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Abstract. In this paper, we explore the Hamilton structures in non-equilibrium
chemical reactions, which is modeled as a random time-changed Poisson pro-
cess on countable states. Transition paths between multiple steady states in
a chemical reaction is a rare event that can be characterized via the large devia-
tion principle. Compared with the Hamilton principle, we use the Maupertuis
principle to compute the transition paths and the associated energy barriers,
i.e., the rate function in the large deviation principle. Based on the correspond-
ing stationary Hamilton-Jacobi equation, we select a proper stationary viscosity
solution, which in general is not unique, to explicitly compute the energy bar-
riers and the associated optimal control that realizes a transition path. Using
one-dimensional example, we characterize the energy barriers for chemical re-
actions using a geometric quantity in the phase plane. We also compare the
reaction barriers with the one in the diffusion approximation and show that
the global energy landscape and energy barriers for non-equilibrium chemical
reactions are quite different with its diffusion approximation.
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1 Introduction

Chemical reactions are very important for living matters and also have many in-
dustry applications [1, 20, 31, 35, 36]. For various chemical reactions, the most
important questions are how the reactions happen along a transition path and
how fast they happen. Particularly, non-equilibrium chemical reactions have
multiple steady chemical states and the global energy landscape is non-convex
and unknown. Compared with equilibrium reactions, the most distinguished
feature of non-equilibrium chemical reactions is the positive entropy production
rate [30, 32], which can be used as the characterization of living cells. For those
non-equilibrium chemical reactions, the above two questions are not only fun-
damental in the study of non-equilibrium physical processes [10, 30], but also
mathematically challenging [2, 11].

A convenient stochastic model to describe a chemical reaction is a random
time-changed Poisson process on countable states (see (2.3)) [1, 17, 25]. From this
continuous time discrete state Markov process, there are many quantitative prop-
erties that can be characterized via the probability limiting theorems for the chem-
ical reaction. For instance, the reaction rate equation, which was proposed in 1864
by Guldberg and Waage, can be viewed as an ensemble path following the law of
large numbers. More importantly, the transitions from one stable chemical state
to another stable chemical state can be viewed as rare events in the large devia-
tion regime. Rare events happen with very small probability, but they are usually
the most important events, for instance the transitions described above.

Based on the stochastic model for chemical reactions, one can further assume
the container where chemical reaction happens is very large V=1/h≫1. Thus in
a macroscopic scale, we will give answers for how to find transition paths, how to
compute the energy barrier for a transition path to happen, and what is the tran-
sition rate. First, to estimate the very small probability for transitions to happen,
we explore the Hamiltonian structures in chemical reactions. Via WKB reformu-
lations [12, 24], the Kolmogorov forward equation becomes a discrete Hamilton-
Jacobi equation (HJE). If taking V→+∞, then the limiting HJE has an associated
Hamiltonian H(p,x) (see (2.8)). The Hamilton dynamics in terms of this Hamil-
tonian can be used to describe some least action trajectories in the state space [6].
Moreover, the reaction rate Eq. (2.2) can be viewed as a special trajectory for this
Hamilton dynamics p≡ 0. It has been proved that the rate function for the large
deviation principle at fixed time of the chemical reactions can be computed via
the dynamics solution to the corresponding HJE [16].

However, whether one should use the least action principle with a fixed termi-
nal time (the Hamilton principle) or the least action principle with an undefined
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terminal time (the Maupertuis principle) is an arguable question. In Section 3,
we review and compare the Hamilton principle and the Maupertuis principle us-
ing one-dimensional examples. We numerically show the monotonicity for action
cost against terminal time and action cost against initial momentum. The least ac-
tion cost with undefined terminal time is indeed smaller than the one with fixed
terminal time. Thus we conclude that computing the transition path in chemical
reactions associated with the minimum energy cost should use the Maupertuis
principle with the critical energy level zero. The critical energy level is zero be-
cause of the special properties of the Hamiltonians for drift-diffusion processes
and chemical reaction processes (see Section 3.1). Furthermore, numerical simu-
lations in Section 3.2 show a downhill process in a drift-diffusion process with no
control admits zero cost; however, one in classical mechanics dynamics always
requires an action cost strictly larger than zero.

As we have seen, the least action cost function in the infinite time horizon can
be used to compute the energy barrier in chemical reactions. It is well known
that this cost function solves a stationary HJE. However, it is challenging to se-
lect a meaningful stationary solution to the corresponding HJE, because the solu-
tions are not unique [4, 15, 18]. In Section 4, we observe that a good candidate as
a selected stationary solution shall also serve as a global energy landscape of the
Hamilton dynamics of the chemical reactions. This energy landscape is extremely
important, particularly for non-equilibrium chemical reactions. One reason is
that it can be used to compute the energy barrier of a chemical reaction, and the
other reason is that we expect this energy landscape to be also the rate function for
the large deviation principle of invariant measures for chemical reactions, which
captures all the asymptotic behaviors nearby steady states in a chemical reaction.
However, the later observation is only done via numerical experiments, since
the invariant measures for non-equilibrium reaction is unknown, and the large
deviation principle is still an open question. In Theorem 4.1, we use the maxi-
mal Lipschitz viscosity solution starting from a stable steady solution to compute
the uphill transition path and the associated the least action cost from that sta-
ble states to any other points. Meanwhile, the explicit global energy landscape is
found for the Schlögl catalysis model [34], which gives a gradient flow structure
with respect to a double well potential. Moreover, numerical simulations show
that in Schlögl catalysis model the least action cost along a downhill path admits
zero action cost; however, the least action cost along an uphill path always admits
an action cost strictly larger than zero.

Diffusion approximation for chemical reactions was originally studied by the
celebrated work of Kramer [23], in which the transition rate was computed via
the large deviation principle for a drift-diffusion approximation (see also [5]). We



248 Y. Gao and Y. Zhou / Commun. Math. Anal. Appl., 2 (2023), pp. 245-288

also compare the chemical reactions with its diffusion approximation that shares
the same reaction rate equation. However, both the explicit formulas and the ge-
ometric interpretations for the energy barrier of the transition paths connecting
two states are different: Fig. 16 plot (c) shows the transition rates are not consis-
tent, and Fig. 16 plot (d) shows the least action costs differ by more than ten times.
This shows that the diffusion approximation is not an accurate model when com-
puting the energy barrier for chemical reactions, particularly for events in the
large deviation regime.

Although numerical methods for simulating transition paths and approximat-
ing the associated minimum energy barrier are not our focuses, we refer to [9,28]
for the abstract transition path theory and to [7,8,13,19,27,33] for numerical meth-
ods for constructing a global energy landscape and the transition paths. Instead
of constructing a diffusion approximation or finding an optimal control directly
for the jump processes, our method is to first find the selected stationary solu-
tion ψ(x) to the limiting HJE, then we use it to construct an exact optimal control
p∗(x)=∇ψ(x∗) in computing a transition path and an energy barrier.

The remaining contents of this paper are organized as follows. In Section 2,
we will describe some preliminary results including the stochastic model and its
Hamilton structure induced by WKB expansion. In Section 3, we compare the
Hamilton principle and the Maupertuis principle the for classical mechanics and
the Hamilton dynamics for the diffusion process. In Section 4, we compute the
transition path, the energy barrier, and the transition time for chemical reactions.
We also compute these for the diffusion approximation of the chemical reactions.
At last we give conclusions in Section 5, followed by an Appendix A for elemen-
tary proofs of lemmas.

2 The Hamilton structure in chemical reactions

In this section, we first review the stochastic model for chemical reactions and
derive the associated HJE via the WKB expansion. The dynamics solution to the
dynamics HJE is the rate function in the large deviation principle for fixed time
while the large deviation principle for the invariant measure of the chemical re-
action is formally related to one stationary solution to HJE, in which the rigorous
proof is still open.

2.1 Review of reaction rate equation and the stochastic modeling

We first review the chemical reactions for n species Xi(t), i = 1,.. .,n, happening



Y. Gao and Y. Zhou / Commun. Math. Anal. Appl., 2 (2023), pp. 245-288 249

in a large container characterized by a size 1/h≫1. Assume there are totally M
reactions described by the chemical reaction equation

n

∑
ℓ=1

ν+jℓXℓ

kj
+

−−⇀↽−−
kj

−

n

∑
ℓ=1

ν−jℓXℓ, j=1,.. .,M. (2.1)

Here k±j ≥0 is the reaction rate for the forward and backward j-th reaction. From

now on, the net changes for the molecular numbers of species for the j-th reaction
is denoted as~νj=~ν−j −~ν+j .

It is well known that the reaction rate equation for the rate of change of the
concentration ~x=(xℓ)ℓ=1:n of each species Xℓ is proposed by Guldberg and Waage
in 1864

d

dt
~x=

M

∑
j=1

~νj

(

Φ+
j (~x)−Φ−

j (~x)
)

. (2.2)

Here the reaction rate satisfies the law of mass action (LMA)

Φ±
j (~x)= k±j

n

∏
ℓ=1

x
ν±jℓ
ℓ

.

However, for a general reaction rate equation, without any gradient flow struc-
ture, it is hard to predict the dynamics, the non-equilibrium steady states, the
stability and so on. While the more realistic and difficult goals are to find the
reaction rates, the transition path and the energy barriers needed for a chemical
reaction system. All these questions require the discovery of more mathematical
structures from the chemical reactions.

One convenient way to model chemical reactions is using a stochastic count-
ing process. Consider a continuous time Markov process on countable states that
counts the number of molecular species Xi(t), i=1,.. . ,n for chemical reactions in
a container with typical size 1/h. The rescaled process Xh(t)=hX(t) satisfies

Xh(t)=Xh(0)+
M

∑
j=1

~νjh

(

Y+
j

(

1

h

∫ t

0
Φ+

j

(

Xh(s)
)

ds

)

−Y−
j

(

1

h

∫ t

0
Φ−

j

(

Xh(s)
)

ds

)

)

, (2.3)

where Y±
j (t) are i.i.d. unit rate Poisson processes.

By the martingale property of Poisson process, one can derive the chemical

master equation, c.f. [14]. For ~xi∈Ωh :={~xi =~ih,~i∈Z
n}
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d

dt
ph(~xi,t)=

1

h

M

∑
j=1,

~xi−~νjh≥0

(

Φ+
j (~xi−~νjh)ph(~xi−~νjh,t)−Φ−

j (~xi)ph(~xi,t)
)

+
1

h

M

∑
j=1,

~xi+~νjh≥0

(

Φ−
j (~xi+~νjh)ph(~xi+~νjh,t)−Φ+

j (~xi)ph(~xi,t)
)

for ~xi ∈Ω+
h .

Without loss of generality, one can identify the backward reaction as a new
reaction with a new index and a new reaction vector. Denote

ρh
k =ρh(~xk,t), f h

k = f h(~xk),

where ~xk =~xi+~νjh,

Qh
ki := ∑

j:~xk=~xi+~νjh

1

h
Φj(~xi+~νjh), Qh

ii :=−∑
k

Qh
ik

for i=1,.. .,n, k=1,.. .,n. Then the master equation can be rewritten symbolically
using the Q-matrix

d

dt
ph

i =
n

∑
k=1

Qh
ki p

h
k =

n

∑
k=1

(

Qh
ki p

h
k−Qh

ikph
i

)

, (2.4)

where one can redefine Qh
ii=−∑

n
k=1 Qh

ik to ensure the row sum zero condition.
On the other hand, let f h∈Cb(Ωh), one can also derive the backward equation

for f h
i

d

dt
f h
i =

n

∑
k=1

Qh
ik

(

f h
k − f h

i

)

=
n

∑
k=1,k 6=i

Qh
ik

(

f h
k − f h

i

)

. (2.5)

2.2 WKB expansion and the limiting HJE for the chemical

reaction compared with diffusion process

To study the quantitative properties, particularly the reaction rates, the transition
path, and the energy barriers needed for a chemical reaction system, one need to
estimate the small probability ph(~xi) at an unlikely state ~xi. This unlikely state
can be a saddle point or a transition state in the chemical reaction.

Thus we use a WKB reformulation (a change of variable)

ph(~xi)= e−
ψh

i
h (2.6)
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to derive the dynamics for ψh
i =ψh(~xi). Plugging this into the forward Eq. (2.4),

we obtain

∂tψ
h(~xi)=−he

ψh (~xi,t)
h Q∗

h e−
ψh(~xi,t)

h =:−H∗
h (ψ

h),

where

H∗
h (ψ

h) :=∑
j

Φj(~xi−~νjh)e
ψh(~xi)−ψh(~xi−~νjh)

h −Φj(~xi).

One can do exactly the same WKB reformulation

f h(~xi)= e
uh

i
h (2.7)

with uh
i =uh(~xi) for the backward Eq. (2.5). We obtain

∂tuh(~xi,t)=he−
uh(~xi,t)

h Qhe
uh(~xi,t)

h =: Hh(uh),

where the discrete Hamiltonian is

Hh

(

~xi,uh(~xi),uh

)

:=
M

∑
j=1

Φj(~xi)

(

e
uh(~xi+~νjh)−uh(~xi)

h −1

)

.

2.2.1 Limiting Hamiltonian and HJE

When one takes the noise level h→0, then one can formally obtain a macroscopic
HJE in the continuum state space. The rigorous limit from the solution to the
discrete HJE to the limiting HJE implies the large deviation principle at various
levels, which will be explained in the next section.

First, as h→ 0, we assume ~xi →~x. Then formally taking limit in the discrete
Hamiltonian H∗

h implies the macroscopic Hamiltonian for chemical reactions

H(~p,~x) :=
M

∑
j=1

Φj(~x)
(

e~νj·~p−1
)

(2.8)

and the corresponding HJE on continuous state space

∂tψ(~x,t)=−H
(

∇ψ(~x),~x
)

. (2.9)

Second, with exactly the same procedure and the same Hamiltonian, as h→0, the
discrete HJE for the backward equation becomes

∂tu(~x,t)=H
(

∇u(~x),~x
)

. (2.10)

From now on, we drop the vector notation and replace ~x,~p by x,p if there is no
confusion.
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2.2.2 Compared with the HJE for drift-diffusion process

As a comparison, consider the Langevin dynamics

dXt =b(Xt)dt+
√

2εdBt, (2.11)

where Bt is n-dimensional Brownian motion. We do the same WKB reformulation
ρ(x,t)=e−ψ(x,t)/ε in the forward equation for the Langevin dynamics (also known
as the drift-diffusion process)

∂tρ+∇·(ρb)= ε∆ρ. (2.12)

The resulting ε-HJE is given by

∂tψ= ε(∇·b+∆ψ)−∇ψ·(b+∇ψ). (2.13)

Denote the Hamiltonian for drift-diffusion process as

H(p,x) := p·(p+b). (2.14)

Then we have formally a limiting HJE as ε→0

∂tψ(x,t)+H
(

∇ψ(x,t),x
)

=0. (2.15)

Similarly, in the forward equation for a drift-diffusion process

∂t f −b·∇ f = ε∆ f , (2.16)

the WKB reformulation is u= e f /ε. The resulting ε-HJE is given by

∂tu(x,t)=H
(

∇u(x,t),x
)

+ε∆u(x,t). (2.17)

Taking ε→0, we formally obtain the same HJE with only a sign difference

∂tu(x,t)−H
(

∇u(x,t),x
)

=0. (2.18)

2.3 The large deviation rate function derived from dynamic/

stationary HJE

The above WKB expansion for the time marginal probability density function
ρ(x,t) gives a formal estimate on the smallness of the time marginal probability
density. More explicitly, the dynamic solution ψ(x,t) to the HJE (2.9) gives the
exponential rate estimate for the time marginal probability density ρ(x,t).

However, the rigorous justification for the large deviation rate function for
process Xh at fixed time t needs to be proved by the inverse Varadhan’s lemma [3].
In detail,
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(i) one needs to prove the Varadhan’s nonlinear semigroup

uh(xi,t)=hlog f h(xi,t)=hlogE
xi
(

f0(X
h
t )
)

=hlogE
xi

(

e
u0(Xh

t )

h

)

=: (Stu0)(xi) (2.19)

converges to the viscosity solution of the dynamic HJE (2.10). Here f0 is the
initial condition for the backward Eq. (2.5) and u0 is the initial condition for
the HJE (2.10).

(ii) One needs to prove the tightness of Xh at fixed time t.

In (i), notice the Lax-Oleinik semigroup representation for the viscosity solu-
tion to (2.10) is

u(x,t)=sup
y

(

u0(y)− J(y;x,t)
)

,

J(y;x,t) := inf
γ(0)=x,
γ(t)=y

∫ t

0
L
(

γ̇(s),γ(s)
)

ds,
(2.20)

where L(s,x) is the convex conjugate of H(p,x) in terms of p. Then the conver-
gence of limh→0uh =u gives the variational characterization for the rate function
J(y;x,t), i.e., Varadhan’s lemma

lim
h→0

hlogE
xi

(

e
u0(Xh

t )

h

)

=sup
y

(

u0(y)− J(y;x,t)
)

. (2.21)

We refer to [16] for the detailed proof of the tightness and the convergence of
limh→0uh =u via the method of monotone schemes.

If one considers the long time behavior of HJE (2.10), then the stationary solu-
tion u∗(x) as the large time limit of u(x,t) will not be unique because in general,
the stationary HJE

H
(

∇u(x),x
)

=0 (2.22)

does not satisfy comparison principle. For instance, the Mane potential defined as

J(y;x) := inf
t≥0

inf
γ(0)=x,
γ(t)=y

∫ t

0
L
(

γ̇(s),γ(s)
)

ds (2.23)

serves as one viscosity solution to the stationary HJE (2.22). On the other hand,
J(y;x)+C for any constant C are also viscosity solutions to (2.22). How to se-
lect a meaningful stationary viscosity solution to (2.22) is a long standing open
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question. We refer to [4, 18, 21] for the vanishing discount limit method and refer
to [15] for the selection principle using the large deviation principle for the in-
variant measures to the underlying stochastic process, i.e., drift-diffusion process
or the chemical reaction processes.

Using the large deviation principle for invariant measures as a selection prin-
ciple for the stationary HJE has many advantages. First, the corresponding rate
function gives a selected meaningful stationary viscosity solution. Second, the ra-
te function in the large deviation principle for invariant measures can capture all
the asymptotic behaviors of the original (stochastic) dynamics and thus serve as a
global energy landscape of the original dynamics. Third, this energy landscape is
extremely important, particularly for non-equilibrium chemical reactions, for the
energy barrier and transition rate estimates in the transition path problem. These
will be explained in detail with explicit one-dimensional examples.

2.4 The Hamilton structure and the implied RRE for the zero

noise limit

With the Hamiltonian for the drift-diffusion process and the chemical reactions,
we consider the Hamilton dynamics

ẋ=∇pH(p,x), ṗ=−∇x H(p,x). (2.24)

It is well known that for any least action problem for fixed t, the least action curve
connecting xA to y such that

J
(

y;xA,t
)

:= inf
γ(0)=xA,
γ(T)=y

∫ T

0
L
(

γ̇(t),γ(t)
)

dt

solves the Hamilton dynamics (2.24) with p=∂L/∂s.
We then observe an important property that H(0,x)=0 for both Hamiltonians

(2.14) and (2.8). This property immediately implies that

L(s,x)=sup
p

(

s·p−H(p,x)
)

= s·p∗−H(p∗,x)≥0 with s=∂pH(p∗,x), (2.25)

and the equality holds if and only if p∗=0 because L(s,x) is convex with respect
to s.

Therefore, we can conclude that for Hamiltonians (2.14) and (2.8), the zero-
cost path is only achieved at

ẋ(t)=∂p H(0,x), p(t)≡0. (2.26)

Using this Hamilton structure, the RRE (2.2) can be recast in terms of the Hamil-
tonian (2.8) for chemical reaction as
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ẋ(t)=∂p H(0,x). (2.27)

Notice the corresponding Hamiltonian along the zero-cost path is always zero

H
(

p(t),x(t)
)

≡H
(

0,x(t)
)

=0. (2.28)

We will refer this path as zero-cost path or downhill path or the RRE path. We
also refer to [14] for the statement that this zero-cost path satisfies the law of large
numbers for the chemical reaction process Xh.

On the other hand, when p 6=0, there is also a least action path which has a con-
stant zero Hamiltonian but the action cost is larger than zero. We will refer this
non-zero cost path as an uphill path or the transition path in the large deviation
regime. There are in general two ways to find this path:

(i) To solve the Hamilton dynamics with specific initial and ending points.

(ii) To find the PDE solutions to the corresponding dynamic/stationary HJE.

There are some delicate choices on the two methods for different problems. In
Section 3, by comparing mechanic Hamiltonian and the Hamiltonian for Lange-
vin dynamics, we study whether one should use the Maupertuis principle or
the Hamilton principle when computing the least actions for a transition path in
chemical reactions. In Section 4, by comparing details properties for the down-
hill/uphill transition paths in chemical reactions and its diffusion approximation,
we study whether and when one can use the diffusion approximation to compute
the transition paths and the transition rate. In this section, we will also demon-
strate how the stationary solution to HJE plays the role of the Lyapunov function
and the role of the energy landscape in a non-equilibrium chemical reaction. The
gradient flow structure and dissipation-conservation decomposition will also be
compared for both Langevin dynamics and chemical reactions.

3 Comparisons between the Maupertuis principle

and the Hamilton principle

Recall our goal is to study how the Hamilton structure plays a role in finding the
reaction rates, the transition paths, and the energy barriers needed for a chemical
reaction system.

Given the Hamiltonian and Hamilton dynamics derived in Section 2, we want
to find which kind of least action principle we shall use. More specifically, we
need first compare the Maupertuis principle and the Hamilton principle for given
Hamiltonian and Lagrangian.
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3.1 Review of the Hamilton principle and the Maupertuis

principle

We first review two different least action principles: the Hamilton principle and
the Maupertuis principle.

The Hamilton principle: Given xA,y and a fixed terminal time T such that
γ(0)= xA,γ(T)=y, then the Hamilton principle reads

J
(

y;xA,T
)

:= inf
γ(0)=xA,
γ(T)=y

∫ T

0
L
(

γ̇(t),γ(t)
)

dt. (3.1)

This least action principle for fixed time T leads to three consequences:

(i) The optimal curve γ∗(t), t∈ [0,T] satisfies Euler-Lagrangian equation

d

dt

(

∂sL
(

γ̇(t),γ(t)
))

=∂xL
(

γ̇(t),γ(t)
)

⇐⇒ γ̈=−∇U(γ). (3.2)

(ii) The optimal curve satisfies Hamilton dynamics

γ̇=∂pH, ~̇p=−∂x H (3.3)

and the dynamics stays within the same energy level H≡ c.

(iii) The value function J(y;xA,T)=: J(y,T) satisfies the dynamic HJE

∂T J+H(∇J,y)=0. (3.4)

For the convenience of computations in the later section, we also derive the
following equivalent form for the value function J(y;xA,T). Denote the least ac-
tion path achieving the minimum value J(y;xA,T) as γ∗(t). Then for the constant
cH =H(p∗(t),γ∗(t))=H(p∗(0),γ∗(0)), we have

J
(

y;xA,T
)

+cHT=
∫ T

0

(

L
(

γ̇∗(t),γ∗(t)
)

+H
(

p∗(t),γ∗(t)
)

)

dt

=
∫ T

0
∂pH

(

p∗(t),γ∗(t)
)

·p∗(t)dt. (3.5)

The Maupertuis principle: Given an energy level c, assume xA,y belongs to
Hill’s region {x;U(x)≤c}. The Maupertuis principle is to find a least action curve
connecting x(0) = xA to x(T) = y with undefined terminal time T and staying
within the same energy level H(p,x) =: cH. Under the assumption of finding
curve within the same energy level
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H
(

p(t),x(t)
)

≡ cH, (3.6)

the Maupertuis principle with an undefined terminal time reads

V
(

y; xA,cH

)

= inf
T>0,

γ(0)=xA,γ(T)=y

∫ T

0

(

L
(

γ̇(t),γ(t)
)

+cH

)

dt. (3.7)

Then by the Pontryagin maximal principle, one can derive that the least action
path solves the Hamilton dynamics up to an optimal terminal time 0 ≤ t ≤ T∗,
where T∗ can be +∞

γ̇=∂pH, ~̇p=−∂x H, H
(

p(t),x(t)
)

≡ cH . (3.8)

Similar to (3.5), along any least action path γ∗(t);0 ≤ t ≤ T∗, the following
formula holds, which provides computational convenience:

V
(

y; xA,cH

)

=
∫ T∗

0

(

L
(

γ̇∗(t),γ∗(t)
)

+H
(

p∗(t),γ∗(t)
)

)

dt

=
∫ T∗

0
∂pH

(

p∗(t),γ∗(t)
)

·p∗(t)dt. (3.9)

Another consequence is that the value function V(y; xA,cH)=:V(y) solves the
following stationary HJE in the viscosity sense:

H
(

∇V(y),y
)

= cH. (3.10)

Here cH is the critical energy level such that the least action in (3.7) is well-defined
(it is also known as the critical Mañè value). It has been proved that the critical
energy level cH for the Langevin dynamics and the chemical reactions are zero,
i.e., cH=0. Thus for these two Hamiltonians and the least action problems via the
Maupertuis principle, we simply take cH=0 so that the associated stationary HJE
becomes

H
(

∇V(y),y
)

=0. (3.11)

3.2 The least action cost under the Maupertuis principle and the

Hamilton principle

In this section, we illustrate the least action cost under the Hamilton principle
and the Maupertuis principle with examples. We first select an energy landscape
for classical mechanics dynamics and Langevin dynamics. Then, with selected
energy landscape, numerical simulations will show the symmetry, monotonicity,
and downhill/uphill process for two dynamics. Last, in the uphill process, we
will find the least action path, under the Hamilton principle and the Maupertuis
principle.
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3.2.1 The Hamilton dynamics for classical mechanics dynamics and for

Langenvin dynamics

In this section, we select an energy landscape and then sketch the phase planes
for two dynamics. Let U(x) be the energy landscape, then the Hamiltonian for
classical mechanics is

H(p,x)=
1

2
|p|2+U(x), (3.12)

and its convex conjugate, Lagrangian, is

L(s,x)=
1

2
|s|2−U(x). (3.13)

According to Eq. (3.2), the optimal curve satisfies the system of ordinary dif-
ferential equations

ẋ= p,

ṗ=−∇U(x).
(3.14)

According to the Hamilton principle (3.5), the least action connecting xA and
y is expressed with a fixed terminal time

J
(

y;xA,T
)

+cHT=
∫ T

0
|p∗(t)|2dt. (3.15)

According to the Maupertuis principle (3.7), the least action connecting xA

and y is expressed with an unfixed terminal time T∗

V
(

y;xA,cH

)

=
∫ T∗

0
|p∗(t)|2dt. (3.16)

Recall (2.14), we take b(x) =−∇U(x). Thus, the Hamiltonian for Langevin
dynamics is

H(x,p)= p
(

p−∇U(x)
)

, (3.17)

and its convex conjugate, Lagrangian, is

L(s,x)=
1

4
|ẋ+∇U(x)|2. (3.18)

According to the Eq. (3.2), the optimal curve satisfies the system of ordinary
differential equations

ẋ=2p−∇U(x),

ṗ= p∆U(x).
(3.19)
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According to the Hamilton principle (3.5), the least action connecting xA and
y is expressed with a fixed terminal time

J
(

y;xA,T
)

+cHT=
∫ T

0
|p∗(t)|2dt. (3.20)

Recall that the critical energy level for Langevin dynamics is cH=0. Moreover,
according to the Maupertuis principle (3.7), the least action connecting xA and y
is expressed with an unfixed terminal time

V
(

y;xA,cH

)

=
∫ T∗

0
|p∗(t)|2dt. (3.21)

In order to discuss the energy barrier, we introduce a precise definition of
uphill process and downhill process.

Definition 3.1. Let (x(t),p(t)) be a solution of a two-dimensional dynamical system

defined in I⊆R. If the energy function U(x) monotonically increases in (a,b), then the

solution has an uphill process in (a,b); if the energy function U(x) monotonical decreases

in (a,b), then the solution has a downhill process in (a,b).

In the following discussion, we will consider a specific energy landscape

U(x)=(x2−1)2. (3.22)

The specific Hamiltonian under the energy landscape (3.22) for classical mechan-
ics is

H(p,x)=
1

2
p2+(x2−1)2, (3.23)

and the corresponding system of ordinary differential equations is

ẋ= p,

ṗ=4x−4x3.
(3.24)

The Hamiltonian under the energy landscape (3.22) for Langevin dynamics is

H(p,x)= p(p+4x−4x3), (3.25)

and the corresponding system of ordinary differential equations is

ẋ=2p+4x−4x3,

ṗ= p(12x2−4).
(3.26)
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Fig. 1 displays two phase plane plots. The left refers to the classical mechanics
dynamics (3.24), and the right refers to Langevin dynamics (3.26). The plots de-
pict multiple trajectories represented by different colors. The blue dot represents
the starting point of each trajectory, while the red dot represents its end point.
Trajectories that are not associated with any point are periodic. These plots re-
veal important features, including symmetry, periodic orbits, and stability points.
Detailed comparisons of these features will be presented in the following section.

(a) Classical mechanics dynamics (b) Langevin dynamics

Figure 1: These phase planes are overviews of two systems (3.24) and (3.26). The first graph repre-
sents the phase portrait for classical mechanics dynamics, and the second graph displays the Langevin
dynamics. To provide a comprehensive view of the directional field, multiple trajectories are included
and depicted with varying colors. For a trajectory, the blue dot denotes the starting point, and the red
dot denotes the ending point. A trajectory not involved with any point is periodic.

3.2.2 Comparisons for basic properties: Periodicity, symmetry, stability and

downhill zero cost path

In this section, we compare basic properties for two dynamics. Then, we will
theoretically prove and numerically show the action cost along the downhill path
is zero. The basic properties of two dynamics (3.24) and (3.26) are presented as
lemmas, and their proofs are provided in the appendix.

Lemma 3.1. Classical mechanics dynamics (3.24) exhibits symmetry with respect to

x-axis and p-axis; it is also symmetric with respect to the origin, i.e.

(i) H(−p,x)=H(p,−x)=H(p,x),

(ii) H(−p,−x)=H(p,x).
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Hamilton dynamics (3.26) for Langevin dynamics exhibits symmetry with respect to the

origin; moreover, Hamiltonian (3.25) exhibits symmetry with respect to ∇U(x)/2, i.e.,

(i) H(−p,−x)=H(p,x),

(ii) H(∇U(x)−p,x)=H(p,x).

Lemma 3.2 (Special Property for Classical Mechanics). Any solution in classical

mechanics (3.24) is periodic. Furthermore, the period monotonically decreases with the

initial momentum and the initial position.

Lemma 3.3. Classical mechanics dynamics (3.24) has 3 steady points: (1,0),(−1,0),
and (0,0). Moreover, (0,0) is a saddle point, while (−1,0) and (1,0) are centers.

The Hamilton dynamics (3.26) for Langevin dynamics has 5 steady points (0,0),
(1,0), (−1,0),( 1√

3
,− 4

3
√

3
),(− 1√

3
, 4

3
√

3
). Moreover, the points (0,0),(1,0),(−1,0) are

saddle points, while (− 1√
3
, 4

3
√

3
) are centers.

Proposition 3.1 (Special Property for Langevin Dynamics). Consider the Hamilton

dynamics (3.26) for Langevin dynamics. If there exists a downhill path connecting xA

and y such that Hamiltonian H(p∗(t),x∗(t))= 0 for all t∈ (0,T], then the action cost

along this path is 0.

Proof. Let H(p∗(t),x∗(t))= 0, then one may obtain two solutions curves: p∗ = 0

and p∗=∇U(x∗).
We show the curve p∗=∇U(x∗) is not a downhill path. We plug it into the

differential equation ẋ= p, then we obtain ẋ∗=∇U(x∗). Multiplying both sides

with ∇U(x∗) and then taking integral with respect to t yield

U
(

x∗(T)
)

−U
(

x∗(0)
)

=
∫ T

0

(

∇U(x∗)
)2

dt≥0.

Therefore, U(x∗(T))≥U(x∗(0)) implies p∗=∇U(x∗) is not a downhill path.

Thus the solution that meets the downhill process is p∗(t) = 0 for all t > 0.

Along this curve, the least action connecting xA and y is

J
(

y;xA,T
)

=
∫ T

0

(

p∗(t)
)2

dt=0. (3.27)

The proof is complete.
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Fig. 2 displays multiple curves with initial momentum p0 = 0 and varying
initial position x0 in the phase plane. The first plot shows the relation between
position x and momentum p, the second plot shows the relation between time t
and position x, and the third plot shows the relation between time t and momen-
tum p. The last graph shows the relation between action cost of each curve and
the corresponding initial position. From these graphs, one may notice as long as
p0=0, the momentum always keeps p=0. The action cost is also 0.

Corollary 3.1. The gradient flow structure of the Hamilton dynamics (3.26) Langevin

dynamics is ẋ=−∇U(x). Thus,

dU(x)

dt
=−|∇U(x)|2 ≤0.

In contrast, the dynamics of classical mechanics (3.24) does not have a down-
hill path along which the action cost is zero. Fig. 3 shows multiple curves with ini-

Figure 2: Langevin dynamics: Phase plane for downhill process and action cost. These plots refer to
the Hamilton dynamics (3.26) for Langevin dynamics. The first plot shows the relation between position
x and momentum p, the second plot shows the relation between time t and position x, and the third
plot shows the relation between time t and momentum p. The last graph shows the relation between
action cost of each curve and the corresponding initial position. From these graphs, one may notice
that the momentum keeps p=0, no matter what the initial position x0 is. Most importantly, one may
notice that the action cost also keeps 0 for different initial position x0.

Figure 3: Mechanics dynamics: Phase plane for downhill process and action cost. The plots illustrate
the classical mechanics dynamics (3.24). To avoid trivial curves, we consider five different curves with
p0 approaching 0 and varying values of x0, as shown in the first three phase plane plots. The last plot
displays varying action cost with respect to different initial momenta. From these graphs, we observe
that the momentum cannot remain at zero, regardless of how x0 approaches zero asymptotically.
Furthermore, the action cost converges to a positive value of approximately 0.8620.
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tial momentum approaching 0 and fixed initial position x0=0 in the phase plane.
The first, second, and third plots display the position-momentum, position-time,
and momentum-time relationships, respectively. The last graph shows the rela-
tionship between the action cost of each curve and its initial momentum p0. From
these graphs, we observe that the momentum cannot remain at zero, regardless of
the initial position x0. Additionally, the action cost converges to a positive value
of approximately 0.8620.

3.2.3 Comparisons of least action cost: Monotonicity and uphill transition

path under the Hamilton principle

As we notice U(x) = (x2−1)2 monotonically increases in (−1,1), a solution to
a dynamical system that meets the boundary condition x(0)=−1 and x(T)= 0,
T ∈ (0,+∞)∪{+∞} corresponds to an uphill process. In this section, we specif-
ically find the least action path and the least action cost connecting x(0) =−1
and x(T)=0 under the Hamilton principle and the Maupertuis principle. Propo-
sition 3.2 shows the least action under the Hamilton dynamics. Proposition 3.3
shows the least action under Maupertuis principle. Proposition 3.4 provides the
geometric interpretation of the least action cost.

Lemma 3.4. For classical mechanics dynamics (3.24), if we fix the initial momentum

p0 >
√

2, then the action cost monotonically increases with the k-th arrival time, T1,

T2,···. Furthermore, the action cost monotonically increases with the arrival time.

Let Tk be the k-th reaching time. We set p0 = 1.543024 such that T1 = 1.0, and
proceed to compute T2 and T3. The results are summarized in Fig. 4, which con-
sists of three plots showing the trajectory, arrival time, and the corresponding
action cost. The blue dot represents the starting point, and the red dot represents
the ending point. Each of the three graphs corresponds to the first three arrivals,
respectively. From these graphs, we observe that the action cost monotonically
increases with the arrival time.

The following proposition compares the monotonicity of action and momen-
tum under the Hamilton principle.

Proposition 3.2. For classical mechanics dynamics (3.24) and the Hamilton dynamics

(3.26) for Langevin dynamics, if we fix terminal time as T=1, then the terminal position

and the action cost monotonically increase with the initial momentum p0.

Fig. 5 shows the uphill path of classical mechanics dynamics (3.24) under the
Hamilton principle. The first three plots show relations for position/momentum,
time/position, and time/momentum, respectively. The last plot shows the re-
lation for action cost and the initial momentum. With fixed motion of time T=1
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(a) The first arrival (b) The second arrival (c) The third arrival

Figure 4: Mechanics dynamics: Three arrivals and corresponding action cost. Three graphs refer to
classical mechanics (3.24). Given fixed initial momentum p0 = 1.5430, they show phase portraits for
different arrival time and the corresponding action costs. From three graphs, one may observe the
action cost monotonically increases with the arrival time.

Figure 5: Mechanics dynamics under the Hamilton principle: Phase plane for uphill process and corre-
sponding action cost. In terms of classical mechanics dynamics (3.24), these plots depict the relation-
ships between the position/momentum, position/time, and momentum/time, as well as the correlation
between the action cost and the initial momentum. The plots display nine curves with varying initial
momenta, showing that the final position, momentum, and action cost consistently increase with the
initial momentum.

and initial position x0=−1, nine curves with different initial momentum p0 are in-
cluded. From these graphs, one may observe that the terminal position, terminal
momentum, and action cost monotonically increase with initial momentum p0.

Fig. 6 illustrates the path followed by the Hamilton dynamics (3.26) for Lange-
vin dynamics, adhering to the Hamilton principle. The first three plots depict
the relationships between the position/momentum, position/time, and momen-
tum/time, respectively. The last plot shows the correlation between the action
cost and the initial momentum. The plots display nine curves with varying ini-
tial momenta p0, keeping the fixed terminal time as T=1 and the initial position at
x0=−1. These curves demonstrate that the final position, final momentum, and
action cost consistently increase as the initial momentum p0 increases. There-
fore, these results provide evidence of a monotonically increasing relationship
between the initial momentum and the terminal position, momentum, and ac-
tion cost.
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Figure 6: Langevin dynamics under the Hamilton principle: Phase plane for uphill process with fixted
terminal time and corresponding action cost. Four plots are for the Hamilton dynamics (3.26) for
Langevin dynamics. Nine curves with initial momentum interval ∆p=0.05 are included with different
colors. The last plot depicts the relation between action cost and initial momentum p0. From these
graphs, one may observe that the terminal position, terminal momentum, and action cost monotonically
increase with initial momentum p0.

Proposition 3.3. For classical mechanics dynamics (3.24) and the Hamilton dynamics

(3.26) for Langevin dynamics, if we fix terminal position as x=0, then the terminal time

monotonically decreases with initial momentum p0, and the action cost monotonically

increases with the initial momentum p0.

Fig. 7 illustrates the uphill path of classical mechanics dynamics (3.24) under
fixed terminal position and unfixed terminal time. The first three plots depict
the relationships between the position/momentum, position/time, and momen-
tum/time, while the last plot shows the correlation between the action cost and
the initial momentum. These plots include nine curves with varying initial mo-
menta p0, keeping the initial position fixed at x0 =−1 and the terminal position
at x = 0. The curves demonstrate that the terminal momentum and action cost
consistently increase as the initial momentum p0 increases. Therefore, the results
provide evidence of a monotonically increasing relationship between the initial

Figure 7: Mechanics dynamics under fixed terminal position and unfixed terminal time: Phase plane
for uphill process and corresponding action cost. The plots depict the relationships between posi-
tion/momentum, position/time, momentum/time, and the action cost/initial momentum. Results show
a consistent increase in the terminal momentum and action cost with an increase in initial momentum,
while the arrival time decreases with initial momentum.
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momentum, the terminal momentum, and the action cost.
Fig. 8 illustrates the uphill path of the Hamilton dynamics (3.26) for the Lange-

vin dynamics under fixed terminal position and unfixed terminal time. Four
plots represent the relationships between position/momentum, position/time,
momentum/time, and action cost/initial momentum. The plots include nine
curves with varying initial momenta, maintaining a fixed initial position and ter-
minal position. The findings indicate a consistent increase in the terminal mo-
mentum and action cost with an increase in initial momentum. Thus, the initial
momentum has a monotonically increasing relationship with the terminal mo-
mentum and action cost.

It motivates the Maupertuis principle for two dynamics.

Figure 8: Langevin dynamics under fixed terminal position and unfixed terminal time: Phase plane
for uphill process and corresponding action cost. The four plots depict the Hamilton dynamics (3.26)
for the Langevin dynamics with nine curves representing different initial momenta p0, each denoted
by a different color and with an initial momentum interval of ∆p= 0.05. The results show that the
terminal momentum and action cost increase monotonically with the initial momentum p0, while the
arrival time decreases monotonically with the initial momentum p0.

3.2.4 Comparisons of least action cost: Uphill transition path and transition

rate under the Maupertuis principle

In the following proposition, we give the explicit formula for the least action cost
for Langevin dynamics (3.26). Compared with it, the mechanics dynamics do not
have an explicit formula.

Proposition 3.4 (Mechanics v.s. Langenvin). For Langevin dynamics (3.26), if U′(xA)
=0 and there is no other critical points between xA and y, we have an explicit uphill action

cost formula for least action curve starting from xA to y

V
(

y;xA,0
)

=U(y)−U(xA). (3.28)

However, for mechanics dynamics (3.24), we do not have explicit formula for the uphill

action cost.
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Fig. 9 illustrates the uphill process of classical mechanics dynamics (3.24) with
fixed terminal position and unfixed terminal time. The four plots show the rela-
tionships between position/momentum, position/time, momentum/time, and
action cost/initial momentum. The plots include five curves with varying initial
momenta, while the initial and terminal positions remain fixed. The results re-

veal that as the initial momentum p0 approaches
√

2, the required terminal time
approaches infinity. Under the Maupertuis principle, the initial momentum ap-

proaches
√

2, and the least action connecting x=−1 and x=0 converges to a pos-
itive value of approximately 0.8619.

Fig. 10 illustrates the uphill process of the Hamilton dynamics (3.26) for the
Langevin dynamics with fixed terminal position and unfixed terminal time. The
four plots show the relationships between position/momentum, position/time,
momentum/time, and action cost/initial momentum. The plots include five
curves with varying initial momenta, while the initial and terminal positions re-

Figure 9: Mechanics dynamics under the Maupertuis principle: Phase plane for uphill process and the
least action cost. Four plots are for classical Mechanics dynamics (3.24). The four plots show the
relationships between position/momentum, position/time, momentum/time, and action cost/initial
momentum. The plots include five curves with varying initial momenta, while the initial and terminal
positions remain fixed. From these graphs, one may observe the action cost converges to approximately
0.8619, as the initial momentum approaches to

√
2.

Figure 10: Langevin dynamics under the Maupertuis principle: Phase plane for uphill process and
the least action cost. Four plots are for the Hamilton dynamics (3.26) for the Langevin dynamics.
Fives curves with different initial momentum are included with different colors. Under the Maupertuis
principle, the initial momentum asymptotically approaches to 0, and the action cost approximately
converges to the least action cost. Moreover, the least action connecting −1 and 0 cost is 1.
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main fixed. The results reveal that as the initial momentum p0 approaches 0, the
required terminal time approaches infinity. Under the Maupertuis principle, the
initial momentum approaches 0, and the least action connecting x=−1 and x=0
converges to a positive value of approximately 1.00.

4 Comparisons between chemical reaction with its

diffusion approximation

In this section, we consider Schlögl catalysis model [34] with environment ∅,
chemostats A, B and internal specie X

A+2X
k+

1−−⇀↽−−
k−

1

3X, B
k+

2−−⇀↽−−
k−

2

X, A −−⇀↽−− ∅ −−⇀↽−− B, (4.1)

where k+1 ,k−1 ,k+2 ,k−2 >0 are reaction rates. Based on the Maupertuis principle, we
will find out the transition paths, the transition rate and the least action cost for
the chemical reactions, with particular focus on the Schlögl catalysis model. We
also prove an abstract theorem on the implications of the stationary solution to
the stationary HJE. Theorem 4.1 can be used to compute the explicit transition
path and transition cost, which is also related to the area enclosed by least action
curves in the phase plane, see Proposition 4.3. Moreover, with both explicit for-
mulas and detailed numerical simulations, we compare those quantitative prop-
erties for the chemical reactions with its diffusion approximation and conclude
that diffusion approximation is not accurate for computing the energy barrier as-
sociated with the transition paths.

4.1 The Hamilton dynamics for chemical reaction Hamiltonian

and for Langenvin Hamiltonian

In this section, we focus on the Hamilton dynamics for Schlögl catalysis model
and the Hamilton dynamics for its diffusion approximation. Based on this exam-
ple, we revisit the Maupertuis principle for chemical reactions and show a phase
plane plots for both two Hamilton dynamics.

4.1.1 Hamilton dynamics and basic properties

From the derivation of (2.8) in Section 2, the Hamiltonian for Schlögl catalysis
model is

H(p,x)=
(

k+1 ax2+k+2 b
)

(ep−1)+
(

k−1 x3+k−2 x
)

(e−p−1). (4.2)
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With parameters k+1 a=6,k+2 b=6,k−1 =1,k−2 =11, the Hamiltonian is

H(p,x)=(6x2+6)(ep−1)+(x3+11x)(e−p−1), (4.3)

and its convex conjugate, Lagrangian, is

L(s,x)= sp∗−H(p∗,x)

=
(

(6x2+6)ep∗−(x3+11x)e−p∗)p∗

−
[

(6x2+6)(ep∗−1)+(x3+11x)(e−p∗−1)
]

. (4.4)

According to the Eq. (3.2), the optimal curve satisfies the system of ordinary
differential equations

ẋ=(6x2+6)ep−(x3+11x)e−p,

ṗ=−12x(ep−1)−(3x2+11)(e−p−1).
(4.5)

According to the Maupertuis principle (3.7), the least action connecting xA

and y with an infinite-time horizon is

J
(

y;xA,cH

)

=
∫ T∗

0

(

(

6|x∗|2+6
)

ep∗−
(

|x∗|3+11|x∗|
)

e−p∗
)

p∗

−
[

(6|x∗|2+6)(ep∗−1)+
(

|x∗|3+11|x∗|
)

(e−p∗−1)
]

dt. (4.6)

Here we omit the argument t in x∗(t),p∗(t).
For Langevin dynamics, consider

∇U(x)=(x−1)(x−2)(x−3)=−(6x2+6)+(x3+11x). (4.7)

We will see later the similarities of the new energy landscape to the chemical
reaction (4.5).

The Hamiltonian under the new energy landscape is

H(p,x)= p
(

p−(x−1)(x−2)(x−3)
)

. (4.8)

According to the Eq. (3.2), the optimal curve satisfies the system of ordinary
differential equations

ẋ=2p−(x−1)(x−2)(x−3),

ṗ= p(3x2−12x+11).
(4.9)

We cook up this example for Langevin dynamics because when p= 0, ∂pH(0,x)
for chemical reaction (4.5) and for (4.9) are exactly same. Then we refer the (4.9)
as the diffusion approximation for chemical reaction (4.5). Particularly, they are
exactly same at p=0.
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Fig. 11 provides an overview of the Hamilton dynamics (4.9) for Langevin dy-
namics and the chemical reaction (4.5). The first plot illustrates the phase portrait
for Langevin dynamics, while the second to fourth plots depict the chemical reac-
tion. Moreover, the third and fourth graphs zoom in on the local periodic orbits
shown in the second graph. To give a comprehensive view of the directional field,
multiple trajectories are included and distinguished by different colors. The start-
ing point is marked blue, and the ending point is marked red. A trajectory with
no blue dot or red dot is periodic. By examining these graphs, one can observe
that both Langevin dynamics and the chemical reaction possess periodic orbits,
with the latter having much smaller size compared to the former.

(a) Langevin dynamics (b) Chemical reactions (c) Zoom-in for chemical
reaction in p>0 area

(d) Zoom-in for chemical
reaction in p<0 area

Figure 11: Langevin dynamics and chemical reactions: overview of phase planes. The first plot displays
Langevin dynamics (4.9), while the second to fourth plots exhibit the chemical reaction (4.5). The third
and fourth graphs zoom in on local periodic orbits in the second graph. The trajectories are colored
differently. Comparing the two systems, one may notice that both possess periodic orbits, with the
chemical reaction having smaller orbits than Langevin dynamics.

4.2 Comparisons for basic properties: Symmetry, stability, and

downhill zero cost path

We first give the following abstract lemma on the gradient flow structure implied
via the symmetry of Hamiltonian. Then we show basic properties including sym-
metry, stability, and downhill zero cost paths.

Lemma 4.1. Let H(p,x) be a Hamiltonian convex with respect to p and satisfying

H(0,x)≡0. Assume there exists a function ψ(x) such that one has symmetric property

H
(

∇ψ(x)−p,x
)

=H(p,x).

Then we have the gradient flow structure for the zero-cost flow (2.27)

dx

dt
=∂pH(0,x)=−K(x)∇ψ(x), (4.10)
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where

K(x)=
∫ 1

0

1

2
∇2

ppH
(

θψ(x),x
)

dθ.

This lemma was proved in [14, Proposition 4.4]. We remark that the relation
between the symmetry of the Hamiltonian and the gradient flow structure was
studied [22, 26, 29] in more general contexts which includes the generalized gra-
dient flows.

For chemical reaction (4.5), one can directly verify that

ψ(x)=
∫ x

xA
log

(

s3+11s

6s2+2

)

ds

is a stationary solution to the HJE H(∇ψ(x),x)=0.
The following lemmas summarize the basic properties of the Hamilton dy-

namics (4.9) for Langevin dynamics and chemical reaction (4.5). The proofs of
these lemmas can be found in the appendix.

Lemma 4.2. Hamiltonian for Langevin dynamics (4.8) exhibits symmetry with respect to

the point (2,0); moreover, Hamiltonian (4.8) exhibits symmetry with respect to ∇U(x)/2,

i.e.,

(i) H(−x+2,−p)=H(x+2,p),

(ii) H(∇U(x)−p,x)=H(p,x).

Hamiltonian for chemical reaction (4.3) exhibits symmetry with respect to ∇ψ(x)/2, i.e.,

(i) H(∇ψ(x)−p,x)=H(p,x).

From the symmetry property in the above lemma, we show that both U and V
serve as Lyapunov functions and we have two gradient flow structures based on
them.

Corollary 4.1. Both ψ and U are Lyapunov functions for chemical reaction (2.2)

dU(x)

dt
=−|∇U(x)|2 ≤0, (4.11)

dψ(x)

dt
=−〈K(x)∇ψ(x),ψ(x)〉≤0. (4.12)

In the next section, we will see only ψ can be used to compute the energy
barriers associated with the transition path in chemical reactions.
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Lemma 4.3. The Hamilton dynamics (4.9) for Langevin dynamics has five steady points

(1,0), (2,0), (3,0), (2+ 1√
3
,− 1

3
√

3
), (2− 1√

3
, 1

3
√

3
). Moreover, the points (1,0), (2,0), (3,0)

are saddle points, while (2+ 1√
3
,− 1

3
√

3
) and (2− 1√

3
, 1

3
√

3
) are centers.

Chemical reaction (4.5) has five steady points (1,0),(2,0),(3,0),(x1,p1), and (x2,p2),
where p1 < 0 and p2 > 0. Furthermore, the points (1,0),(2,0),(3,0) are saddle points,

while (x1,p1), and (x2,p2) are centers.

As the proposition for Langevin dynamics has already been proven in the
previous section, there is no need to duplicate the proof here.

Proposition 4.1. Consider the Hamilton dynamics (4.5) for chemical reaction. If there

exists a downhill path connecting xA and y such that Hamiltonian H(p∗(t),x∗(t))= 0

for all t∈ (0,T], then the action cost along this path is 0.

Proof. Let H(p∗(t),x∗(t))=0, one obtains two solutions curves

p∗=0, p∗=∇ψ(x∗)= log

(

(x∗)3+11x∗

6(x∗)2+2

)

.

We show that the curve

p∗= log

(

(x∗)3+11x∗

6(x∗)2+2

)

is not a downhill path. We plug it into the first equation in (4.5), then we obtain

ẋ∗=∇U(x∗)=−
(

6(x∗)2+6
)

+
(

(x∗)3+11x∗
)

.

Multiplying both sides by ∇U(x∗) and then taking integral with respect to t yield

U
(

x∗(T)
)

−U
(

x∗(0)
)

=
∫ T

0

∣

∣∇U(x∗)
∣

∣

2
dt≥0.

Therefore, U(x∗(T))≥U(x∗(0)) implies p∗=∇U(x∗) is not a downhill path.

The solution that meets the downhill process is p∗(t)=0 and x(t)=0. Along

this curve, the least action connecting xA and y is J(y;xA,T)=0.

For the Hamilton dynamics (4.9) for Langevin dynamics, Fig. 12 displays mul-
tiple curves with fixed initial position x0=2 and the initial momentum p0 asymp-
totically approaching to 0. The first plot shows momentum/position, the second
plot shows position/time, the third plot shows momentum/time, and the last
graph shows action cost/initial momentum. From these graphs, one may notice
as p0 asymptotically approaches to 0, the action cost also converges to 0.
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For chemical reaction (4.5), Fig. 13 plots several curves with fixed initial po-
sition x0 = 2 and a decreasing initial momentum p0. The four plots respectively
show the relationship between momentum and position, position and time, mo-
mentum and time, and action cost and initial momentum. One may observe that
as p0 approaches 0, the action cost also approaches 0.

Figure 12: Langevin dynamics: Phase plane for downhill process and corresponding action cost. These
plots depict the behavior of (4.9). The first three plots show the relationships between momen-
tum/position, position/time, and momentum/time, respectively. The last plot shows the relationship
between action and initial momentum. It can be observed that the reaching time increases monoton-
ically as the initial momentum decreases. Additionally, as the initial momentum p0 approaches 0, the
cost of action converges to 0.

Figure 13: Chemical reactions: Phase plane for downhill process and corresponding action cost. The
first three plots are phase portrait for (4.5). These plots refer to chemical reaction (4.5). From these
graphs, one may notice that the reaching time monotonically increases the initial momentum approaches
to 0. Moreover, the action cost converges to 0.

4.3 Comparisons for uphill transition paths and rates

In this section, we compute the explicit formula for the uphill action cost and
compare the energy barriers for the same transition path in a chemical reaction
and its diffusion approximation. Then we work out details for the Schlögl cataly-
sis model and its diffusion approximation with illustrative numerical simulations
for the uphill transition paths and the associated cost (the minimum energy bar-
rier for transition to happen).
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4.3.1 The least action cost: Chemical reaction v.s. diffusion approximation

We first give the following theorem for an abstract Hamiltonian, which use the
associated stationary solution to HJE to compute the transition paths and its min-
imal cost.

Theorem 4.1 (The Implications of Stationary Solution to HJE). Let H(p,x) be a Ha-

miltonian convex with respect to p and satisfying H(0,x)≡0. Let ψ(x) be the maximal

Lipschitz viscosity solution to HJE

H
(

∇ψ(x),x
)

=0, ψ(xA)=0, (4.13)

where xA is a critical point of ∂pH(0,x)=0. Then we have

(i) ψ(x) is a Lyapunov function of the zero-cost ODE (2.27) and

d

dt
ψ
(

x(t)
)

=∇ψ
(

x(t)
)

· ẋ=−K(x)∇ψ(x)·∇ψ(x)≤0, (4.14)

where

K(x) :=
∫ 1

0
(1−θ)∂pp H(θ∇ψ(x),x)dθ.

(ii) The uphill least action cost starting from xi to x̄ is given by ψ(x̄) and the associated

control variable in the Hamilton dynamics (3.8) is p∗(t)=∇ψ(x∗(t)). That is to

say, through ψ(x), we find a Lagrangian graph for the uphill least action path.

Remark 4.1. If ψ(xA) is not zero, one can subtract a constant because ψ(x) up to

a constant, ψ+c is still a stationary solution. We also point out that the above

statements do not require a symmetry in Hamiltonian.

Proof of Theorem 4.1. First, notice H(∇ψ(x),x)=0=H(0,x). We do the Taylor ex-

pansion at p=0 and obtain

0=H
(

∇ψ(x),x
)

=H(0,x)+∂pH(0,x)·∇ψ(x)+
∫ 1

0
(1−θ)∂pp H

(

θ∇ψ(x),x
)

dθ∇ψ(x)·∇ψ(x)

= ẋ ·∇ψ(x)+K(x)∇ψ(x)·∇ψ(x).

Here

K(x)=
∫ 1

0
(1−θ)∂pp H

(

θ∇ψ(x),x
)

dθ
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is positive definite matrix-valued function due to H is strictly convex in p. Thus

we obtain (4.14) and ψ is a Lyapunov function of the zero-cost ODE (2.27).

Second, notice the critical energy level cH = 0 because L(s,x)≥ 0 and equals

zero if and only if s= ∂pH(0,x). Then it is well known that the least action cost

V(x;xA,0) satisfies the stationary HJE (4.13) in the viscosity sense. On the one

hand, this least action cost V(x;xA,0) is achieved via the Hamiltonian dynamics

(3.8), i.e.

V
(

x;xA,0
)

= inf
T>0,

γ(0)=xA,γ(T)=x

∫ T

0
L
(

γ̇(t),γ(t)
)

dt.

On the other hand, any viscosity solutions u to stationary HJE (4.13) satisfies that

for any absolutely continuous curve γ(·),

u(x)−u(xA)=
∫ T

0
∇u
(

γ(s)
)

·γ̇(s)ds

≤
∫ T

0

(

L
(

γ̇(s),γ(s)
)

+H
(

∇u
(

γ(s)
)

,γ(s)
)

)

ds

≤
∫ T

0
L
(

γ̇(s),γ(s)
)

ds. (4.15)

Here we used the Fenchel-Young’s inequality. Thus, taking infimum with re-

spect to γ and T, we see V(x;xA,0) is the largest viscosity solution satisfying

V(xA;xA)=0.

Third, from the definition of Legendre transform, for any curve γ(t)

L(γ̇,γ)=sup
p

(

γ̇·p−H(p,γ)
)

≥ γ̇·∇ψ(γ)−H
(

∇ψ(γ),γ
)

=
dψ
(

γ(t)
)

dt
, (4.16)

where we used ψ is the stationary solution to (4.13). On the other hand, we veri-

fied in the second step that the least action is achieved at

ψ(x)−ψ(xA)=
dψ
(

γ(t)
)

dt
= inf

T
inf

γ(0)=xA,
γ(T)=y

∫ T∗

0
L
(

γ̇(t),γ(t)
)

dt. (4.17)

Thus the optimal trajectory is given by

γ̇=∂pH
(

p∗(t),γ(t)
)

, p∗(t)=∇ψ
(

γ(t)
)

, (4.18)

and the last statement in (ii) follows.
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Based on the above proposition for abstract Hamiltonian, we find an explicit
formula for the uphill least action cost for chemical reactions.

Proposition 4.2. For chemical reactions, if U′(xA)=0, U′′(xA)≥0 and there are finite

critical points x1<x2< ···<xK between xA and y, we have an explicit uphill action cost

formula for least action curve starting from xA to y

ψ
(

y;xA,0
)

=











































∫ y

xA
log

x3+11x

6x2+6
dx, y∈ [xA,x1],

∫ x1

xA
log

x3+11x

6x2+6
dx, y∈ [x1,x2],

∫ x1

xA
log

x3+11x

6x2+6
dx+

∫ y

x2

log
x3+11x

6x2+6
dx, y∈ [x2,x3],

··· .

(4.19)

Proof. First, notice that starting from any critical point xk of U,ψ(y;xA,0) is a clas-

sical solution to stationary HJE H(∇ψ(y),y) = 0 in any open interval (xA,x1),
(xk,xk+1), k=1,.. . ,K−1.

Second, at the connection points xk, k=1,.. .,K, we consider the following two

cases:

(i) If xi is a local minimum of U, then the left slope of ψ is zero, which coincides

with the right slope of ψ.

(ii) If xi is a local maximum of U, then the right slope of ψ is zero, which also

coincides with the left slope of ψ.

Therefore, ψ(y;xA,0) is a viscosity solution to the stationary HJE

H
(

∇ψ(y),y
)

=0, ψ(xA)=0.

Third, for the uphill intervals [xA,x1] and [x2k,x2k+1], one can directly verify

p∗(y) =∇ψ(y) solves (4.5) and thus the associated trajectory (4.18) is an uphill

least action curve. Similarly, for downhill intervals [x2k−1,x2k], one can also verify

p∗(y)=∇ψ(y)= 0 solves (4.5) and thus a downhill least action curve. From the

argument in (4.15), we know ψ(y;xA,0) is the maximal Lipschitz viscosity solution

and thus from Theorem 4.1(ii), we conclude this proposition.

Fig. 14 illustrates the uphill process of the Hamilton dynamics (4.9) for Lange-
vin dynamics. The four plots show the relationships between position/momen-
tum, position/time, momentum/time, and action cost/initial momentum. The
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Figure 14: Langevin dynamics: Uphill process and the least action cost. The first three plots are
phase portrait for the Hamilton dynamics (4.9) for Langevin dynamics with fixed initial position x0=1
and varying initial momentum p0. From these graphs, one may notice the action cost monotonically
decreases with the decrease of initial momentum p0. As the initial momentum p0 approaches to 0, the
action cost converges to a positive value of approximately 0.25.

plots include five curves with initial momenta approaching to 0, while the initial
and terminal positions remain fixed as x0=1 and x=2, respectively. The results
reveal that as the initial momentum p0 approaches 0, the required terminal time
approaches infinity, and the action converges to a positive value of approximately
0.25.

Fig. 15 displays the uphill process of chemical reaction (4.5). The four plots
show that the relationships between position/momentum, position/time, mo-
mentum/time, and action cost/initial momentum. The plots feature five curves
with initial momenta approaching 0, while the initial and terminal positions re-
main fixed at x0 = 1 and x = 2, respectively. As the initial momentum p0 ap-
proaches 0, the required terminal time approaches infinity, and the action con-
verges to a positive value of approximately 0.0135.

These plots provide evidence that the least action connecting x= 1 and x= 2
relates to the size enclosed by the downhill/uphill least action curves. We sum-

Figure 15: Chemical reactions: Uphill process and the least action cost. The first three plots are phase
portrait for chemical reactions (4.5) with fixed initial position x0=1 and varying initial momentum p0.
From these graphs, one may notice the action cost monotonically increases with the initial momentum
p0. Specifically, as the initial momentum p0 approaches to 0, the action cost converges to approximately
0.0135.
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marize it as the following proposition.

Proposition 4.3. Under the assumption of Theorem 4.1, assume further xA is a local

minimum of U and x1 is the local maximum of U near by xA. On the phase plane xp-

plane, denote by A the area enclosed by the downhill least action trajectory connecting x1

to xA and the uphill least action trajectory connecting xA to x1. Then we have

(i) The area for the diffusion approximation is

A=
∫ x1

xA
∇U(x)dx=U(x1)−U(xA).

(ii) The area for the original chemical reaction is

A=
∫ x1

xA
∇ψ(x)dx=ψ(x1)−ψ(xA),

where

ψ(x)=
∫ x

xA
log

(

s3+11s

6s2+2

)

ds.

Proof. From Theorem 4.1(ii), we know the uphill least action curve is given by

the Lagrangian graph p∗ = ∇ψ(x∗). Then the area enclosed by p(x) = 0 and

p(x)=∇ψ(x) is just
∫ x1

xA ∇ψ(x)dx. That is to say, we just need to find the maximal

Lipschitz stationary solution to H(∇ψ(x),x)= 0 with ψ(xA)= 0. As we proved

before, U(x) and

ψ(x)=
∫ x

xA
log

(

s3+11s

6s2+2

)

ds

for x∈ [xA,x1] do the job.

For Hamiltonian of Langevin dynamics (4.8), letting H(p∗(t),x∗(t))=0 yields
two curves: p∗(t)= x∗(t)= 0 and p∗(x∗)= (x∗−1)(x∗−2)(x∗−3). The area en-
closed by the two curves connecting x=1 and x=2 in the second quadrant is

∫ 2

1
(x−1)(x−2)(x−3)dx=0.25. (4.20)

For Hamiltonian of chemical reaction (4.3), the computation is similar. The
enclosed area by curves connecting x = 1 and x = 2 with H(p∗(t),x∗(t)) = 0 is
0.01346 in approximation. Moreover, the least action connecting x=1 and x=2 is

V(2;1,0)=
∫ 2

1
log

x3+11x

6x2+6
dx≈0.01346.

Indeed, the values of area match the least action connecting x=1 and x=2.
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4.3.2 The transition rate: chemical reaction v.s. diffusion approximation

In this subsection, we illustrate the transition rate for a chemical reaction by using
the example. For the same transition path connection two critical points of U in
the diffusion approximation and ψ in the chemical reaction, we compare their
transition rates in the following definition.

Definition 4.1. Given a curve (x(t),p(t)) of a dynamical system, suppose the arrival

time of two points (x1,p1) and (x2,p2) are t1 and t2, respectively. The transition rate

between (x1,p1) and (x2,p2) is 1/(t2−t1).

Fig. 16 compares the transition rate for two dynamics. The dashed line refers
to the Hamilton dynamics (4.9) for Langevin dynamics, and the solid line refers
to the chemical reaction (4.5). The first plot sketches four curves with selected
initial conditions, in order to provide an overview. The second plot specifically
compares the uphill process of two dynamics with momentum/position relation.
The third plot shows the momentum/time relation. The last plot compares the
action cost with respect to the initial momenta.

Consider the transition rate between x = 1 and x = 2. With fixed initial mo-
mentum p0 = 0, the transition rate is 0. With fixed initial momentum p0 > 0, the
transition rates for two dynamics generally do not match. However, from the
third plot, one may notice that as the initial momentum p0 asymptotically ap-
proaches to 0, the transition rates go to infinity with closer and closer difference.
Last but not the least, the least action differ by more than ten times: Langevin
dynamics has least action cost 0.25, while the chemical reaction has only 0.01346.

(a) Overview (b) Uphill process (c) p-t plot (d) Least action

Figure 16: Langevin and chemical reaction: Transition rate comparison. The dashed line represents
Langevin dynamics (4.9), and the solid line represents chemical reaction (4.5). The first plot shows four
curves with different initial conditions, and the second and third plots compare the momentum/position
and momentum/time relationships for the uphill process of the two dynamics, respectively. The last plot
compares the action cost with respect to the initial momentum. It can be observed that the transition
rate of the two dynamics do not match whenever the p0>0. Nevertheless, as the initial momentum p0
approaches 0, they get closer. Additionally, the least action cost differs by more than ten times, with
Langevin dynamics having a least action cost of 0.25, while chemical reaction has only 0.01346.



280 Y. Gao and Y. Zhou / Commun. Math. Anal. Appl., 2 (2023), pp. 245-288

It provides an evidence that the diffusion process in the uphill process accurately
approximate the transition rates. However, the approximation is not accurate
with respect to the least action cost.

5 Conclusion

The mathematical structures and quantitative properties for non-equilibrium che-
mical reactions are important and challenging questions because the structures
are not symmetric, not convex, and irreversible. We focus on exploring the Hamil-
ton structure in chemical reactions and its implications. We first compare the
Maupertuis principle and the Hamilton principle for the least action problem as-
sociated with the Hamiltonian for classical mechanics and Langevin dynamics.
This leads to the conclusion that one should use the Maupertuis principle with
an undefined terminal time for computing transition paths in chemical reactions.
We then study quantitative properties for the downhill/uphill transition paths
in chemical reactions and its diffusion approximation. Based on the Hamilton-
Jacobi method, we first find the selected stationary solution ψ(x) to the limiting
HJE, which can be used to construct an exact barrier function p∗(x)=∇ψ(x∗) in
the transition path calculations. Our numerical simulations based on the Hamil-
ton dynamics also verify this exact formula for computing the energy barrier and
related it to the geometric interpretations in the phase plane. Using the one-
dimensional example, we show the transition rates get closer when the initial
momentum asymptotically approach to zero, while the transition path in the dif-
fusion approximation undergoes more significantly in size. Selecting stationary
solution to the limiting HJE plays an important role for computing the global en-
ergy landscape. Although numerical experiments show the selected stationary
solution captures all the asymptotic behaviors for the original non-equilibrium
chemical reaction, whether this stationary solution is the rate function for the
large deviation principle of the invariant measures for non-equilibrium chemical
reactions is still an open question.

Appendix A. Some elementary proofs for symmetry

and stability

In this section, we give some elementary proofs for completeness.

Proof for Lemma 3.1. For classical mechanics, to show H(−p,x)=H(p,x), one may
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perform some elementary computations

H(−p,x)=
|−p|2

2
+U(x)=

|p|2
2

+U(x)=H(p,x). (A.1)

To show H(p,−x)=H(p,x), we can similarly show

H(p,−x)=
|p|2

2
+U(−x)=

|p|2
2

+U(x)=H(p,x). (A.2)

To prove H(−p,−x)=H(p,x), we can similarly show

H(−p,−x)=
|−p|2

2
+U(−x)=

|p|2
2

+U(x)=H(p,x). (A.3)

For Langevin dynamics, to show H(−p,−x)=H(p,x), we can show

H(−p,−x)=(−p)(−p−4x+4x3)= p(p+4x−4x3)=H(p,x). (A.4)

Similarly,

H
(

∇U(x)−p,x
)

=
(

∇U(x)−p
)(

∇U(x)−p−∇U(x)
)

= p
(

p−∇U(x)
)

=H(p,x). (A.5)

The proof is complete.

Proof for Lemma 3.2. The Hamiltonian evaluated at the initial point (x0,p0) is

H0=
1

2
p2

0+
(

x2
0−1

)2
. (A.6)

Along the curve that meets the initial condition (x0,p0), Hamiltonian pre-

serves as a constant

1

2

(

p(t)
)2
+
((

x(t)
)2−1

)2
=H0, ∀t. (A.7)

Then we may parametrize the Hamiltonian above with trigonometric functions

p=
√

2H0 cos(ωt), x2=
√

H0 sin(ωt)+1. (A.8)

The parameter ω implicitly depends on H0, or equivalently x0 and p0. The para-

metrization shows any orbit is periodic.
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Suppose the initial condition is (x0,0), where x0∈(0,1). The parametrized for-

mula shows the maximum position that the trajectory can reach is xmax=
√

2−x2
0.

Since the trajectory is symmetric with respect to x axis, one may derive the period

formula from the equation dt=dx/p

T=2
∫ xmax

x0

1
√

(x0−1)2−(x2−1)2
dx. (A.9)

By trigonometric substitution sin(θ)=(x2−1)/(x2
0−1), a simpler form is obtained

T=

√
2

2

∫ 3π
2

π
2

1
√

(x2
0−1)sin(θ)+1

dθ. (A.10)

This formula shows the period T monotonically decreases with x0 ∈ (0,1). Fur-

thermore,

inf
x0∈(0,1)

T=

√
2

2
π.

Suppose the initial condition is (0,p0), where p0 ∈ (0,+∞). The trajectory is

symmetric with respect to x and p axis, then the period formula is

T=4
∫

√√
1
2 p2

0+1+1

0

1
√

p2
0+2−2(x2−1)2

dx. (A.11)

Let a=
√

p2
0/2+1 and sin(θ)=(x2−1)/a. Then, we may obtain a simpler form

T=
√

2
∫ π

2

−arcsin( 1
a )

1
√

1+asin(θ)
dθ. (A.12)

The lower limit of the integral and the denominator of the integrand increase with

p0, so the period monotonically decreases with p0∈ (0,∞).

Proof for Lemma 3.3. For the classical mechanics dynamics system (3.24), setting

ṗ = 0 and ẋ = 0 yields three steady points: (1,0), (−1,0), and (0,0). The Jacobi

matrix in the point (x,p) is

J(x,p)=

(

0 1

4−12x2 0

)

. (A.13)
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First, we diagonalize the Jacobi matrix at (0,0)

J(0,0)=

(

0 1

4 0

)

=

(

1 −1

2 2

)(

2 0

0 −2

)(

1
2

1
4

− 1
2

1
4

)

. (A.14)

This shows (0,0) is a saddle point.

Then we diagonalize the Jacobi matrix at the point (±1,0)

J(±1,0)=

(

0 1

−8 0

)

=

(

−
√

2i
√

2i

4 4

)(

2
√

2i 0

0 −2
√

2i

)

(

i
√

2
4

1
8

−i
√

2
4

1
8

)

. (A.15)

The stability in (1,0) and (−1,0) are either centers or spiral points. Since all so-

lutions in classical mechanics dynamics is periodic, spiral case can be ruled out.

Thus, (1,0) and (−1,0) are centers.

For the Hamilton dynamics (3.26) for Langevin dynamics, setting ṗ = 0 and

ẋ=0 yields 5 steady points

(0,0), (1,0), (−1,0),

(

1√
3

,− 4

3
√

3

)

,

(

− 1√
3

,
4

3
√

3

)

.

The Jacobi matrix at the point (x,p) is

J=

(−12x2+4 2

24xp 12x2−4

)

.

First we diagonalize the Jacobi matrix at (−1,0),(0,0), and (1,0).

J(−1,0)= J(1,0)=

(

−8 2

0 8

)

=

(

1 1

8 0

)(

8 0

0 −8

)(

0 1
8

1 − 1
8

)

, (A.16)

J(0,0)=

(

4 2

0 −4

)

=

(

1 −1

0 4

)(

4 0

0 −4

)(

1 1
4

0 1
4

)

. (A.17)

This shows (−1,0),(0,0), and (1,0) are saddle points.

Then, we diagonalize the Jacobi matrix at (− 1√
3
, 4

3
√

3
) and ( 1√

3
,− 4

3
√

3
)

J

(

− 1√
3

,
4

3
√

3

)

= J

(

1√
3

,− 4

3
√

3

)

=

(

0 2

−8 0

)

=

(

−i i

2 2

)(

4i 0

0 −4i

)(

i 1
2

1
4

−i 1
2

1
4

)

. (A.18)
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This shows (− 1√
3
, 4

3
√

3
) and ( 1√

3
,− 4

3
√

3
) are either centers or spiral points. Further

investigation requires computing Hessian matrix. For the Hamiltonian (3.25), the

Hessian matrix at point (x,p) is

(Hess H)(x,p)=

(

−24xp 4−12x2

4−12x2 2

)

. (A.19)

Then, we diagonalize the Hessian matrix at (− 1√
3
, 4

3
√

3
) and ( 1√

3
,− 4

3
√

3
)

(Hess H)

(

− 1√
3

,
4

3
√

3

)

=(Hess H)

(

1√
3

,− 4

3
√

3

)

=

(

24
3 0

0 2

)

. (A.20)

All eigenvalues of the Hessian matrix in the two steady states are positive. There-

fore, two steady points are the local minimum. In a Hamilton dynamics, each

curve will not change its level, so we may safely rule out the spiral case and con-

clude that (− 1√
3
, 4

3
√

3
),( 1√

3
,− 4

3
√

3
) are centers.

Proof for Lemma 4.2. For Hamilton dynamics (4.8) for Langevin dynamics, recall

(2.14). We have b(x) =−∇U(x). Then, b(x) is symmetric with respect to the

point (2,0), i.e., b(2−x)=−b(2+x) for all x. Shifting the system two units to the

left, one may derive H(x+2,p) = p(p+b(x+2)). Substituting x and p with −x

and −p, respectively, one may derive

H(−p,−x+2)=−p
(

−p+b(−x+2)
)

= p
(

p+b(x+2)
)

=H(p,x+2). (A.21)

It shows the shifted system is symmetric with respect to the origin. Therefore, the

original system is symmetric with respect to (2,0). Similarly,

H
(

∇U(x)−p,x
)

=
(

∇U(x)−p
)(

∇U(x)−p−∇U(x)
)

= p
(

p−∇U(x)
)

=H(p,x). (A.22)

For Hamiltonian of chemical reaction (4.3), we perform the following compu-

tation:

H
(

∇ψ(x)−p,x
)

=(6x2+6)
(

e∇ψ−p−1
)

+(x3+11x)
(

ep−∇ψ−1
)

=(6x2+6)

(

x3+11x

6x2+6
e−p−1

)

+(x3+11x)

(

ep 6x2+6

x3+11x
−1

)

=(x3+11x)e−p−(6x2+6)+ep(6x2+6)−(x3+11x)

=(6x2+6)(ep−1)+(x3+11x)(e−p−1)

=H(p,x).

The proof is complete.
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Proof for Lemma 4.3. For Hamilton dynamics (4.9) Langevin dynamics, setting ṗ=
0 and ẋ=0 yields 5 steady points

(1,0), (2,0), (3,0),

(

2+
1√
3

, − 1

3
√

3

)

,

(

2− 1√
3

,
1

3
√

3

)

.

The Jacobi matrix in the point (x,p) is

J(x,p)=

(−3x2+12x−11 2

p(6x−12) 3x2−12x+11

)

.

First we diagonalize the Jacobi matrix at (1,0),(2,0), and (3,0)

J(1,0)= J(3,0)=

(

−2 2

0 2

)

=

(

1 1

2 0

)(

2 0

0 −2

)(

0 1
2

1 − 1
2

)

, (A.23)

J(2,0)=

(

1 2

0 −1

)

=

(

1 −1

0 1

)(

1 0

0 −1

)(

1 1

0 1

)

. (A.24)

It shows (1,0),(2,0),(3,0) are saddle points.

Then, we diagonalize the Jacobi matrix at (2+ 1√
3
,− 1

3
√

3
), and (2− 1√

3
, 1

3
√

3
)

J

(

2+
1√
3

,− 1

3
√

3

)

= J

(

2− 1√
3

,
1

3
√

3

)

=

(

0 2

− 2
3 0

)

=

(

−
√

3i
√

3i

1 1

)

(

2√
3
i 0

0 − 2√
3
i

)(

i
√

3
6

1
2

−i
√

3
6

1
2

)

. (A.25)

It shows (2+ 1√
3
,− 1

3
√

3
), and (2− 1√

3
, 1

3
√

3
) are either centers or spiral points. Fur-

ther investigation requires computing Hessian matrix. For the Hamiltonian (4.8),

the Hessian matrix at point (x,p) is

(Hess H)(x,p)=

(

2 −3x2+12x−11

−3x2+12x−11 −6p(x−2)

)

. (A.26)

Then, we diagonalize the Hessian matrix at (2+ 1√
3
,− 1

3
√

3
) and (2− 1√

3
, 1

3
√

3
)

(Hess H)

(

2+
1√
3

,− 1

3
√

3

)

=(Hess H)

(

2− 1√
3

,
1

3
√

3

)

=

(

2 0

0 2
3

)

. (A.27)

All eigenvalues of the Hessian matrix in the two steady states are positive. There-

fore, two steady points are the local minimum. In a Hamilton dynamics, each
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curve will not change its level, so we may safely rule out the spiral case and con-

clude that (2+ 1√
3
,− 1

3
√

3
) and (2− 1√

3
, 1

3
√

3
) are centers.

For chemical reaction (4.5), setting ṗ=0, ẋ=0, and p=0 yields 3 steady points:

(1,0),(2,0),(3,0). The Jacobi matrix is

J(x,p)=

(

12xep−(3x2+11)e−p (6x2+6)ep+(x3+11x)e−p

−12(ep−1)−6x(e−p−1) −12xep+(3x2+11)e−p

)

.

We diagonalize the Jacobi matrix at (1,0),(2,0),(3,0)

J(1,0)=

(

−2 24

0 2

)

=

(

6 1

1 0

)(

2 0

0 −2

)(

0 1

1 −6

)

, (A.28)

J(2,0)=

(

1 60

0 −1

)

=

(

1 −30

0 1

)(

1 0

0 −1

)(

1 30

0 1

)

, (A.29)

J(3,0)=

(−2 120

0 2

)

=

(

30 1

1 0

)(

2 0

0 −2

)(

0 1

1 −30

)

. (A.30)

This shows (1,0),(2,0),(3,0) are saddle points.

Note that det(J(x1,p1))>0 and det(J(x2,p2))>0. Therefore, the characteristic

equation of Jacobi matrix in (x1,y1) and (x2,y2) has two purely imaginary roots.

Thus, (x1,y1) and (x2,y2) are either centers or spiral points. With similar process

to compute the Hessian matrix, we may conclude the two points are centers.

Acknowledgments

The authors would like to thank the undergraduate research program VIP at Pur-
due. Yuan Gao was supported by NSF under Award DMS-2204288.

References

[1] D. F. Anderson and T. G. Kurtz, Stochastic Analysis of Biochemical Systems, Springer,

2015.

[2] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Macroscopic

fluctuation theory, Rev. Modern Phys. 87(2) (2015), 593–636.

[3] W. Bryc, Large deviations by the asymptotic value method, in: Diffusion Process and Re-

lated Problems in Analysis, Vol. I. Diffusions in Analysis and Geometry, Birkhaüser, 1990,
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