
Rθ+1 +N

≤− 2 +

[√
aβ

2
+

β3K

r(ρ+ v + γ)

]
MSI − r

2K
Sθ+2

≤− 2 +

[√
aβ

2
+

β3K

r(ρ+ v + γ)

]
MSε− r

2K
Sθ+2

≤− 2 +

[√
aβ

2
+

β3K

r(ρ+ v + γ)

]
Mε

 1
√
aβ
2 + β3K

r(ρ+v+γ)

Sθ+2

+

(√
aβ

2
+

β3K

r(ρ+ v + γ)

) 1
1+θ

]
− r

2K
Sθ+2

≤− 2 +

[√
aβ

2
+

β3K

r(ρ+ v + γ)

] 2+θ
1+θ

Mε+MεSθ+2 − r

2K
Sθ+2

=− 2 +

[√
aβ

2
+

β3K

r(ρ+ v + γ)

] 2+θ
1+θ

Mε.

Together with (3.14), we can easily show

LV ≤ −1.

Case 3. If (S, I,R) ∈ D3,

LV ≤−Mξ +
MaβSI2

1 + aI2
+

Mβ3KSI

r(ρ+ v + γ)(1 + aI2)
− γI

R

+ δ +
1

2
σ2

3 −
r

2K
Sθ+2 − ρ+ v

2
Iθ+1 − δ

2
Rθ+1 +N

≤− 2− γI

R
− r

4K
Sθ+2 − ρ+ v

4
Iθ+1 − δ

4
Rθ+1 + L1

≤− 2 +−γI
R

+ L1

≤− 2− γ

ε
+ L1. (3.20)

By (3.15), we have

LV ≤ −1.
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Case 4. If (S, I,R) ∈ D4,

LV ≤−Mξ +
MaβSI2

1 + aI2
+

Mβ3KSI

r(ρ+ v + γ)(1 + aI2)
− γI

R

+ δ +
1

2
σ2

3 −
r

2K
Sθ+2 − ρ+ v

2
Iθ+1 − δ

2
Rθ+1 +N

≤− 2− γI

R
− r

4K
Sθ+2 − ρ+ v

4
Iθ+1 − δ

4
Rθ+1 + L1

≤− 2− r

4Kε3θ+6
+ L1. (3.21)

Following from (3.16), we have
LV ≤ −1.

Case 5. If (S, I,R) ∈ D5,

LV ≤−Mξ +
MaβSI2

1 + aI2
+

Mβ3KSI

r(ρ+ v + γ)(1 + aI2)
− γI

R

+ δ +
1

2
σ2

3 −
r

2K
Sθ+2 − ρ+ v

2
Iθ+1 − δ

2
Rθ+1 +N

≤− 2− γI

R
− r

4K
Sθ+2 − ρ+ v

4
Iθ+1 − δ

4
Rθ+1 + L1

≤− 2− ρ+ v

4εθ+1
+ L1. (3.22)

Together with (3.17), one gets
LV ≤ −1.

Case 6. If (S, I,R) ∈ D6,

LV ≤−Mξ +
MaβSI2

1 + aI2
+

Mβ3KSI

r(ρ+ v + γ)(1 + aI2)
− γI

R

+ δ +
1

2
σ2

3 −
r

2K
Sθ+2 − ρ+ v

2
Iθ+1 − δ

2
Rθ+1 +N

≤− 2− γI

R
− r

4K
Sθ+2 − ρ+ v

4
Iθ+1 − δ

4
Rθ+1 + L1

≤− 2− δ

4ε2θ+2
+ L1, (3.23)

and from (3.18), we derive LV ≤ −1.
The proof is complete.

4. Extinction of the disease

In our study of epidemic models, we are mainly concerned with the conditions
that can make the disease tent to extinct. In this section, we will reveal that the
disease will be extinct under some conditions and show the state of the susceptible
individuals and recovered individuals after disease has been cleared.

Lemma 4.1 ( [27]). Letting M = {Mt}t≥0 be a real-valued continuous local mart-
ingle vanishing at t = 0, we have

lim
t→∞

〈M,M〉t =∞ a.s ⇒ lim
t→∞

Mt

〈M,M〉t
= 0 a.s.
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and

lim sup
t→∞

〈M,M〉t
t

<∞ a.s. ⇒ lim
t→∞

Mt

t
= 0 a.s.

Lemma 4.2. For any initial value (S(0), I(0), R(0)) ∈ R3
+, letting (S(t), I(t), R(t))

be the solution of stochastic system (1.3), we obtain

lim sup
t→∞

(S(t) + I(t) +R(t)) <∞, lim sup
t→∞

lnS(t)

t
= 0 a.s.,

lim
t→∞

S(t)

t
= 0, lim

t→∞

I(t)

t
= 0, lim

t→∞

R(t)

t
= 0 a.s.,

lim
t→∞

∫ t
0
σ1SdB1(s)

t
= 0, lim

t→∞

∫ t
0
σ2IdB2(s)

t
= 0, lim

t→∞

∫ t
0
σ3RdB3(s)

t
= 0 a.s.

Proof. (i) According to system (1.3) and Ñ(t) = S(t) + I(t) +R(t), we can get

LÑ =rS

(
1− S

K

)
− (ρ+ v + γ)I − δR+ rS − rS

=2rS − rS2

K
− (ρ+ v + γ)I − δR− rS

≤Kr −
[√

r

K
S −
√
Kr

]2

− [(ρ+ v + γ) ∧ δ ∧ r]Ñ

≤Kr − [(ρ+ v + γ) ∧ δ ∧ r]Ñ .

Then,

dÑ ≤ (Kr − [(ρ+ v + γ) ∧ δ ∧ r]Ñ)dt+ σ1SdB1(t) + σ2IdB2(t) + σ3RdB3(t).

By Theorem 4.1 in [5], we know

lim sup
t→∞

(S(t) + I(t) +R(t)) <∞ a.s.

In addition, we can easily get

lim
t→∞

S(t)

t
= 0, lim

t→∞

I(t)

t
= 0, lim

t→∞

R(t)

t
= 0 a.s.

(ii) If limt→∞ S(t) = 0, using Itô′s formula, we get

d(ln I(t)) =

[
1

I

(
βSI

1 + aI2
− (ρ+ v + r)I − αuI

1 + buI

)
− 1

2
σ2

2

]
dt+ σ2dB2(t)

≤
[

βS

1 + aI2
− (ρ+ v + r +

1

2
σ2

2)

]
dt+ σ2dB2(t). (4.1)

Integrating (4.1) from 0 to t, we have

ln I(t)− ln I(0)

t
≤1

t

∫ t

0

βS

1 + aI2
− (ρ+ v + γ +

1

2
σ2

2)ds+
1

t

∫ t

0

σ2dB2(s)

≤1

t

∫ t

0

βSds− (ρ+ v + γ +
1

2
σ2

2) +
M2(t)

t
, (4.2)
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where M2(t) =
∫ t

0
σ2dB2(s). Using the strong law of large numbers [19], we have

lim
t→∞

M2(t)

t
= lim
t→∞

∫ t
0
σ2dB2(s)

t
= 0. (4.3)

From limt→∞ S(t) = 0, we get

lim sup
t→∞

ln I(t)

t
< −(ρ+ v + γ +

1

2
σ2

2) < 0.

Therefore, we can get

lim
t→∞

I(t) = 0. (4.3)

Applying Itô′s formula again, we get

d(S + I +R) =

[
rS

(
1− S

K

)
− (ρ+ v)I − δR

]
+ σ1SdB1(t) + σ2IdB2(t) + σ3RdB3(t). (4.4)

Setting M3(t) =
∫ t

0
S(s)dB1(s), we have

〈M3,M3〉t =

∫ t

0

S2(s)ds ≤
[
sup
t≥0

S2(t)

]
t,

By using Lemma 4.1 (see, for details, [5]), from lim supt→∞(S(t)+I(t)+R(t)) <∞,
we can get

lim
t→∞

∫ t
0
σ1S(s)dB1(s)

t
= 0. (4.5)

Similarly, we also get

lim
t→∞

∫ t
0
σ2I(s)dB2(s)

t
= 0, lim

t→∞

∫ t
0
σ3R(s)dB3(s)

t
= 0. (4.6)

Integrating both sides of (4.4) and taking the limit on both sides of (4.4), we get

lim
t→∞

S(t) + I(t) +R(t)

t

= lim
t→∞

1

t

∫ t

0

[
rS

(
1− S

K

)
− (ρ+ v)I − δR

]
ds

+ lim
t→∞

[∫ t
0
σ1S(s)dB1(s)

t
+

∫ t
0
σ2I(s)dB2(s)

t
+

∫ t
0
σ3R(s)dB3(s)

t

]

≤ lim
t→∞

1

t

∫ t

0

[
rS

(
1− S

K

)
− δR

]
ds. (4.7)

From S(t), I(t) will go to zero exponentially with probability one, and we can get

lim
t→∞

1

t

∫ t

0

δRds ≤− lim
t→∞

1

t

∫ t

0

rS2

K
ds ≤ 0. (4.8)
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Since the solution R(t) will remain in R3
+ with probability one, then

lim
t→∞

1

t

∫ t

0

R(s)ds = 0. (4.9)

For biological reality, we know Ñ(t) 9 0. From (4.3) and (4.9), we know that we
must ensure S(t) 9 0. Combining with lim supt→∞(S(t) + I(t) +R(t)) <∞ a.s.,
we get

lim sup
t→∞

lnS(t)

t
= 0 a.s.

Theorem 4.1. For any initial value (S(0), I(0), R(0)) ∈ R3
+, let (S(t), I(t), R(t))

be the solution of stochastic system (1.3).

If Rh0 =
βK(r−ν− 1

2σ
2
1)

r(ρ+v+γ+ 1
2σ

2
2)
< 1, then

lim sup
t→∞

ln I(t)

t
< (Rh0 − 1)(ρ+ v + γ +

1

2
σ2

2) < 0.

That is, the disease will be extinct exponentially. Moreover, we can get

lim
t→∞

1

t

∫ t

0

Sds =
K(r − ν − 1

2σ
2
1)

r
.

Proof. In order to prove the extinction of the disease, we need to prove the fol-
lowing property of S(t). By using Itô′s formula, we get

d(lnS(t)) =

[
r − rS

K
− βI

1 + aI2
− ν − σ2

1

2

]
dt+ σ1dB1(t). (4.10)

Integrating (4.10) from 0 to t, we have

lnS(t)− lnS(0)

t
=r − ν − σ2

1

2
− 1

t

∫ t

0

rS

K
ds− 1

t

∫ t

0

βI

1 + aI2
ds+

1

t

∫ t

0

σ1dB1(s)

≤r − ν − σ2
1

2
− 1

t

∫ t

0

rS

K
ds+

M1(t)

t
, (4.11)

where M1(t) =
∫ t

0
σ1dB1(s). Using the strong law of large numbers [19], we have

lim
t→∞

M1(t)

t
=

∫ t
0
σ1dB1(s)

t
= 0.

Thus, we can obtain

lim sup
t→∞

lnS(t)− lnS(0)

t
≤r − ν − σ2

1

2
− lim sup

t→∞

1

t

∫ t

0

rS

K
ds. (4.12)

Then, from Lemma 4.1, we get

lim sup
t→∞

1

t

∫ t

0

Sds ≤
K(r − ν − 1

2σ
2
1)

r
. (4.13)
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Next, we can derive extinction of this disease. By using Itô′s formula, we get

d(ln I(t)) =

[
βS

1 + aI2
− (ρ+ v + r +

1

2
σ2

2)− αu

1 + buI

]
dt+ σ2dB2(t). (4.14)

Integrating (4.14) from 0 to t, we have

ln I(t)− ln I(0)

t

=
1

t

∫ t

0

βS

1 + aI2
ds− (ρ+ v + r +

1

2
σ2

2)− 1

t

∫ t

0

αu

1 + buI
ds+

1

t

∫ t

0

σ2dB2(s)

≤1

t

∫ t

0

βS

1 + aI2
ds− (ρ+ v + r +

1

2
σ2

2) +
M2(t)

t
.

Then, we can get

ln I(t)− ln I(0)

t
≤1

t

∫ t

0

βSds− (ρ+ v + r +
1

2
σ2

2) +
M2(t)

t
, (4.15)

Taking the superior limit for (4.15), and from (4.3), (4.13) and Rh0 < 1, we can get

lim sup
t→∞

ln I(t)

t

≤
βK(r − ν − 1

2σ
2
1)

r
− (ρ+ v + r +

1

2
σ2

2)

≤(Rh0 − 1)(ρ+ v + r +
1

2
σ2

2) < 0,

which indicates limt→∞ I(t) = 0. Moreover, using Itô′s formula and integrating
d(lnS(t)), we obtain

lnS(t)− lnS(0)

t
= r − ν − σ2

1

2
− 1

t

∫ t

0

rS

K
ds− 1

t

∫ t

0

βI

1 + aI2
ds+

1

t

∫ t

0

σ1dB1(s).

Therefore,

lim
t→∞

lnS(t)− lnS(0)

t
= r − ν − σ2

1

2
− lim
t→∞

1

t

∫ t

0

rS

K
ds+ lim

t→∞

M1(t)

t
.

Then, we can get

lim
t→∞

1

t

∫ t

0

Sds =
K(r − ν − 1

2σ
2
1)

r
.

This complete the proof.

5. Numerical simulation and Conclusion

In this part, we use the results of numerical simulations to prove our findings in the
previous section and summarize our results. Using the method developed in [12],
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the following discretization equation of stochastic system (1.3) will be obtained
Sk+1 = Sk +

[
rSk(1− Sk

K
)− βSkIk

1+aI2
k

− νSk
]

∆t+
σ2
1
2
Sk(ξ2k − 1)∆t+ σ1Sk

√
∆tξk,

Ik+1 = Ik +

[
βSkIk
1+aI2

k

− (ρ+ v + γ)Ik − αuIk
1+buIk

]
∆t+

σ2
2
2
Ik(η2k − 1)∆t+ σ2Ik

√
∆tηk,

Rk+1 = Rk +
[
αuIk

1+buIk
+ γIk + νSk − δRk

]
∆t+

σ2
3
2
Rk(ζ2k − 1)∆t+ σ3Rk

√
∆tζk,

where the time increment ∆t > 0 , ξk, ηk, ζk are the random variables which obey
the Gaussian distribution N(0, 1) for k = 1, 2, 3, . . . , n, and they are independent.
σ2
i > 0, (i = 1, 2, 3) are the intensity of environmental noise.

Table 5-1. List of parameters

Parameters Definition Value Source

r The intrinsic rate of the susceptible 2.5 [10]

K The carrying capacity 100 [10]

β The disease transmission rate 0.1 [10]

ρ Natural death rate of the population 0.2 [10]

γ Removal rate of infectious cases 0.7 [10]

v The death rate due to disease 0.3 [10]

δ The immune loss rate 0.2 [10]

a The saturation factor 0.5 [10]

α Cure rate 0.4 [10]

b Delayed parameter of treatment 0.05 [10]

ν Vaccination rate of susceptible 0.2 [10]

u The treatment control parameter 0.4 [10]

Example 1. In order to ensure the authenticity of the data, the data we cite come
from [10] and the stochastic fluctuation (σ1, σ2, σ3) = (0.01, 0.01, 0.01). In this case,
Rs0 = 6.7643 > 1, which satisfies the condition of Theorem 3.1. As a result, system
(1.3) has a ergodic stationary distribution such that the disease is persistent in a
long term. Figure 1 confirms this fact.
Example 2. If we decrease the infection rate from β to 0.01, and increase the
random disturbance (σ1, σ2, σ3) = (0.2, 0.2, 0.2), and other parameters are the same
as Table 5-1. Obviously, we can calculate Rh0 = 0.75 < 1, and this is consisten-
t with the condition of Theorem 4.2, which implies that the disease will disap-
pear, when the random perturbation is relatively large. In addition, we can get
limt→∞

1
t

∫ t
0
Sds = 91.2, and Figure 2 illustrates this.

In this paper, we study the dynamical behaviors of a stochastic SIR epidemic
model with logistic growth, non-monotone incidence rate and saturated treatment
function. For deterministic model, Ghosh et al. [10] have derived the basic repro-

duction number R0 = βK(r−ν)
r(ρ+v+γ+αu) . If R0 < 1, system (1.2) has a disease-free

equilibrium E0. If R0 > 1, model (1.2) has an endemic equilibrium E∗.



Dynamics of a Stochastic SIR Epidemic Model 89

0 2000 4000 6000 8000
t

87.5

88

88.5

89

89.5

90

90.5

91

91.5

92

92.5

S
(t

)

Stochastic solution
Deterministic solution

 histogram of S(t)

89 90 91
S(t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D
en

si
ty

104

0 2000 4000 6000 8000
t

2

2.5

3

3.5

4

I(
t)

Stochastic solution
Deterministic solution

 histogram of I(t)

3.2 3.3 3.4 3.5
I(t)

0

1

2

3

4

5

6

D
en

si
ty

104

0 2000 4000 6000
t

50

60

70

80

90

100

110

120

130

140

150

R
(t

)

Stochastic solution
Deterministic solution

 histogram of R(t)

60 80 100 120 140 160
R(t)

0

2

4

6

8

10

D
en

si
ty

104

Figure 1. Set the noise intensity (σ1, σ2, σ3) = (0.01, 0.01, 0.01). In the left column, the solution of the
stochastic model (1.3) is described as a blue curve, and the solution of the deterministic model (1.2) is
described as a red curve. In the right figure, the distribution of the solution (S(t), I(t), R(t)) in system
(1.3) is described.

For our stochastic model (1.3), we can get the following results.

• If Rs0 =
βK(r−ν− 1

2σ
2
1)

r(ρ+v+γ+αu+ 1
2σ

2
2)
> 1, an ergodic stationary distribution exists in the
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Figure 2. β = 0.01, the noise intensities (σ1, σ2, σ3) = (0.2, 0.2, 0.2), and other parameters are the
same as Table 5-1. The solution of the stochastic model (1.3) is described as a blue curve, and the
solution of the deterministic model (1.2) is described as a red curve. In the right figure, the distribution
of the solution I(t) in system (1.3) is described.

random SIR model.

• If Rh0 =
βK(r−ν− 1

2σ
2
1)

r(ρ+v+γ+ 1
2σ

2
2)
< 1, the disease will tend to extinction exponentially.

We can also compare the expressions for Rs0 and the basic reproduction number
of the deterministic system R0. Obviously, when we ignore the environmental noise,
we show Rs0 = R0, which implies that the stochastic model is an extension of
the corresponding deterministic model. Meanwhile, suppose that we consider the
linear treatment function T (I) = ΛI, where Λ is cure rate. Then, Rs0 = Rh0 is a
threshold of stochastic model. Further, if we ignore the environmental noise, we
have R0 = Rs0 = Rh0 .

The following topics deserve further discussion. We know that environmental
noise interference is an essential part of the ecosystem, and the existence of ran-
dom factors such that the development of an infectious disease can be suppressed.
Therefore, we consider the stochastic model with white noise. However, white noise
is a continuous stochastic perturbation, and some discontinuous perturbations such
that the color and Lévy noises can be further investigated, and the effect of the
impulsive can also be considered. At the same time, we can also try to find the
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probability density function by solving the Fokker-Planck equation of the stochastic
model (1.3). We leave the above topics for our future work.
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