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Impact of Correlated Activity and STDP on
Network Structure

Changan Liu1,2,† and Zhong Dai3

Abstract Synaptic strengths between neurons are plastic and modified by
spontaneous activity and information from the outside. There is increasing in-
terest in the impact of correlated neuron activity and learning rules on global
network structure. Here the networks of exponential integrate-and-fire neurons
with spike timing-dependent plasticity (STDP) learning rules are considered,
by providing the theoretical approximation of spiking cross-covariance between
connected neurons and the theory for the evolution of synaptic weights. Back-
ground input mean and variance highly affect the spiking covariance, even for
the fixed baseline firing rate and connection. Through analyzing the effects
of covariance and STDP on vector fields for pairwise correlated neurons un-
der fixed baseline firing rate, we show that the connections from a neuron
with lower input mean to that with higher one will strengthen for balanced
Hebbian STDP. However, this situation is reversed for Anti-Hebbian cases.
Moreover, for potentiation dominated STDP, the synaptic weights for the net-
works of neurons with lower input mean are more likely to be enhanced. In
addition, these properties found from coupled neurons also hold for large re-
current networks in both theories and simulations. This study provides a
self-consistent theoretical method for understanding how correlated spiking
activity and STDP shape the network structure and an approach for predict-
ing structures of large networks through the analysis of simple neural circuits.

Keywords Correlated activity, network structure, phase plane, synaptic wei-
ghts
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1. Introduction

Many studies have explored how spike timing-dependent plasticity (STDP) shapes
the distribution of synaptic weights of a group of synaptic connections to a single
neuron [4, 23, 27, 43, 49]. Here, more challenging problems of understanding how
correlated activity and STDP shape the global structure of a recurrent network of
spiking neurons are considered. Related questions have been addressed before in
a number of studies [8, 10, 12, 16–21, 24, 29, 32, 33, 35, 42, 45, 48, 50]. The generally
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antisymmetric shape of the STDP window, in which reversing the ordering of pre-
and postsynaptic spikes reverses the direction of synaptic change, led to the proposal
that this synaptic modification rule should eliminate strong recurrent connections
between neurons [1, 42]. This idea has been expanded by Kozloski and Cecchi [29]
to larger polysynaptic loops in the case of balanced STDP which the magnitudes of
potentiation and depression are equal. The case of enhancing recurrent connections
through pair-based STDP was also proposed by Song and Abbott [42] and was
explored by Clopath and her colleagues [8] later in a more complex model. Clopath
and her colleagues proposed a STDP model in which the synaptic changes depend on
presynaptic spike arrival and the postsynaptic membrane potential. They use this
model to explain the connectivity patterns in cortex with a few strong bidirectional
connections. Their plasticity rule lead not only to the development of localized
receptive fields but also to the connectivity patterns that reflect the neural code.
An excessively active group of neurons has been shown to decouple from the rest of
the network through STDP [33], and in presence of axonal delays, STDP enhances
recurrent connections when the neurons fire in a tonic irregular mode [32].

Babadi and Abbott have shown that large network properties can be explained
by the effect of STDP on pairwise interactions of neurons receiving Poisson in-
put based on the baseline firing rates [5]. Gilson and his colleagues developed a
theoretical framework based on the assumption that spike trains can be described
as Poisson processes, and they applied this framework to analytically describe the
network dynamics and the evolution of the synaptic weights in a series of five pa-
pers [16–20]. Most of these previous studies are based on the assumption that the
input and output of neurons follow Poisson process, which leads to tractable models
and frameworks. However, such strong assumption does not fully reflect a number
of properties of actual neurons. One of the main issues is the background noisy
input in neuronal firing, although the Poisson model captures such input indirectly
through the probabilistic nature of the firing of spikes. So it can not provide a
mechanistic explanation of neuronal response variability. Poisson-like spike gener-
ation, by itself, is highly reliable and deterministic. However, background input
in neural responses is believed to result in part from the fact that synapses are
very unreliable [2]. Background input is therefore due to unreliable synapses, or
inherited from the input from the rest of the network, and is not due to spike gener-
ation. For the integrate-and-fire neuron model, the output is a filtered, thresholded
and deterministic function of the input. Thus, such model captures many of the
qualitative features, and is often applied as a starting point for conceptualizing the
biophysical behavior of single neurons [44].

There is evidence showing that actual neurons respond as integrate-and-fire
neurons [37] through biological experiments, which implies such neuron models are
closer to the real ones. Here the networks built of the general type of integrate-and-
fire neurons: exponential integrate-and-fire (EIF) neurons [13] are considered, which
have been shown to match spiking dynamics well in certain cortical areas [6]. In this
paper, how correlated spiking activity and STDP affect the evolution of network
structure under the same fixed baseline firing rate is illustrated, which may not be
captured by following the assumption of Poisson-like neurons.
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2. Methods

2.1. Network neuron model

All the networks we considered here are composed of exponential integrate-and-fire
(EIF) neurons. The membrane potential (voltage) Vi of neuron i in a network is
modeled by

Cm
dVi
dt

= gL(VL − Vi) + gLψ(Vi) + Ii(t) + fi(t) . (2.1)

Here Cm is the membrane capacitance, VL is the leak reversal potential, and gL is
the membrane conductance.

ψ(Vi) = ∆T exp

[
Vi − VT
∆T

]
is the exponential term. VT is the initiation threshold and ∆T shapes the spiking
dynamics of the membrane potential. An action potential (spike) will be generated
when the membrane potential reaches VT . In numerical simulations, a threshold
Vth is set up for making action potentials. After an action potential is generated,
the membrane potential is reset to the rest potential Vre and is held there for an
absolute refractory period τref .

In vivo, neurons are not isolated and they function in a complex environment.
So they are affected by internal inputs due to channel noise [51] and external inputs
which are not explicitly modelled [38]. As a result, these two parts are modeled
together as a Gaussian white noise process, the background input term: Ii(t) =
µi + gLσiDξi(t). µi is the mean of the input and σi governs the noise strength.

D =
√

2Cm

gL
controls the noise amplitude to be independent of the passive membrane

time constant. The reason why the EIF neuron model is applied to build networks
is that it can accurately predict the statistical features of spike trains for a large
class of neurons, such as pyramidal neurons [26].

A post–synaptic input current is generated whenever a presynaptic cell spikes.
The synaptic kernels are assumed to be exponential, and thus we have the form:

Jij(t) = WijH(t− τD)exp

[
− t− τD

τS

]
.

HereH is the heaviside step function, τD is the synaptic delay, and τS is the synaptic
time constant. The matrix W defines the synaptic weights for all the connections in
a network, and the entryWij denotes the synaptic weight of the directed connection
from neuron j to neuron i. yj(t) = Σkδ(t− tj,k) is the output spike train of neuron
j. Then the post–synaptic input current for neuron i generated by the spike train
of neuron j is given by fi(t) = Σj(Jij ∗ yj)(t).

2.2. The STDP learning rule

To study how plasticity shapes the structure of the network, a well-known model
of Hebbian spike timing-dependent plasticity (STDP) [15] rule is applied, which
was supported by experimental evidence from Bi and Poo in 1998 [7] and other
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studies [3, 25, 52]. If the time difference between the pre- and post-synaptic spikes
is denoted by s:

s = tpost − tpre = tj − ti ,

then a Hebbian STDP rule is defined by

∆Wji(s) =

{
W0

jiH(Wmax −Wji)L(s) , if s ≥ 0

W0
jiH(Wji)L(s) , if s < 0

, (2.2)

where

L(s) =

f+e
− |s|

τ+ , if s ≥ 0

−f−e
− |s|

τ− , if s < 0
.

Here H is also the Heaviside function, f+ > 0 and f− > 0 are the amplitudes of
potentiation and depression respectively, τ+ and τ− are the time constants, Wmax

is the upper bound of the synaptic weights and W0 is the binary adjacency matrix
of the network, enforcing that the STDP rule can only modify connections that
exist in the network structure.

The Anti-Hebbian STDP rule is also considered, which is defined by the following
function:

∆Wji(s) =

{
W0

jiH(Wji)L(s) , if s ≥ 0

W0
jiH(Wmax −Wji)L(s) , if s < 0

,

where

L(s) =

−f−e
− |s|

τ+ , if s ≥ 0

f+e
− |s|

τ− , if s < 0
.

We can see that this rule is similar to the Hebbian STDP rule defined in Eq
(2.2), but with reversed windows of potentiation and depression.

2.3. Approximation of cross-covariances by linear–response
theory

Here we briefly introduce the approximation method applied to estimate the pair-
wise spike train cross-covariances Cij(s) for coupled neurons in a network using a
synaptic weight matrix W [11, 31, 34, 47]. The Fourier transform of the spike train
(Eq. (2.5)) is

ỹi(ω) =

∫ ∞

−∞
yi(t)e

−2πiωtdt ,

where ω is the frequency. Assuming the synaptic weights Wij are weak, the spike
response for neuron i (Eq. (2.1)) can be approximated as

ỹi(ω) ≈ ỹ0
i (ω) + Ãi(ω)

( N∑
j=1

J̃ij(ω)ỹj(ω)

)
. (2.3)
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Here Ãi(ω) is the Fourier transform of the linear response [14] of the post-synaptic
neuron i, measuring how strongly modulations in synaptic currents at frequency ω
are transferred into modulations of instantaneous firing rate about a background
state ỹ0

i (ω). Ãi(ω) can be computed by standard methods based on using a Fokker-
Planck equation [39, 40], which describes the probability distribution of a neuron’s
membrane potential. The function J̃ij(ω) is the Fourier transform of a synaptic
filter. Eq. (2.3) is a linear approximation for how a neuron integrates and transforms
a realization of synaptic input into a spike train.

Following the works [11, 31, 47] and applying this linear approximation to esti-
mate the Fourier transform of Cij(s), which can be written as

C̃ij(ω) =< ỹi(ω)ỹ
∗
j (ω) >.

Here ỹ∗ denotes the conjugate transpose and ⟨·⟩ denotes the trial average. This
yields the following matrix form

C̃(ω) ≈ (I− K̃(ω))−1C̃
0
(ω)(I− K̃

∗
(ω))−1 , (2.4)

where K̃(ω) is an interaction matrix defined by K̃ij(ω) = Ãi(ω)J̃ij(ω). The diagonal

matrix C̃
0
(ω) is the auto-spectra in the absence of synaptic coupling, with elements

C̃
0

ii(ω) =< ỹ0
i (ω)ỹ

0∗
i (ω) >. I is the identity matrix. From Eq. (2.4), we can recover

the spiking cross-covariance matrix C(s) through inverse Fourier transformation.
Thus, Eq. (2.4) gives us an estimate of the statistics of pairwise spiking activity in
the full network given by its architecture. The process of approximating the cross-
covariance for a simple two-cell network with just one connection is demonstrated
in Fig. (1).

2.4. Dynamics for synaptic weights modification

The spiking output (spike train) of a neuron i is denoted by

yi(t) =

ni∑
i=1

δ(t− ti) , (2.5)

where δ(t− ti) is the Dirac Delta function

δ(t− ti) =

{
∞ , t = ti

0 , otherwise
.

According to [1, 4, 21, 28], the bridge from the joint statistics of yi(t) and yj(t) to
the evolution of synaptic weights can be built. The STDP rule given in Eq. (2.2)
governs the modification of the synaptic weight Wji (from neuron i to neuron j).
Let ∆TWji be the total change in the related synaptic weight during a time interval
of length T . This weight change is calculated by summing the contributions of input
(i) and output (j) spikes occurring in the time interval [t, t+ T ]. This yields

∆TWji =

∫ t+T

t

∫ t+T

t

∆Wji(t2 − t1)yj(t2)yi(t1)dt2dt1 .
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Figure 1. The process of approximating the spiking cross-covariance theoretically. The

baseline firing rate is about 27 Hz for the neurons with µ = 2 mV and σ = 9 mV. Here W21 = 1 µA/cm2.
(a) The illustration of the simple two-cell network with just one directed connection from neuron 1 to
neuron 2. (b) The linear response function, A2(t). (c) The synaptic kernel, J21(t). (d) The auto-
covariance for uncoupled neuron 1, C0

11. (e) The cross-covariance C21(t). The smooth red curve is the
theoretical approximation, while the jagged blue curve is the simulated realization. Here we use the spike
trains with time length of 107 ms and bin size of 0.5 ms for computing the numerical cross-covariance.

Let s = t2 − t1 and ⟨·⟩ denote the trial average. Then the trial-averaged rate of
synaptic weight change is

⟨∆TWji⟩
T

=
1

T

∫ t+T

t

∫ t+T−t1

t−t1

∆Wji(s)⟨yj(t1 + s)yi(t1)⟩dsdt1 .

In addition, the trial-averaged spike train cross-covariance Cji(s) is

Cji(s) = E[(yj(t1 + s)− rj)(yi(t1)− ri)]

= E[yj(t1 + s)yi(t1)]− rirj

=
1

T

∫ t+T

t

⟨yj(t1 + s)yi(t1)⟩dt1 − rirj ,

where E is the expectation operator while rj and ri are the stationary firing rates
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for neuron j and i respectively. Applying this term into Eq. (2.6), we have

⟨∆TWji⟩
T

=

∫ t+T−t1

t−t1

∆Wji(s)(Cji(s) + rjri)ds . (2.6)

Here the width of the learning rule ∆Wji(s) is defined by W and let T ≫ W.
Then most of the contributions to the weights evolution of the learning rule should
be inside the interval [−W,W]. Thus, the integration over s in Eq. (2.6) can be
extended to go over from −∞ to +∞. The amplitude of individual changes in the
synaptic weights is required to be small (f± ≪ Wmax). So the value of Wji does
not change much in the time interval of length T . Thus T separates the time scale
W from the time scale of the learning dynamics, which allows us to approximate
the left-hand side of Eq. (2.6) by the rate of change

dWji

dt

dWji

dt
=

∫ +∞

−∞
∆Wji(s)(Cji(s) + rjri)ds

=

∫ +∞

−∞
∆Wji(s)Cji(s)ds︸ ︷︷ ︸

1

+ rjri

∫ +∞

−∞
∆Wji(s)ds︸ ︷︷ ︸
2

. (2.7)

For the fixed learning rule and neuron properties of the networks, part 2 of Eq.
(2.7) is a constant. Part 1 is illustrated in Fig. 2. The process of obtaining the
theoretical synaptic weight evolution is demonstrated in Fig. 3 for a simple two-cell
network (Fig. 1a).
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Figure 2. Illustration for Part 1 of Eq. (2.7). Cross-covariance (red curve), together with the
STDP rule (blue curve) define the weight change dynamics (yellow region). These terms are calculated
to obtain the theoretical weight change dynamics. The yellow region is the integral (area) of the product
of cross-covariance and learning rule, which stands for Part 1 of Eq. (2.7). It contributes to the evolution
of synaptic weights.

2.5. Numerical simulations

Simulations were coded in MATLAB and C++. The stochastic differential equa-
tions were discretized by a standard Euler method with a time-step of 0.01 ms.
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Figure 3. The process of approximating the evolution of synaptic weight theoretically. The
baseline firing rate is about 27 Hz for the two neurons with µ = 2 mV and σ = 9 mV. (a) Cross-
covariance C21(t), the same as Fig. 1e. (b) Balanced Hebbian STDP rule for the network (Fig. 1a).
(c) The evolution of the synaptic weight W21 under such STDP rule. The smooth red curve is the
theoretical approximation. The 10 jagged shallow blue curves are simulated realizations, and the jagged
deep blue curve is their average.

General parameter values were as follows: Cm = 1 µF/cm2, gL = 0.1 mS/cm2,
VL = −72 mV, ∆T = 1.4 mV, VT = −48 mV, Vth = 30 mV, Vre = −72 mV, τref =
2 ms, τS = 5 ms, τD = 1 ms, τ+ = τ− = 15, f+ = f− = Wmax/5000 (for balanced
STDP). The specified parameters are mentioned in this manuscript.

3. Results

For studying the impact of correlated spiking activity and STDP on the evolution of
network structure, the linear response theory (see Section 2.3) is applied to approx-
imate the spiking cross-covariance between coupled neurons in the network. It is
essential that the synaptic weights of the connections between neurons are required
to change slowly compared with network dynamics, which provides a separation
of time scales. This allows us to determine how the synaptic weights evolve. The
approach described in [47] is generalized with the STDP rule to analyze the vector
fields (or phase planes) of synaptic weights for two-cell recurrent networks. Then
the properties found for simple neuron circuits were applied to predict the evolution
of structures for large networks. Moreover, our theoretical framework matches with
direct numerical simulations.

3.1. Different background input can attain the same firing
rate

The Poisson-like neuron is completely described by its firing rate [41]. However,
the dynamics and response of the EIF neuron are governed by parameters that can
capture much more physiological properties of actual neurons. Here we focus on
two parameters governing the background input, the mean µ and σ which controls
noise variance. Both of them affect the firing rate and the output variability of
neurons [30]. Although the same baseline firing rate (for isolated neurons) can
be achieved for different µ and σ values (Fig. 4), the variability of the output is
different. The statistics of the output spike trains varies according to the µ and σ
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values (Fig. 5), even for the same fixed baseline firing rate. EIF neurons with higher
µ (lower σ) generate more regular spike trains (Fig. 5b) than those with lower one
(Fig. 5c). Moreover, coefficient of variation (CV) of the background input can vary
even if the firing rate stays the same.

Figure 4. Different µ-σ values can attain the same baseline firing rate. (a) Changes of baseline
firing rate according to µ and σ values. (b) Bottom of (a), illustrating that different µ and σ values can
attain the same baseline firing rate. The values near to the lines are baseline firing rate.

Figure 5. Neurons with the same baseline firing rate can have different firing statistics. (a)
Different µ and σ values can attain the same baseline firing rate 7.6 Hz by fixing other parameters. Here
I choose two µ-σ pairs: one with higher µ value while the other with lower one. (b) The selected EIF
neuron with higher µ value (lower σ value) generates regular spike train. (c) The selected EIF neuron
with lower µ value (higher σ value) generates irregular spike train.
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Fixing other parameters, five different µ-σ pairs (Table 1) can lead to the same
baseline firing rate 7.6 Hz. For fixed baseline firing rate, the value of µ decreases
when increasing σ value. The reversed setting is similar. The µ-σ pairs showed in the
table are applied to study the effect of their spiking covariance on network structures
with the STDP rule. Besides background input mean µ and σ for noise variance,
other parameters can also affect the firing rates, such as the spiking dynamics
shaping parameter ∆T in the exponential term ψ(Vi) (Eq. (2.1)). Higher ∆T

causes more rapid spike onset, and leads to higher firing rates. However, the impact
of these parameters is expected to be small compared to µ and σ. So here only µ
and σ in the background input term are considered.

Table 1. Five different µ-σ pairs that attain the same baseline firing rate 7.6 Hz.

Pair index µ (mV) σ (mV) Fano factor Baseline firing rate (Hz)

1 1.37 7 0.77

2 1.19 8 0.81

3 1.00 9 0.84 7.6

4 0.81 10 0.88

5 0.61 11 0.91

3.2. Background input affects correlated activity and synaptic
weights evolution with STDP

In addition to the STDP rule, spiking covariance also contributes to the evolution of
synaptic weights in networks (Eq. (2.7)). Begin with the simple two-cell recurrent
networks (Fig. 6a) with fixed baseline firing rate for both neurons, two cases are
illustrated here: one of the identical neurons with higher µ value (lower σ value)
while the other of identical neurons with lower µ value (higher σ value). The
spiking cross-covariance for the network of neurons with higher µ value has bigger
amplitude (Fig. 6e) than that with lower µ value (Fig. 6c). The reason is that
higher background input mean makes neurons more sensitive to its input. The
balanced (f+ = f− and τ+ = τ−) Hebbian STDP rule (Fig. 6b) is applied for these
two cases. Under such an STDP rule, the evolution of the synaptic weights for the
network of neurons with higher µ value (lower σ value) is faster (Fig. 6f) than that
with lower one (Fig. 6d), which is caused by their different cross-covariances.

According to Eq. (2.7), only the first part contains the spiking cross-variance.
So the cross-variance will dominate the evolution of network structure if the contri-
bution of the second part can be ignored. This implies

rirj

∫ +∞

−∞
∆Wji(s)ds

= rirj

(
f+

∫ +∞

0

e
− s

τ+ ds− f−

∫ 0

−∞
e

s
τ− ds

)
= rirj(f+τ+ − f−τ−) = 0 .
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Figure 6. Synaptic weights evolution in two-cell recurrent networks with different µ-σ set-
tings but the same baseline firing rate. Here I fix other parameters and the baseline firing rate
as 7.6 Hz. (a) The illustration of the two-cell recurrent network. (b) The selected balanced Hebbian
STDP rule. (c) Cross-covariance C21 for network of neurons with lower µ value. Smooth red curve is
the theoretical approximation while the blue one is from numerical simulation. (d) The evolution of the
two synaptic weights in the network of neurons with lower µ value. The smooth curves are obtained
from theory. Each of the shallow jagged curves comes from one numerical simulation. The deep jagged
curves are their average (10 simulated results), respectively. (e) Cross-covariance C21 for network of
neurons with higher µ value. (f) The evolution of the two synaptic weights in the network of neurons
with higher µ value.

Since the baseline firing rates can not be 0 for alive neurons, the correlated spiking
activity will dominate the changes of synaptic weights in a network when f+τ+ =
f−τ− for the STDP rule. The balanced STDP just follows this scenario.

3.3. Networks of neurons with different background input

Here the phase planes (or vector fields) for two-cell recurrent networks (Fig. 6a) of
neurons with different background input but the same baseline firing rate (Table 1)
are analyzed, which are inspired by the idea from Babadi and Abbott [5]. According
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to Eq. (2.7), the evolution of the two synaptic weights for such a network is governed
by the following system of differential equations:

{
dW12

dt =
∫ +∞
−∞ ∆W12(s)(C12(s) + r1r2)ds

dW21

dt =
∫ +∞
−∞ ∆W21(s)(C21(s) + r2r1)ds

.

Given an initial value of the paired synaptic weights (W12,W21), the corresponding
phase plane shows what values will (W12,W21) attain under certain learning rule.
Here the same balanced STDP rule is applied to these networks.

3.3.1. Hebbian case

For the network of identical neurons, its phase plane is symmetric (Fig. 7a) under
balanced Hebbian STDP rule. The red diagonal consists of unstable equilibria.
There are two stable fixed points (W21,W12)=(5,0) and (W21,W12)=(0,5) with
symmetric basins of attraction, which means their attracting abilities are equal.
This is due to the balanced learning rule. We can therefore predict that, for a big
network of identical neurons under balanced Hebbian STDP, if the initial synaptic
weights are uniformly distributed (follows U(0,Wmax)), then half of the weights
will be potentiated while the other half will be depressed.

Figure 7. Phase planes for synaptic weights in two-cell recurrent networks under balanced
Hebbian STDP. Here we apply the parameter settings (µ-σ pairs) in Table 1. We set the upper bound
of all the synaptic weights to Wmax = 5 µA/cm2. (a) Phase plane for identical neurons with parameter
setting 3. (b) Phase plane for neuron 1 with parameter setting 1 while neuron 2 with parameter setting
3. (c) Phase plane for neuron 1 with parameter setting 1 while neuron 2 with parameter setting 5.

The symmetry of the phase plane will not hold when the two neurons have
different parameter settings (Fig. 7b and c). The line of unstable fixed points is
tilted toward the axis corresponding to the synaptic weight W21, the strength of
the connection from neuron with higher drive (µ) to that with lower one (from
neuron 1 to neuron 2). This implies that the basin of attraction for the fixed
point (W21,W12)=(0,5) is larger than that for (W21,W12)=(5,0). The outgoing
synapse (W12) of the neuron with lower mean input (neuron 2) are more likely to
be potentiated, while its incoming synapse (W21) are likely to weaken. For neuron
with higher µ value (neuron 1), it has the opposite property. Moreover, bigger
difference between the mean input values (µ) of the two neurons makes this tendency
more obvious. So we can make a prediction that, for a large network of different
groups of neurons with the same baseline firing rate but different background input,
under balanced Hebbian STDP rule, if all the initial synaptic weights are uniformly
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distributed, then the connections from the groups of neurons with lower background
input mean (µ) to those with higher one are more likely to strengthen. In the
meanwhile, the reversed connections are more likely to weaken. This prediction will
be verified in the following illustration.

Here a network of 100 neurons with all–to–all connectivity is considered. The
initial synaptic weights of the connections are uniformly distributed (Fig. 8). These
100 neurons are divided into two groups with even number of cells: group 1 (neuron
1-50) with parameter setting 3 (lower µ, higher σ, Table 1) while group 2 (neuron
51-100) with parameter setting 1 (higher µ, lower σ). This makes sure that all the
100 neurons have the same baseline firing rate, but different background input for
different groups. Under such setup, we can split the synaptic weight matrix into
four quarters corresponding to connections within and between these two groups.
A balanced Hebbian STDP rule is applied to this network.

Figure 8. The initial synaptic weight matrix of the 100-cell network.

The synaptic weight matrices for the final state of the network after training
from both theory and simulations are shown in Fig. 9. What’s more, we record the
evolution of every connection in the network (Fig. 10). We can see that the results
form theory and simulated realizations are consistent. The bottom-left quarter of
the final synaptic weight matrices (Fig. 9), which contains the synaptic weights of
the connections from group 1 neurons (with lower µ) to group 2 neurons (with higher
µ), is lighter than the top-right quarter with connections from group 2 neurons to
group 1 neurons. This means there are more potentiated weights in the bottom-left
quarter. In addition, the brightness of top-left quarter and bottom-right quarter,
which contains the weights of the connections between neurons within the same
group, are on the same level. Next, the means of the synaptic weights for each of
the four quarters are calculated (Table 2) to quantify their differences. We can see
that the mean of the synaptic weights for bottom-left quarter is bigger than that
for top-right quarter indeed for both theory and simulations. The means of the
weights for the rest two quarters are the same. These imply that the theoretical
results match with the simulations.
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Figure 9. The synaptic weight matrices for the final state of the network under balanced
Hebbian STDP. (a) The synaptic weight matrix for the final state obtained by theory. (b) The
synaptic weight matrix for the final state obtained by averaging 10 numerical simulations.

Table 2. The mean of the synaptic weights in each of the four quarters for Fig. 9.

group 1: pair 3(lower µ) mean weights(µA/cm2)
standard error

group 2: pair 1(higher µ) theory simulation

lower→lower(top-left) 0.025 0.025 0.00039

higher→lower(top-right) 0.020 0.020 0.00040

lower→higher(bottom-left) 0.030 0.030 0.00039

higher→higher(bottom-right) 0.025 0.025 0.00040

3.3.2. Anti-Hebbian case

The effect of balanced Anti-Hebbian STDP rule (see Section 2.2) is also explored
on the evolution of network structure. Similar to the balanced Hebbian case, the
phase planes for two-cell recurrent networks following the same neuron setting are
analyzed firstly as Hebbian case.

Since the difference between Anti-Hebbian STDP and Hebbian STDP is the re-
versal of potentiation side and depression side, similar phase planes are obtained
(Fig. 11), but with reversed time flow (the direction of arrows). Here the red line
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Figure 10. The evolution of selected synaptic weights in the 100-cell network under balanced
Hebbian STDP. Corresponding to Fig. 9. (a, b) The smooth curves are got from theory, while the
jagged curves are obtained by averaging 10 simulated realizations.

is composed of stable fixed points, where (W21,W12)=(5,0) and (W21,W12)=(0,5)
become unstable fixed points. For identical neurons, the phase plane is also sym-
metric (Fig. 11a). All the initial synaptic weights are attracted by the diagonal.
Thus, we can therefore predict that, for a large network of identical neurons under
balanced Anti-Hebbian STDP, all the synaptic weights will attain similar values
eventually if the initial synaptic weights are uniformly distributed.

As the two neurons have different background inputs, the line of stable fixed
points is also tilted toward the axis corresponding to the synaptic weight W21 (Fig.
11b and c), which is the same as Hebbian case. However, this implies that the
outgoing synapse (W12) of the neuron with lower mean input (neuron 2) are more
likely to weaken, while its incoming synapse (W21) is likely to be potentiated. The
opposite property holds for neuron with higher µ value (neuron 1). As a result, we
can predict that, for a large network of different groups of neurons with the same
baseline firing rate but different background input, under balanced Anti-Hebbian
STDP rule, the connections from the groups of neurons with lower background
input mean (µ) to those with higher one are more likely to weaken if the initial
synaptic weights are uniformly distributed, while the reversed connections are more
likely to strengthen.

Here a network of 100 neurons with the same initial synaptic weight matrix
is considered as Hebbian case (Fig. 8). These 100 neurons are divided into two
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Figure 11. Phase planes for synaptic weights in two-cell recurrent networks under balanced
Anti-Hebbian STDP rule. Here the parameter settings are the same as Fig. 7 except the STDP
rule. (a) Phase plane for identical neurons with parameter setting 3. (b) Phase plane for neuron 1
with parameter setting 1 while neuron 2 with parameter setting 3. (c) Phase plane for neuron 1 with
parameter setting 1 while neuron 2 with parameter setting 5.

even groups. We set group 1 neurons with parameter setting 1 (higher µ, lower σ,
Table 1) while group 2 neurons with parameter setting 5 (lower µ, higher σ). Then
balanced Anti-Hebbian STDP rule is applied to this network.

The synaptic weight matrices after training are in Fig. 12 and the selected
evolution of synaptic weights are shown in Fig. 13. We have the similar pattern
of four quarters to Hebbian case. Here the bottom-left quarter is also lighter than
the top-right quarter. However, the former contains the synaptic weights of the
connections from neurons with higher µ (group 1 neurons) to neurons with lower µ
(group 2 neurons) while the latter contains the weights for the reversed connections.
This is due to the reversal of potentiation side and depression side compared with
Hebbian case. After calculating the means of the synaptic weights for each quarter
(Table 3), we can see the mean of the synaptic weights for bottom-left quarter is
bigger than that for top-right quarter while the means of the weights for the rest
two quarters are the same. The mean values got from theory and simulations for
each quarter are identical, which verifies our prediction.

Table 3. The mean of the synaptic weights in each of the four quarters for Fig. 12.

group 1: pair 1(higher µ) mean weights(µA/cm2)
standard error

group 2: pair 5(lower µ) theory simulation

higher→higher(top-left) 0.025 0.025 0.00022

lower→higher(top-right) 0.020 0.020 0.00019

higher→lower(bottom-left) 0.028 0.028 0.00023

lower→lower(bottom-right) 0.025 0.025 0.00022

3.4. Networks of identical neurons

Under fixed baseline firing rate, the spiking cross-covariance can still affect the
evolution of the network structure, even for the STDP rule such that the second
part of Eq. (2.7) is non-zero. The potentiation dominated Hebbian STDP rule is
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Figure 12. The synaptic weight matrices for the final state of the network under balanced
Anti-Hebbian STDP. (a) The synaptic weight matrix for the final state obtained by theory. (b) The
synaptic weight matrix for the final state obtained by averaging 10 numerical simulations.

applied for the networks by setting f+ = A · f− and τ+ = τ− with A > 1. For
this case, f+τ+ − f−τ− > 0. Similar to the previous section, the phase planes for
two-cell recurrent networks (Fig. 6a) under potentiation dominated Hebbian STDP
(A = 1.5) are analyzed firstly. The two neurons are identical from the same network
by applying the parameter setting in Table 1.

There are three stable fixed points: (W21,W12)=(5,0), (0,5) and (5,5) in the
phase planes (Fig. 14). However, the areas of the basin of attraction of each stable
fixed point are different between networks. The basin of attraction of the stable
fixed point (W21,W12) = (5, 5) is larger for the network with neurons of lower µ
(Fig. 14b) than that for the network with neurons of higher µ (Fig. 14a). This
means more synaptic weights will be potentiated for network of neurons with lower
background input mean. Thus, we can make a prediction that, for multiple large
networks with the same initial structure, the same baseline firing rate for each
neuron but different background input, more synaptic weights of the network with
lower background input mean (µ) will be potentiated under potentiation dominated
Hebbian STDP.

Two networks of 100 cells with the same initial synaptic weight matrix are
considered as previous section (Fig. 8). All the 100 neurons of the first network
have parameter setting 1 in Table 1 while the neurons of the second network have
parameter setting 5. This makes sure that the neurons from these two networks
have the same baseline firing rate. Then the potentiation dominated STDP rule
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Figure 13. The evolution of selected synaptic weights in the 100-cell network under balanced
Anti-Hebbian STDP. Corresponding to Fig. 12. (a, b) The smooth curves are got from theory, while
the jagged curves are obtained by averaging 10 simulated realizations.

(f+ = 1.005 · f−) is applied for them.
After training by the learning rule, the synaptic weight matrices (Fig. 15) and

the evolution for each synaptic weights (Fig. 16) are obtained. Although this is
not very obvious, there are more white dots in synaptic weight matrices for the
network with parameter setting 5 (Fig. 15c and d) than those for the network with
parameter setting 1 (Fig. 15a and b). This means that the network of neurons
with lower µ have more potentiated synaptic weights. This difference is illustrated
clearly through calculating the means of these synaptic weight matrices (Table 4).

Table 4. The mean of the synaptic weight matrices for Fig. 15.

Network mean weights (µA/cm2)
standard error

parameter setting theory simulation

Setting 1 0.030 0.030 0.00021

Setting 5 0.033 0.033 0.00019
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Figure 14. Phase planes for synaptic weights in two-cell recurrent networks under potenti-
ation dominated STDP rule. (a) Phase plane for both neurons with parameter setting 1. (b) Phase
plane for both neurons with parameter setting 5.

4. Discussion

In this paper, a self-consistent framework is provided to study the effect of the
correlated spiking activity and STDP learning rules on the structures of recurrent
networks composed of EIF neurons. For fixed baseline firing rate, the background
input plays an important role in the shapes of spiking cross-covariance and the
evolution of network structure (Fig. 6): higher input mean leads to bigger amplitude
of covariance and faster modification of synaptic weights. The analysis of the phase
planes of simple two-cell recurrent networks gives some insights about the structures
of large networks. For the fixed baseline firing rate of all neurons in one netowrk, the
connections from neurons with lower background input mean to those with higher
are more likely to strengthen under balanced Hebbian STDP rule. The opposite
conclusion holds for balanced Anti-Hebbian STDP case. In addition, for networks
of identical neurons with the same fixed baseline firing rate but different background
input among networks, there are more potentiated connections under potentiation
dominated STDP in the network with lower background input mean.

The linear response theory for approximating the spiking cross-covariance of
Lindner et al. [31] was generalized by Trousdale et al. [47] by accounting for the
length of directed chains of neurons along with higher order corrections. Trousdale
et al. focused on the impact of network structure on spiking covariance, with-
out considering the plasticity of networks. Our work extends theirs to show that
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Figure 15. The synaptic weight matrices for 100-cell networks after being trained by po-
tentiation dominated STDP. (a) Theoretical synaptic weight matrix for the network with parameter
setting 1. (b) Averaged simulated (by 10 realizations) synaptic weight matrix for the network with
parameter setting 1. (c) Theoretical synaptic weight matrix for the network with parameter setting
5. (d) Averaged simulated (by 10 realizations) synaptic weight matrix for the network with parameter
setting 5.

correlated spiking activity can also affect the network structure under STDP. Cor-
related activities between neurons and network structure affect each other due to
the dynamic property of networks.

This study is closely related to that of Babadi and Abbott [5], who also ana-
lyzed pairwise interactions of neurons affected by STDP. Both studies present the
approach for inferring the structures in large networks from the analysis of simple
circuits of neurons. However, they assumed that the input to each neuron was
Poisson-like so that the model can be simplified. This allowed them to perform a
detailed analytic study on how STDP affects the synapses between the two neurons,
but lost some intrinsic properties of actual neurons and networks. Their conclusions
are based on different baseline firing rates and STDP rules. Here, without such an
assumption, their results are generalized for networks of EIF neurons with the same
baseline firing rate by taking the background input and correlated spiking activity
into account.

The work is also comparable with Pernice et al. [36], who examined the correla-
tion structure in networks of interacting Hawkes processes. Their studies represent
correlations between neuron pairs in terms of contributions of different connectivity
motifs. Our methods, however, are different because Pernice et al. did not com-
pare their results to those obtained using physiological models and did not take
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Figure 16. The evolution of selected synaptic weights in the 100-cell networks under poten-
tiation dominated Hebbian STDP. Corresponding to Fig. 15. (a) For network of identical neurons
with parameter setting 1. (b) For network of identical neurons with parameter setting 5.

into account the response characteristics of individual neurons, even though their
expressions are accurate for Hawkes processes. Furthermore, for simplicity Pernice
et al. analyzed only total spike count covariances, which were the integrals of the
cross-correlation functions. Similarly, Toyoizumi et al. [46] derived expressions for
cross-correlations in networks of interacting point process models in the General-
ized Linear Model (GLM) class. Although they shared many characteristics with
Hawkes processes, they also had a static nonlinearity that shaped the spike emission
rate.

The framework and approach developed in this paper can be applied for fur-
ther research. For instance, how external input affect the network structures under
STDP [16–19]. Moreover, there are more detailed and physiologically realistic
neuron models than EIF neuron model, such as Connor-Stevens neuron model [9],
which can spike automatically without setting a threshold. Our methods may be
extended to analyze such neuron models. In addition, besides STDP with paired
spikes, people also consider triplet STDP learning rule [22]. It will be an interesting
topic about the impact of triplet STDP on network structure by applying our meth-
ods. We hope this tool will contribute to a better understanding of the evolution
of network structure with more realistic neuron models, more structured input and
more complex learning rules.
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