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COVID-19 Epidemic Prediction Based on Deep
Learning

Rui Li1, Zhihan Zhang2 and Peng Liu1,†

Abstract In this paper, a multi-layer gated recurrent unit neural network
(multi-head GRU) model is proposed to predict the confirmed cases of the
new crown epidemic (COVID-19). We extract the time series relationship in
the data, and the rolling prediction method is adopted to ensure the simple
structure of the model and achieve higher precision and interpretability. The
prediction results of this model are compared with the LSTM model, the
Transformer model and the infectious disease model (SIR). The results show
that the proposed model has higher prediction accuracy. The mean absolute
error (MAE) of epidemic prediction in most countries (the United States,
Brazil, India, the United Kingdom and Russia) is respectively 197.52, 68.02,
200.67, 24.78 and 123.50, which is much smaller than the prediction error
of the SIR model, LSTM model and Transformer model. For the spread of
the COVID-19 epidemic, traditional infectious disease models and machine
learning models cannot achieve more accurate predictions. In this paper, we
use a GRU model to predict the real-time spread of COVID-19, which has
fewer parameters so that it can reduce the risk of overfitting to train faster.
Meanwhile, it can compensate for the transformer model’s shortcomings to
capture local features.

Keywords COVID-19, deep learning, time series forecasting, gated recurrent
unit neural network

MSC(2010) 68T07, 92B20.

1. Introduction

In December 2019, many patients with “pneumonia of unknown cause” appeared
in Wuhan, Hubei Province, China. Through the monitoring of related diseases, a
series of infection cases of new atypical viral pneumonia were successively discovered.
Since the population in China was at the peak of returning to their hometown
during the Spring Festival, the new type of viral pneumonia quickly spread to other
regions of China and even neighboring countries in a very short period. On 11
February, 2020, the increasingly severe pneumonia epidemic caused concerns in
many countries. The World Health Organization named the pneumonia epidemic
caused by a new type of coronavirus “COVID-19”, or the COVID-19 epidemic for
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short.
At the early stage of the outbreak of COVID-19 pneumonia, the Chinese govern-

ment took many intervention measures, including isolating suspected and confirmed
patients, closing many transportation channels in Wuhan and timely lengthening
the Spring Festival holiday time to avoid population shift, the epidemic had been
effectively controlled.

Since March 2020, the epidemic spread rapidly in the United States, the United
Kingdom, India and other countries. Up to 5 March, 2022, a total of 443,450,514
COVID-19 cases had been confirmed worldwide with a total of 6,008,173 deaths.
Globally, there were 1,724,651 new confirmed cases and 8,889 new deaths in a
single day. To prevent and control the global pandemic effectively, it is necessary
to understand the dynamics of COVID-19 and predict the infection mode.

Basing and Tay [1], as well as Chitnis, Cushing and Hyman [7], established in-
fectious disease models to understand the infection mechanism and propose corre-
sponding control measures. Sharomi et al. [25] studied transmission and established
models to analyze the dynamics of infectious disease. Jajarmi et al. [15] successfully
controlled the transmission rate of infectious disease in infants using an improved
SIRS model. A similar mathematical model proposed by Baleanu et al. [2, 13] suc-
cessfully helped clinicians better understand the characteristics of the human liver
and the transmission of dengue outbreaks. Most of the data-driven methods used in
the previous studies [19] are linear methods, and they have ignored the time series
in the data, and do not capture the transmission dynamics of novel coronavirus.
Statistical models, such as autoregressive moving average (ARIMA), moving aver-
age (MA) and autoregressive methods (ARs), mainly rely on assumptions, but it
is difficult for these models to predict real-time transmission rates. Benvenuto et
al. [8, 28] established various statistical and mathematical models to simulate the
spread of the current COVID-19 outbreak. However, these models do not fit the
given data perfectly in many cases, and have low accuracy in predicting the growth
of COVID-19 transmission. James and Tripathi [16] used the concept of derivative
to calculate the acceleration of confirmed infection and death cases, and then ap-
plied the multivariate linear function and the calculus chain rule of the composite
function of the confirmed infection to determine the acceleration of the death func-
tion. They fit different ARIMA models for the acceleration of each death function,
and found that seasonal changes affect the transmission of the virus. Jia [17] et
al. proposed two impulsive systems to describe the impact of multilateral imported
cases of COVID-19. Based on the published data, they simulated and analyzed the
epidemic trends under different control strategies. R0 is commonly used to measure
i to predict how many people will be infected by an infected person where additional
weights are placed on people who have never been infected with the current disease
or who have not been vaccinated. If a disease has an R0 value of 10, an infected
person will spread the disease to 10 persons around. Zhang et al., [28] used the R0

method to determine the infection rate of the new virus on the Diamond Prince
cruise ship. However, it is difficult to find the origin of the infectious disease by
identifying the patient zero and the people whom they interacted with during the
incubation period by using this method. Baleanu et al. [3,14,27] proposed complex
nonlinear models to address infectious diseases. While these epidemiological models
are good at capturing important components of infectious diseases, some assump-
tions are needed to make on the parameters. In addition, if these hypothetical
parameters do not fit the data perfectly, the accuracy of the models is low.
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The above research has not considered that the spread of COVID-19 is dynamic,
and the dataset of COVID-19 contains time series, so it is logical to use a sequence
of networks to extract patterns. The data processed are inherently dynamic, and
deep learning models can capture the dynamic changes between data well, such
as recurrent neural networks, which are well suited for modeling spatiotemporal
sequences. Long short-term memory (LSTM) is a novel recurrent network archi-
tecture in combination with a proper gradient-based learning algorithm. Ghany,
Zawbaa and Sabri [11] predicted the confirmed and death cases of COVID-19 based
on LSTM with ten hidden units (neurons). Chandra, Jain and Chauhan [5] applied
recurrent neural networks such as LSTM, bidirectional LSTM and encoder-decoder
LSTM models in multi-step (short-term) COVID-19 infection forecasting. Based
on the results of the LSTM network, Vinay and Zhang [6] predicted the possible
ending point of the outbreak would appear around June 2020.

Polyzos, Samitas and Spyridou [23] proposed a Transformer model that is used
to perform language translation. The transformer is a model architecture that
entirely relies on attention mechanisms to draw global dependencies between input
and output. Fitra, Yudistira and Mahmudy [9] used Transformer to find the best
hyperparameters to model the growth of COVID-19 cases. Jin, Wang and Yan
[18] developed a new neural forecasting model based on the idea of transformer,
which is called attention crossing time series (ACTS), and that makes forecasts via
comparing patterns across time series obtained from multiple regions.

The large number of parameters and slow training speed of LSTM, as well as the
inherent shortcomings of transformers in local feature capture, have prompted us
to look for other deep learning methods. Compared with LSTM and transformer,
GRU has fewer parameters so that it reduces the risk of overfitting to train faster.
Meanwhile, it can compensate for the transformer model’s shortcomings to capture
local features. In this paper, we use a GRU model to predict the real-time spread
of COVID-19, which can help public healthcare providers and policymakers make
the necessary arrangements to deal with a potential surge in COVID-19 patients.

2. Data processing

The COVID-19 epidemic data studied in this paper come from the daily data on
epidemics provided by Johns Hopkins University in the United States (https://
github.com/CSSEGISandData/COVID19/tree/master/csse_covid_19_data/csse_

covid_19_time_series). We used daily series data on the new confirmed cases and
deaths of the five countries (the United States, the United Kingdom, Russia, India
and Brazil) from 22 January, 2020 to 20 September, 2021. At data preprocessing
stage, we first remove the invalid recorded data in the sequence data and missing
values which are linearly interpolated.

2.1. Data Differentiation

In the time series data of source datasets, the daily data represent the cumulative
number of confirmed and death cases. Therefore, the first-order difference is per-
formed on the confirmed and death data to obtain daily new confirmed and death
cases for five countries. We select the new diagnosed cases and new deaths during
the first 7 days before prediction as the time lag features.

https://github.com/CSSEGISandData/COVID19/tree/master/csse_covid_19_data/csse_covid_19_time_series
https://github.com/CSSEGISandData/COVID19/tree/master/csse_covid_19_data/csse_covid_19_time_series
https://github.com/CSSEGISandData/COVID19/tree/master/csse_covid_19_data/csse_covid_19_time_series
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2.2. Data smoothing and structure processing

According to the records of the official documents in the data, due to the influence
of the recording time and other factors, the data fluctuate greatly, and there are
many abnormal values. This paper adopts the moving average method with the
three-time step (7 days, 14 days and 21 days). By comparing the final prediction
performance, we find that the prediction performance of the model is the best when
the time step size is 7. Therefore, subsequent smoothing operations use +7 as the
step size. At the same time, considering the influence of the week on the prediction,
we have added the week as additional variables. We turn the week of the predicted
day into the form of one-hot vector as the week features. Our input features are
shown in Table 1.

At last, the standard input data form is [1, 20], which involves 14-time lag fea-
tures, 7-week features and outbreak days’ features.

Table 1. Summary of model variables

Dependent variable Daily new infections

1 lag in daily new infections

2 lags in daily new infections

3 lags in daily new infections

4 lags in daily new infections

5 lags in daily new infections

6 lags in daily new infections

7 lags in daily new infections

Independent variable 1 lag in daily new deaths

2 lags in daily new deaths

3 lags in daily new deaths

4 lags in daily new deaths

5 lags in daily new deaths

6 lags in daily new deaths

7 lags in daily new deaths

Week feature in the predicted day

3. Model building

For the US data set, since its epidemic data are recorded at the county level of
each state and the statistics are different, it is impossible to train an accurate
prediction model. This paper selects Arizona as the representative, and constructs
a GRU neural network model to forecast daily new infection cases. Then, we use
the national COVID-19 infection and death data for outbreak forecasts of other
countries.

3.1. GRU neural network model

In order to make full use of the previous historical data to predict the development
trend of the COVID-19 epidemic in the future period, some researchers use LSTM.
However, since GRU outperforms LSTM and has a simpler gate structure (Hidasi
et al., [12]), we use GRU for sequence recommendation in this paper.
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Figure 1. Structural framework of GRU neural network

Figure 1 illustrates the structure of the GRU layer. The hidden state ht of GRU
neural networks module at the t − th interaction xt is the linear representation of
the previous hidden state ht−1 with the candidate hidden state ĥt,

ht = zt ⊙ ht−1 + (1− zt)⊙ ĥt, (3.1)

where zt is the update gate, which expresses how much of the hidden state the unit
updates from the previous state, and ⊙ is the element-wise multiplication operator.
The zt can be written as

zt = σ(wzxt + Uzht−1 + bz). (3.2)

Similar to the update gate, the reset gate rt can be expressed as

rt = σ(wrxt + Urht−1 + br), (3.3)

where wz, wr ∈ R1×d and Uz, Ur ∈ R1×dh are the weight parameters corresponding
to xt and ht−1, and bz, br are bias. σ (•) is a sigmoid function for non-linear
projection.

The candidate hidden state ĥt is computed by

ĥt = tanh(whxt + Uh(rt ⊙ ht−1) + bh, (3.4)

where rt is the reset gate, wh ∈ R1×d and Uh ∈ R1×dh are the weight parameters,
and bh is a bias. The last hidden state h|Iu| is used as the input hidden layer for
the next prediction based on the current sequence.

Considering the long-time span of the data of the COVID-19 epidemic, to better
predict the trend of the novel coronavirus disease in the future, this paper adopts
a multi-layer GRU neural network structure to capture the internal connection be-
tween the historical epidemic data to achieve better prediction effect. The structure
diagram is as shown in Figure 2.

Figure 2. Neural network model structure diagram

A multi-layer gated recurrent unit neural network (multi-head GRU) model
is constructed for prediction. The model parameters are the same as the base
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predictor, as shown in Table 2.

Table 2. GRU neural network base predictor parameters

Layers 3

Number of hidden layers 128

Learning rate 0.005

Iterations 500

Dropout 0.1

Batch 10

Training set: Test set 8:2

3.2. Baseline model

In order to verify the effectiveness and performance of the proposed model, we
choose and train three baseline models including LSTM deep learning model, Trans-
former model and the infectious disease dynamics model (SIRS).

LSTM is a recurrent neural network that can learn and predict time series.
LSTM is widely used in COVID-19 prediction studies [5, 6, 23]. We build a LSTM
deep learning prediction model as a baseline model to predict the number of con-
firmed COVID-19 cases in the five countries. By inputting the number of COVID-19
confirmed cases and deaths in the previous seven days up to t days, LSTM will out-
put the predicted number of confirmed for t+ 1 days.

We also use a Transformer model as another baseline model. Transformer model
entirely relies on an attention mechanism to draw global dependencies between
input and output. Transformer is widely used in NLP and CV fields, and has
shown a high performance in sequence models. In this study, we use a Transformer
sequence predictor to predict the confirmed number of COVID-19. For specific
model parameter settings, see Table 3.

Table 3. LSTM and Transformer predictor parameters

LSTM Transformer

Number of hidden layers 128
Length of input window 120

Length of output window 1

Number of layers 1 Number of layers 1

Learning rate 0.001 Learning rate 0.001

Iterations 500 Iterations 100

Dropout 0.2 Dropout 0.2

Batch size 10 Batch size 10

Training set: Test set 8:2 Training set: Test set 8:2

The third baseline model is the infectious disease dynamics model. This kind of
model is based on the survival characteristics of the population. In all the relevant
models, the susceptible-infected-recovery base model (SIR model) is a commonly
used model due to its simplicity. The SIR infectious disease model divides the
population into the following three forms.

(1) Susceptible: S category, which refers to the people who have not been in-
fected by the infectious disease, but are likely to be infected;

(2) Infected: I category, which refers to the people who have been infected and
can infect other individuals;

(3) Recovered: R category, which refers to the people who have died, been
isolated or recovered and will not be infected again.
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The above three groups of people all change with time t, so we denote the
numbers of the three kinds of people as St, It and Rt respectively.

It can be represented by the following process diagram.

Figure 3. Flow chart of SIR model propagation

The entire system is in a closed state, population flow is not considered, there is
no impact from outsiders, and the impact of infectious diseases on the population is
far greater than the changes in the population itself. Therefore, if the total amount
of the above three populations remain unchanged, it is expressed by the following
formula

St + It +Rt = N. (3.5)

The SIR infectious disease model can be expressed as the following system of
differential equations 

dS(t)
dt = −βSI

N ,

dI(t)
dt = βSI

N − γI,

dR(t)
dt = γI,

(3.6)

where the the initial numbers S0, I0 and R0 of the three groups of people are all
greater than or equal to 0.

The infected person is infectious. First, the contact rate is defined as the number
of people who are in contact with an infected person per unit time. Usually, it is
set as a function U(N) of the total number of people N . Taking the probability
of its infection as b, the number of susceptible people that an infected person can
infect in a unit time at time t is U(N)bSt/N , which is called the effective contact
rate. There are two assumptions about the contact rate. The first assumption is
that the contact rate is a linear function of the total number of people N , that is,
U(N) = rN . The second assumption is that the contact rate is the constant r, then
the disease incidence rate is rbItSt/N , by denoting rb by β, the disease incidence rate
is βItSt/N , called standard incidence, and the SIR model uses standard incidence
for modeling.

In the unit time at time t, the infected person is isolated, dead or cured, and
will not be infected again, then it is removed from the infected person type, and
the number of infected persons is proportional to the number of infected persons
It. Let the removal intensity be γIt.

3.3. Model evaluation indicators and result analysis

In this study, MAE is selected as the index to evaluate the performance of the
models. It is the average value of the absolute value of the error between the
predicted value and the actual value. The smaller the MAE value is, the higher the
effectiveness of the model is. The calculation formula is as follows,

MAE (X,h) =
1

m

m∑
i=1

|h(x(i) − y(i))|. (3.7)

We use neural network and SIR models to fit the COVID-19 epidemic in each
country, and apply the data of the training set to fit the relationship model between
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each feature and the number of new infected persons per day, which finally estab-
lishes a COVID-19 epidemic prediction model. By comparing the prediction results
of different model methods, the proposed model has better prediction accuracy. The
performance of the multi-layer GRU neural network in the five countries is shown
in Figures 4-8.
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Figure 4. Trends of daily predicted and actual values of COVID-19 in in the United States
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Figure 5. Trends of daily predicted and actual values of COVID-19 in Brazil
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Figure 6. Trends of daily predicted and actual values of COVID-19 in the United Kingdom



362 R. Li, Z. Zhang & P. Liu

 

Time

Figure 7. Trends of daily predicted and actual values of COVID-19 in India

 

T
h
e
 n

u
m

b
e
r 

o
f 

c
a
s
e
s

Figure 8. Trends of daily predicted and actual values of COVID-19 in Russia

We also compute the MAE under three baseline models, and the MAE of the
four models is shown in Table 4. From Table 4, the MAEs of multi-head GRU neural
network are smaller than all of the three baseline models in the five countries except
India, which indicate the effectiveness of the proposed model.

Table 4. The MAE of each model in prediction.

Models
MAE in regions

America Brazil India U. K Russia

Multi-head GRU neural network 197.52 68.02 200.67 24.78 123.5

LSTM 899.39 174.84 244.58 28.52 142.52

Transformer 997.25 451.41 1012.04 185.05 157.77

SIR Model 552.45 224.72 613.56 134.37 367.49

From the prediction results in Figures 4-8, it can be found that the deep learning
prediction model based on the multi-layer GRU neural network proposed in this
paper has good prediction performance and can fully capture the before and after
dependencies of time series data. At the same time, it can consider a variety of
environmental factors as features, and has high accuracy in predicting the epidemic
trend of various countries with a good generalization effect. However, since deep
learning requires a huge amount of data for training, the requirements for data are
relatively high.
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It can be seen from this that the traditional infectious disease dynamics model is
not particularly effective in the simulation and prediction of the novel coronavirus
pneumonia epidemic. This is because the basic assumptions of the model are not
met, and the COVID-19 virus has a long incubation period. Therefore, the infected
person is not easy to be detected, and there are asymptomatic infections, leading to
the incompleteness of the model in considering parameters. Deep learning technol-
ogy can learn and gain experience from the historical data, improve its performance
in tasks and continuously adjust itself to deal with future tasks, and it has strong
generalization ability. This can provide accurate prediction guidance for the pre-
diction of epidemic prevention and control, and the effect of the real world needs to
be verified in the future.

4. Conclusion

In this paper, we propose the deep learning methods of the multi-head GRU neural
work to predict the COVID-19 pneumonia epidemic in five countries. We select the
updated daily data of overseas epidemics provided by Johns Hopkins University in
the United States, and extract the daily confirmed and death data of the United
States, Brazil, the United Kingdom, India and Russia. In terms of variable selection,
we take daily new diagnoses and deaths as input variables, and use 7-period lagged
data and weeks as independent variables, resulting in a total of 21 independent
variables. We find that the multi-head GRU model has a high degree of fit for the
epidemic situation in various countries with a good generalization effect.

To examine the effectiveness of the proposed model, we use LSTM, Transformer
and SIR models as the baseline models. The results indicate that multi-head GRU
neural network has the smallest MAE among the four models in the five countries
except India. Although the LSTM prediction model is not as good as the multi-head
GRU model, it also shows potential in predicting the novel coronavirus pneumonia
epidemic. However, for the dynamic model of traditional infectious diseases, it has
been difficult for the SIR model to meet the needs of accurately predicting the
development of the epidemic. We also use Transformer, an attention mechanism
model that is not commonly used in the novel coronavirus epidemic prediction
research, but the prediction results are not good. The role of attention mechanism
in the prediction of the novel coronavirus epidemic needs to be further verified.

In conclusion, the improved deep learning model can effectively solve the novel
coronavirus epidemic time series forecasting problem and provide good prediction
ability.
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