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Existence and Uniqueness of Smooth Solution for
a Four-waves Coupled System*
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Abstract In this paper, we consider a four-waves coupled system which de-
scribes the interaction between particles. Based on the uniform bound and
the strong convergence property in the lower order norm, local existence and
uniqueness of smooth solution are established by a limiting argument. More-
over, we show that the solution exists globally in the two-dimensional case
under certain condition on the size for L? norm of the initial data.
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1. Introduction

In this paper, we consider the Cauchy problem for a four-waves coupled system
which reads

(i(8) + vedy) + al) Ac = gnAc, (1.1)
(i(8s + vrdy) + BA) Ap = %nAR, (1.2)
(10, +7A) E = gnE (1.3)
(af—ng)n:aA(\E|2+b|AC|2+c|AR|2), (1.4)
(Ac, Ap, E,n)(0) = (ac, ag, e,n0), ne(0) = ny. (1.5)

In this system, Ac = Ay + e ?Y Ap where A is the incident laser field and Ap is
the Brillouin component, Ag is the Raman backscattered wave, E is the electronic-
plasma wave and n is the variation of density of ions. Furthermore, Ac, Ag, E and
n are functions of (z,t) € R? x R with Ac, Ag and E the vector fields such that
Ag, Ag, E: R — €9, and with n the scalar field such that n : R+ — R. In
this paper, we mainly consider the dimension d = 2,3. The coefficients «, 3, v, v¢,
VR, a, b, c and vy in the above system are real physical constants with «, 3, v > 0.
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In equation (1.1) and (1.2), y represents the second component of the variable z,
namely, z = (z1,y,x3) when d=3 and = = (z1,y) when d = 2. With this notation,
the Laplacian A is defined by

2 2 2 - 2 2
A=02 +02 402, ifd=3, A=02 +d2ifd=2.

In the following arguments of the paper, we often regard y to be x5 for simplicity.
System (1.1)-(1.5) was derived by M. Colin and T. Colin [1] which is a complete
set of Zakharov’s equations type describing laser-plasma interactions and we have
omitted the quasilinear part in this context.

Ignoring the effect of the scattering fields Ac and Apg, system (1.1)-(1.5) is
reduced to the classical Zakharov system [18]. Due to its physical importance, the
Zakharov system has been studied intensively in mathematics since the works [6,15]
and many important developments were obtained in the past decades ( [5]). Further,
omitting the term ny, the system is reduced to the cubic Schrédinger equation which
has been studied by many researchers, see for example [2,8,12,13] and the references
cited therein. For the three-waves (Ac, Agr and F) interacted system, the authors
in [9-11] studied the local well-posedness theory.

The work is concerned with the existence and uniqueness of the smooth solution
for the four-waves coupled system (1.1)-(1.5). We first introduce a vector-valued
function V to rewrite the original system (1.1)-(1.5) as a Hamilton form.

b2
(i(0h +vody) + ad) Ac = ZnAc, (1.6)
b
(i(9, + vrd,) + BA) Ap = gnAR, (1.7)
(i0; +yA)E = gnE (1.8)
Vi +02Vn+aV (|E|” + blAc|? + ¢|Ar|?) = 0, (1.10)
(AC7AR7Ean7V)(O) = (a07a’R767n05V0)' (111>

Throughout the paper, we denote by LP (Rd) the Lebesgue space equipped with
the norm

1
lullzr = (/ |u(a:)|pdx) if 1 <p< +oo
Rd
and
[u|| Lo = esssup{|u(z)|;z € R9}.

Forse R, H S(Rd) denotes the nonhomogeneous Sobolev space defined by
R = {u € SR | ully gy = [ | (14 167)° P < +oc,
where u(€) is the Fourier transform of w.

The main results of the paper are stated in the following theorems.

Theorem 1.1. Letting d = 2,3, assume that ac, ar, ¢ € H™(R?), ng, Vy €
H™ YR, m > 4 is an integer and ab > 0. Then system (1.6)-(1.11) admits a
unique solution (Ac, Agr, E,n,V) such that

Ac, Ar, E€C([0,T);H™ (RY)), n, Ve C ([0,T); H" " (RY)),
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where T depends on llacsm, lazllmn, el [nollmm-

over, the solution satisfies the conserved quantities
(Dl(t) = (1)1(0), @2(15) = (I)Q(O), @3(15) = (1)3(0),

where

v and |Vo|gm-1. More-

U(t) = 9(0),

O(t) =l Act)lf2s @2(t) = [Ar()]Z2, P3(t) = 1B,

b b
V(1) :=al|VAcliz + 8 IVARIL. + WVEIT: + —vilnllZ: + VI

4a

2 C
+ [ 00 (FlAcOF + 5 14n0Pds + ZIEOP ) ds

+ Im/ (vcayAcfc+ URayARTR)dx.
R

Theorem 1.2. In addition to the hypothesis of Theorem 1.1 with d = 2, assume

further

Hw”QL?v

lac]? <20‘—”3
cliez ab(b? + 2 4+ 1)

2ﬂ’02
2 s
< — -
HaR||L2 ab(b2 + c? + 1)
2 y1)2
2 s 2
<
||e||L2 ab(62 02 1) ||1/}||L27

1Z2

where ¥ is the ground state solution of
AY =+ =0.

Then system (1.1)-(1.5) possesses a unique global solution

(Ac, Ar, E,n) satisfying

Ac, A, E€C(RT;H™(R?), ne C(RT; H™ H(R?)).

The paper is organized as follows. In Section 2, we construct a regularized
system and give the existence and uniqueness result. In Section 3, local existence
and uniqueness theorem of smooth solution will be established. Finally, we will
consider global existence result of the solution in two-dimensional case.

2. Global solution for a regularized

system

Theorem 1.1 will be proved via a limiting argument. To this end, we first introduce
an approximated system for (1.6)-(1.11) with a regularized parameter € > 0

1AS, +ieA%AS, = —aAAS — ivc 0y A +

1A%, +ieA%AS, = —BAA% — wr0y A% +
iEf +ieA’ES = —yAE® + gnEEe,
Az(0) = ag, AR(0) = ag, E°(0) = ¢,

b? € A€

5” > (21)

%neA%, (2.2)
(2.3)
(2.4)
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where n¢ in (2.1)-(2.3) is determined through the equations
ns +V-VE =0,
VE +02Vn® = —aV (|E°|? + bJAL|? + c|A5%) (2.5)
n°(0) = ng, V°(0) = Vg.
For & > 0, we define the Fourier operator A : S'(R%) — &'(R?) by
A= (I+eA?)1

Note that for any s € R, A : H‘S(Rd) — H3+4(Rd) is a bounded operator. Also, it
is easy to see that A satisfies the following properties:

(i
(i
(i

(iv

IAf e < 1l rre, VE € R;

(Af, f) = Jpa(Af) - fda > 0;

(Af,9) = (f, Ag);

A commutes with Fourier multipliers such as A®, V, A.

)
)
)
)

These properties will be frequently used in the succeeding energy estimates.
Now the solution of (2.1)-(2.3) can be rewritten in the integral form

AS(t) = US(t)ass + / US(t — 1) f (r)dr, (2.6)
A5(t) = U5 (B)asy + / US(t — 7)f5()dr, (2.7)
EE(t) = US(t)e® + /0 US(t — 7)f5(7)dr, (2.8)

where the linear semigroups U$(t), Us(t), U5(t) are defined by

Ui (t) = exp [laAA — voADy)t],
Us(t) = exp [(1IBAA — vrADy)t],
U5 (1) = exp [y AA],

and the nonlinear terms f£(t), f5(t), f5(t) are defined by

b> be

fi = MG noAZ), J5 = —A(GnoAR), 5 = —iA(gnfEs).

Since n°® satisfies the nonlinear wave equation, then it can be expressed by( [16,
Chapter2))

sin(vstv/—A) .

°= gV —A)n§ =
n® = cos(vstv/—A)n§ + AN ng
tSin(US(t_T)\/j) €2 € |2 e (2
+/0 v/ —A A(a(|E |* +b[AG]" + c|AR] )) dr. (2.9)

The main result for (2.1)-(2.5) is stated as follows.
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Theorem 2.1. Assume that aZ,, a%, ¢ € HF(RY), n§, V§ € HFY(R?) with k >
5. Then for any given € > 0, system (2.1)-(2.5) has a unique solution Az, A%, E° €
C(R*; HE(RY)) and nf, V= € C(RT; HFH(RY)).

According to the integral system (2.6)-(2.9), the above theorem can be proved
by using the contractive mapping principle. The regularized operator eA? in (2.1)-
(2.3) plays two important roles during the proof. On one hand, it counteracts the
difficulty in the nonlinear estimates caused by different regular conditions on the
solution. On the other hand, Proposition 2.1 below yields the L> estimate which
enables the solution to be extended globally. Since the proof is standard, we omit
further details and refer to similar arguments in [7, 14].

Proposition 2.1. The solution obtained in Theorem 2.1 admits the mass conser-
vation and the energy conservation

0i(t) = 27(0), ®5(t) = 5(0), P5(t) = @53(0), We(t) = W (0),

where
(1) == AG )17 + el AAG |7,
@5(t) = | ARl7 +  |AAZ][7
O5(t) :=[|E°|13> + ¢ | AE| 3.,
b
Ve (t) == VAL |3 + B VAR|T. + YIIVE|F: + 702Hn€”L2 + 7||V6||L2

b?
+ [ 00 (GHBOF + S1AROP s + JE0) ) do
RE 2 2 2
+ Im/ (UcayAECT%+ URayA%T%)dx
R4
Proof. Multiplying both sides of (2.1)-(2.3) with AZ,, A%, and EF, respectively,

integrating the resulted equations over R? and comparing the imaginary parts of
the integral equations, we can obtain

C‘;t/ (JASJ? + 2| AAS[2)de = 0,
G | AP + 2185 )de -

dt

d [+ A" )i =0
dt ’

which gives the mass conservation. To obtain the conservation of energy, we multiply
both sides of (2.1)-(2.3) with A%, A%, and Ef, respectively, then integrate the
resulted equations over R? and compare the real parts of the equations. There hold

/ |VAG |tdx+—/ n® |Ag \tda:+21m/ veOyALAZ dr =0,  (2.10)
be
|VA 2 da + 2/ n®|AR \td:z:+21m/ VRO AR Apedr =0,  (2.11)
R4

b
E° | E%)2dx =0. 2.12
'ydt/\V |dx+2/Rdn| |7 dz =0 ( )
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Taking the inner products of either side of the first and second equations of (2.5)
with n€ and V¢, respectively, we can see that

1d
5 n®|2da — Ve.Vnidx =0,
2dt Jga Rd
(2.13)
1 d £12 2 £ € e 12 12 e 12
24t |VE|2dx + v2 Ve .Vnfdr+a nt<|E\ + b| A% +C\AR|)d:c:0.
Rd Rd Rd

(2.14)

Combining with the identities (2.10)-(2.14), we thus obtain the second conserved
law. O

3. Local existence and uniqueness

This section is devoted to proving Theorem 1.1. The main steps of the proof are
the conclusions established by Proposition 3.1 and Proposition 3.2 below.

For given initial data ac, ar, e € H™(R?) and ng, Vo € H™ 1 (R?), we choose
a%, a%, e € H*(R?) and n§, V§ € H*~1(RY) satisfying

lac —acllum — 0, [lak —arlla= — 0, [e —e[[mm — 0 (3.1)
and
Ing — nollgm-1 — 0, |V — Vollgm-—1 — 0 (3.2)

as ¢ — 0. Here k can be selected large enough, for example & > m + 10. According
to Theorem 2.1, the regularized system (2.1)-(2.5) has a unique smooth solution.
Hence, all the differential operations or integration by part appearing in Proposition
3.1 and Proposition 3.2 below are meaningful as the approximated solution is regular
enough and decays at infinity.

Proposition 3.1. Assume that (3.1) and (3.2) hold with m > 4 be an integer, then
there exist T > 0 and C > 0 such that

[ACH gm + AR gm + B g + 10 [ s + IV gy < C, V2 € [0, T,

where both C' and T are independent of €.

Proof. To make the proof clear, we only prove the case m = 4. Moreover, for sake
of simplicity, the superscript ¢ is omitted in this proof. By the mass conservation
of Proposition 2.1, we see

[Acllzz + [[Arll2 + [[EllL2 < C, t20. (3.3)

Also, it follows from (2.13) and (2.14) that

d
—@lInlZz + IVIIZ2) < CIVVIIL2(1Acllme + [ Arll a2 + 1Bl m2). (3-4)

(3.3) and (3.4) give the lowest order estimates of the solution. Now we deal with
the highest order estimates which should be treated precisely.
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Taking the inner product of (97 — v2A)n = aA (|E|2 +b|Ac]? + ¢ |AR|2) with
A2n, yields

d
a(nAntHiQ + 2| VAR|2, + 2ab/ VA|Ac]?PV Andz
R4
—|—2ac/ VA|AR|2VAndm+2a/ VAI|E|*V Andz)
R4 R4
:Zab/ VA|AC\EVAndm+2ac/ VA|AR|§VAndx+2a/ VA|E|?V Andz.
R4 Rd R

Since A, Agr and E satisfy

|Ac|f =2Im((—a(AAAc) + %A(nAC) —iwcAd,Ac) - Ac), (3.5)
B = 2Im(—1(AAE) + JA(nE) - B), (3.7)

respectively, then using identities (3.5)-(3.7), we can obtain

/ VA[|Ac|}VAndz = —2aIm | VA ((AAAc) - Ac) VAndzx
R R

+b°Im [ VA (A(rAc)-Ac) VAndx
Rd

— 2u¢e Imi/ VA (AﬁyAc TC) VAndz, (3.8)
Rd

/ VA|AR|?VAndr = —28Tm | VA((AAAR) - Ag)VAndx
R4 Rd

+belm [ VA(A(nAg) - Ar)VAndz
R4

— 2upImi VA (AayAR TR) VAndz, (3.9)
]Rd

and

/ VA|E|?VAndz = —2yIm [ VA((AAE) - E)VAndx
R4 Rd

+bIm [ VA(A(nE) - E)VAndx.
Rd

Using Holder’s inequality and Sobolev’s inequality, the terms in (3.8) are estimated
by
—2a/ VA((AAAg) - Ac)V Andx
Rd

= —Qa/ (AVA?Ag) - AcVAndx — Ga/ (AA%Ag) - VACV Andx
Rd R

d

— 604/ AVAAq- - AAcV Andzr — Qa/ AAAG - VAASV Andx
Rd R

d
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§72a/ (AVA?Ac) - AcVAndz + C||A*Ac|| . VA e VAR 12
R4

L2|

+ C[VAAc| 12 [AAc| = [[VAR| L2
< —Qa/ (AVA?Ae) - AoV Andz + Cllnllus [|Ac]. | (3.10)
R

v [ VA(A(nAg) - Ac)VAndz
Rd

=b> [ VAA(nAg) - AcVAndr +3b* | AA(nAc) - VAoV Ands
R4 Rd
+3b% | VA(nAc) - AAcVAndx + b? / A(nAc)VAACV Andx
R4 Rd
< CIVAMnAC)|r2llAcllL=IVAn| Lz + CIAMAC) |12l VAc| L= [V An 2
+ C|V(nAc)|l2 [AAclL=|VAn| 2 + CllnAc| 4| VAAC]| L4 [ VAR 2

< ClInllsllAcls, (3.11)

and

2vcImi [ VA (Ad,Ac - Ac) VAndx
Rd

From the bounds (3.10)-(3.12), we get

< Cllnllms |l Ac |3 (3.12)

2ab [ VAIACEYAnds <C (Inlns |4l + Il |Ace)
R

—4abaTm | (AVAZ?Ag) - AoV Andz. (3.13)
Rd

Note that the last term in (3.13) contains the fifth order derivative for Ac. For the
terms in (3.9) and (3.10), we apply similar arguments to obtain

2ac | VARV Ands <C ([l | Anl -+ Inle | Anl)

—4dacfIm | (AVA?AR) - ArVAndz, (3.14)
Rd

2a / VA|B[VAndz <C (|Inllas |1l + Inlls I1E11)
—4ayIm [ (AVAZ?E) - EVAndz. (3.15)
Rd

To cancel the integral terms in (3.13)-(3.15), we first take the fourth order energy
estimate for the equation

2
iACf, = 7OLAAAC + %A(TLAc) - ichayAc
to get

d _
%HAQACH%z =—b Im/d AVA (nAc) VA? Acdx
R
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=b’Im / AVA (nAc) VA? Acdx
Rd

=b’Im | A (AcVAnR) VA?Acdz+3b°Im | A(VAcAn)VA®Acdx
Rd R4

+ 36 Tm A(AAcvn)VA2Acdx+b21m A(nAAG) VA2 Acda
]Rd

<Clnlus ||AC\|H4 + 4% Tm /R AACVAR)VA? Acda. (3.16)
In the same way, we can obtain
%||A2ARH%2 <Clnllus | ArI%: + bcIm/Rd AARVAR VA2 Apdade,  (3.17)
and
%\WEH%Q <C|nllgs |E|3: 4+ bIm /]R A(EVAn)VA?Edz. (3.18)

Combining (3.13)-(3.18) gives

4ac 4ab’

4a
(IIAntIILz +0Z||[VAR|72 + 7”A2ACHL2 +— W

1A% A}, + = IA%E]
+ 2ab /Rd VA|Ac)? VAndz + 2ac /Rd VA |AR| VAndz
—|—2a/Rd VA|E|*V Andz)

<C (1+ [nl3s + [Ac s + ARl + 1E)",

namely,

b bv? 2
L lAn3s + 22 VAR, + allAAcls + 8| A%Ax|2, +A1A%E )R

t
2
§c+c/0 (1+ Il + 1 Ac 2 + [ ArlZs + | BN dr

2
L / VA |Ac|? VAndz L ’/ VA|Ag|* VAndz
2 Rd 2 Rd
+9 VAI|E|*V Andx
2| Jra
t
2
§C+O/0 (L4 InllFe + | Ac|3a + ARl % + |E||F) " dr + I (3.19)
Note that
’ 2 be 2 b 2
=— | [ VA|Ac]’VAn|+ = | [ VA|Ag]*VAn|+ = |[ VAIE*VAn
Rd 2 Rd 2 Rd

2 4 (v 2012 b*c? 2012 b? 2012
<Bellnllys + = ( IVAIACPIZ: + - IVAIARP 3 + TIVAIER|E: )
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Using Hélder’s inequality and Sobolev’s inequality, it is easy to see
d
£||VA|AC‘2H%2
:2/ VA|AcPVA|Ac|?dx
R4

b _
=4 VA Im((—a(AAAc) + §A(TLAO) — iAUcayAc) . Ac) . VA‘A0|2d$
R

<C (lAc s + lInllz= | Ac3s) -

The estimates for |[VA|Ag[?||2; and |[VA|E[?||2. can be treated similarly. Inserting
these estimates into (3.19) and using also (3.3)-(3.4), we actually obtain

1Az + 1ARN s + 1B + Il 7 + 1V s

t
3
<C+ 0/0 (1 + 1Al + AR + 1B + InlZs)" dr. (3.20)

Hence, it follows from (3.20) that there exist C, T' > 0 (independent of ¢) such that
1AcIzrs + | ARG + Bz + Inllzs + 1V I7 < C, Wt € [0,T].

This ends the proof of Proposition 3.1. O
Proposition 3.2. Under the same assumptions as Proposition 3.1, for 0 < &’ < e,

there exists a constant C > 0 independent of € and €' such that

mae (|45 = AZ e + [ Afy — Als + | B = B ) < O¥ 4 CL - (3:21)
€10,

max (||n —n® ||z + |VE — VE||g) < Cet + CI5°, (3.22)
t€[0,T)

where T is obtained by Proposition 3.1, and IS’E/, Jg’gl are defined by
’ ’ ’ ’
I5° = llag — aglluz + llak — akllmz + [le® — € || m2,
’ ’ ’
Jo° = ng =g llm +11V5 = V5 [l

Proof. In this proof, we recover the superscript ¢ and also denote A = A =
(1 +eA?)~! to emphasize the reliance on . To prove the property of Cauchy
sequence for the approximate solution, we first write out the equation for n® — n®
and V& — V¢ . Indeed, from (2.5), one has
(n®=n ) +V-(VE=V) =0,
(VS = V'), + 02V (n° - n¥) = —aV(| ¥ - |2 (3.23)
+BJAZI” = BAG + e AR — | A%]).

Performing the energy estimate for (3.23) at H! level and using the uniform bound
of Proposition 3.1, we have

In® = [l + 1V = V' l30)
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<C(IAG — Azl + A% — Aglluz + 1B° = B )|V =V |l (3.24)

Next we turn to deal with the estimate for A% — AEC: whose equation is given by
i(AS — AD), + a(A° — A¥)AAS + aA® A(AS — 4Z)
+ive(A° — A°)D, AL + ivo AT 8, (AL — AZ)
b? e e e pe b? e'[(meE e\ ge e’ pe e’
ZE(A —A®)(n°Ag) + EA [(n® —n® )AL +n® (A — Ag)].

(3.25)
Note that

1 1

el¢l*
1+e/feft

1+elé|t = (1 +eE1M) (A +elé]) < el

where we have used Young’s inequality to get

4
clel’ = (eiehetel < (B 4 Dt < (1 4 et

Hence, we have , )
I(A® =A%) fllas < el fllmesr
Now we take L? estimate for the equation (3.25) to get
1d /
324z — AZI3
1 1 ’
<C(et||Agllas +etln" Azl u) A — Al

’ ’ ’ ’
+ C(|ln° =n® [|L2|Agl L + |27 |z~ | AT — AcllL2)l|Ae — AT L2

<Cet +C(|In° —n® |12 + | Az — AZ | r2) | AG — AZ |12 (3.26)

Taking the derivative of equation (3.25) with respect to ¢ and doing L? energy
estimate for Az, — Ag,, then we can obtain

1d ,
5o l4E, — AZ 3

1 1 1 ’
SC(ET|AAG L2 +eT([ VA ll> +eT[(n°AT) il a) | Acy — Al 2

+CO(|Inf — 0§ (L2l Al + In® — ¥ |l | A, )1 AS, — AZ, 22
+C(In5 N | A8 — AG | + [0 |l AS, — AZyllz2) | AS, — AT, | re
<Cet + C(|VE = V|12 + [In° — 0 | m0) | 4G — AZ 22
+C(AG — AS | + 1148, — AZ |22l AZ, — AG 22 (3.27)

Remarked in (3.27), the problematic term is
I:=alm [ (A°—AT)AAL, - (A%, — AZ,)dx,
Rd
in which AAg, contains a fourth order term. This term can be estimated as

1] < ClI(A° = A)VAZ, | 12|V (AZ, — AZe) |12
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1 15 15 E/
< Cer||AAG 2 IV (AT — Agy)ll 2
1
< Cex.
In addition, it is obvious that (see (3.25))
| AAG — AD) 2 <Cet + || A, — AZyllze + ClIn® — |12
+ )| A8 = AZllze + Cl19, (AL — ALl e,
and by interpolating for the last term, we get

’ 1 ’ ’ ’
IA(AG — AS)llL2 <Ced + C||Ag, — Agill2 + Clin® —n® |12 + Cl|AG — Ag|| 2.
(3.28)

Similar estimates as (3.26)-(3.28) hold for A%, — A%, and E° — E<', namely, we have

1d ’ 1 ’ ’ ’
34k~ Az l72 < Cet +CO(|n° —n® |2 + |1A% — AR l2) 1A% — AR L2,
(3.29)
1d € e 12 1 € e € e € e
5%”141% — Al £ Ced + O([|[VE = VE [z + [|n° —n® 1) [[ ARy — ARell L2
+ C(|A% — ARllm + [[A%: — ARellz2) | AR — ARellz2,
(3.30)
IA(AR = AR)|l12 <Cet +C)| ARy — ARyllzz + Clln® — 0|2 + C|| AR — AR 12,
(3.31)
and
ld 5 e 12 1 5 e’ 3 e’ 5 e’
SglE — E° L2 < Cet + C(lIn® = n |2 + [|B° = B |[r2) [ B = B |2,
(3.32)
l1d 5 e 12 1 € e’ € g’ 3 g’
SglBe — B |72 < Cet + C(IVE = VE Iz +[In® —n® )| BY — B |2

+ C(|1E® — B || + || B — B || 2| Bf — Ef || 2, (3.33)
IA(ES — B¥)|| 12 <Cet + C||Ef — Ef [|12 + Cn® — n®|| 2 + C||ES — E¥'|| 2.

(3.34)

Finally, collecting the estimates (3.24) and (3.26)-(3.31) together, we thus arrive

at d
ZF() < CEt +F(1)

with

F(t) :=[|Az — AZ|T + A% — ARlZ: + | E — E7 |72 + | AZ, — A%yl

+ A%y — ARllze + I1BF = Ef |22 + In° = n® |30 + Ve =V |70

Therefore, the desired bounds follow by Gronwall’s inequality. O

Once Proposition 3.1 and Proposition 3.2 are proved, the existence part of The-
orem 1.1 is then established by a limiting argument, while the uniqueness part can
be proved by using the similar strategy as Proposition 3.2. For simplicity, we thus
omit further details. This completes the proof of Theorem 1.1.
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4. Global smooth solution for d = 2

In this section, we show that the smooth solution exists globally in the two-dimensio-
nal case provided that the L? norms of the initial data ac, agr, e are less than
certain given constants. To this end, we introduce the following Gagliardo-Nirenberg
inequality with the sharp constant ( [17])

£ s (ee) < ClFIZ2@e) IV FlIZ2(Re): (4.1)
where C = W and ¢ is the ground state solution of Ay — 1) + 93 = 0. Also,
L2 (R2)
one needs the following logarithmic embedding inequality ( [3,4])
Jul :
u
fullzme) < Clulmee (141 (14 (52
[[ull i (r2)

Proof of Theorem 1.2. Let T be the maximal existence time of the solution
obtained by Theorem 1.1. Then in order to prove Theorem 1.2, we only need to
show for every t € [0,7*) there holds

[Ac®)llam + [ AR@) | am + 1E@ [ am + @) zm—1 + [l | -2 < C. (4.3)
Firstly, the mass conservation law gives
[Acllez + [|Arlz2 + |El 2 = llacllz2 + larllL2 + €]z < C. (4.4)

Meanwhile, the energy conservation law (see Theorem 1.1) implies
2 2 2 b ooy 12 b 2
alVAcz: + BIVARIlze +7IIVE|L: + vilinllze + VL

5 [ aianRas| + |5 [ wwipoPas

2

<O+ |5 [ nlAc(ds| +

+ -

/ vcayAcfc

R2

b4 + b262 + b2
16

1
t e (vellAclliz +vrllArll7z) +e2 (IVAcli: + IVARIZ2)
1

2
<O+ e (lacllZ=IVAclZ: + llarlZ=IVARIT2 + llel 721 VE]Z2)
L2
RUR R Ghs
16

/ vRayARfRdx
R2

1
<[(0)] + erllnlze + o (lAclizs + AR s + 1E]72)

C
exlnlz. + 1, e (IVAc|i- + IVARIZ:) (4.5)

where we have used (4.1) in the last step. If the sizes of ||ac|| Lz, |lar|| Lz and ||e]| Lz
satisfy

ab(b> +c® +1)
202[|9]|7

ab(b? +c® +1)
202[[9]|7

lac [,

a7,

8>
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ab(b?> +c® + 1)

el
270,
2 2
then we can take g1 < m (close to M) and &9 sufficiently small.

Thus, from (4.4) and (4.5), we can get
[Acllar + [ Arllmr + 1Bl mr + [Inll2 + IVl < C. (4.6)

Secondly, we apply energy estimate for equation (1.4) with n; to obtain

d
§(Ilntlli2 + 03| VnlZ2) :2a/ (b A A + e A|AR[* + ny A BJ?)das
R2

§4ab/ Ine| (|Ac| - [AAc| + |VAC\2) dx
R2
+4ac/ Ine| (|Ag| - |AAR|+ |VAC|2) dz
]R2

+4a/ Ine| (|E| - |AE| + |VE?) do
R2

<Clnel > (1Ac||L=|AA| L2 + [VAc[74)
+Cllnell > (IARl L= | AAR| L2 + [ VAR|4)
+Clnell 2 (IEL=|AE| L2 + | VE[34)
<Clnell 2 IAAC] 22 (| Ac s + 1)
+Clnell 2 1AAR| L2 (| ARz~ + 1)
+C nell 2 |AE|| 2 (| Ell = +1). (4.7)

Notice that equation (1.1) implies
[AAc] L2 < C ([Actl Lz + IInllzs [ Ac] s + 10, Ac]l 2)
< 0 (Ictle +Inl L I9nl Al +IVACl ) (48)
< C(lActllpz + Vallz2 +1).
Similarly, we can deduce from (1.2) and (1.3) that

1AARNz: < C (1Amdl e + IVl +1), [AEl2 < C (1Bl o + IVnll g2 +1).

(4.9)
Now differentiating (1.1)-(1.3) with respect to t gives

b2
(i(0r +vc0y) + alA) Acy — E(ntAc +nAct) =0, (4.10)

be
(i(0r + vROy) + BA) ARy — E(ntAR +nApg:) =0, (4.11)

b

(0: +7A) By — 5 (n,E +nEy) =0, (4.12)

from which we can obtain

d
T (HAciliz + [ Arlzz + [ B2l72)
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<Cllnell 2 (1Acell 2 Aol + | ARl 2 ARl + 1Bl 2 [[Ell~) . (4.13)
Letting
Gr(t) = llndllZ2 +vZ[VnllZe + | Acllze + | Ardll72 + 1Bl + 1,

then it can be obtained by combining (4.6)-(4.9) and (4.13) that

d
ZG1(0) < CGi(#) (1+ [ Acli= + [ ArllZ~ + | BlZ~)

<CGL()(1+In(1+ |AAc]r2) +In(1+ |AAR|2) +In(1+ ||AE|12))
< CGyi(t) (1+1nGi(t)),

where we have used (4.2) in the second step. By Gronwall’s inequality, there holds
G1(t) < C which implies

[AcO)lmz + AR 2 + 1E@) |2 + vl + el 2 < €, VE€[0,T7).
(4.14)
Next, we will show

[Ac®)llue + AR rz + [E@) gz + [n@)][g2 + [nellgn <€, VE€[0,T7).
(4.15)
Since the L estimates of Ac, Ar and E have already been established, it is not
hard to obtain the bound (4.15). Indeed, from the equation (1.4), we have

d
o (I9nelza + o2l an]3, )
:2a/(—Ant) A (IBP + Al + ¢l Anl) d

gza/Wnt\ (IVAIE| +b|VAIACP| + ¢|VA|AR[]) da

<CVnull: ([[VAIEP| 2 + [VAIACP 12 + IVAIAR] £2)
<Cl[Vnill . (IVAE|| 2 + [IVAAcl 22 + [[VAAR[ L2 + 1), (4.16)

and by (1.1)-(1.3) and (4.14),

IVAAc| L2 < C(IVActll 2 + IVl 2| Acl e + [0l La[VAcll s+ [V (OyAc) | 12)
< C([IVAclz + 1), (4.17)

and
IVAAR|: < C (VAR 2 + 1), [VAE|| < C(IVE||:+1).  (4.18)

On the other hand, it follows from (4.10)-(4.12) that

d
= (IV A + 19 ARel2: + IV B )
<C (IVAcls + IV Apll3e + [ Vnel3 + IVEI: + [An)3: +1).  (419)
Let

Ga(t) = | Vrelzz + o2 An|Fa + [VAcllze + VAR 72 + I VE |72 + 1.
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Now combining the estimates (4.16)-(4.19) gives

d
—Go(t) < CGy(t
dt 2( ) = 2( )7
which proves (4.15) as desired.
Finally, we can apply similar strategy to obtain (4.3). Since the proof is similar,
we omit further details. This ends the proof of Theorem 1.2. O
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