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Abstract. In the last two decades, many edge detection methods have been developed
and widely used in image processing for edge detection and the hybrid compact-
WENO finite difference (hybrid) schemes for solving the system of hyperbolic con-
servation laws with solutions containing both discontinuous and complex fine-scale
structures. However, many edge detection methods include the problem-dependent
parameters such as the high order multi-resolution (MR) analysis (Harten, JCP, 49
(1983)). Therefore, we combined the Tukey’s boxplot method with MR analysis (Gao et
al., JSC, 73 (2017)) to overcome this problem in a sense. But the Tukey’s boxplot method
needs to sort the data at the beginning of Runge-Kutta time integration method, which
is relatively time-consuming and inefficient. In this study, we employ the PauTa cri-
terion and remove the problem-dependent parameters in the MR analysis. Further-
more, two new edge detection approaches, which are based on second-order central
difference scheme and Ren’s idea (Ren et al., JCP, 192 (2003)), are also proposed. The
accuracy, efficiency and robustness of the hybrid scheme with the new edge detectors
are verified by numerous classical one- and two-dimensional examples in the image
processing and compressible Euler equations with discontinuous solutions.
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1 Introduction

The nonlinear system of hyperbolic conservation laws can be written compactly as

∂Q
∂t

+∇·F(Q)=0, (1.1)

where Q and F(Q) represent the conservative variables and fluxes, respectively, together
with appropriate initial and boundary conditions in a Cartesian domain. For example,
the two-dimensional compressible Euler equation:

∂Q
∂t

+
∂F
∂x

+
∂G
∂y

=0, (1.2)

with

Q=(ρ,ρu,ρv,E)T, F=(ρu,ρu2+P,ρuv,(E+P)u)T, G=(ρv,ρuv,ρv2+P,(E+P)v)T,

where ρ is density, E is the total energy, (u,v)T is the velocity vector, P=(γ−1)(E− 1
2 ρ(u2+

v2)) is the pressure and γ= 1.4 is the specific heat ratio of ideal gas. For the nonlinear
hyperbolic conservation laws, even if the initial conditions are sufficiently smooth, the
solutions will be discontinuous [1, 14, 21, 27] over time. Therefore, the solutions of such
nonlinear systems could create both complex fine smooth and large strong gradient flow
structures dynamically in space and time.

The hybrid compact-WENO finite difference (hybrid) scheme, based on the
high order nonlinear characteristic-wise weighted essentially non-oscillatory (WENO)
scheme [1, 14, 27] and the high resolution spectral-like compact scheme, is widely used
for capturing shocks and strong gradients accurately and resolving smooth scale struc-
tures of solutions of the system of hyperbolic conservation laws [4, 18, 20, 23, 26]. The
key issue in any hybrid scheme is to design an accurate, robust, and efficient high order
shock detection algorithm that is capable of determining the smoothness of the solution
at any given grid point. Moreover, by assuming a discontinuity as an edge of an object
in an image, the edge detection methods in image processing can be directly applied as
a shock detector in the hybrid scheme. Therefore, in the last two decades, many edge
detection methods have been developed for the edge detection and hybrid scheme for
solving the system of hyperbolic conservation laws. Costa et al. [4, 5] presented the arbi-
trary order multi-resolution (MR) analysis of Harten [11] for recognizing non-smooth and
smooth stencils. Don et al. [6] designed a conjugate Fourier shock detection algorithm us-
ing the conjugate Fourier partial sums and their derivatives to detect discontinuities. In
literature [17], Li et al. discussed in detail the detection effect of various low-precision
discontinuity detection methods, such as TVB method [3] and KXRCF method [15]. The
results show that in the cases of complex structures, these low-order methods do not cap-
ture discontinuities accurately. Gao et al. [8] combined the Tukey’s boxplot method [29]
with the MR analysis to improve the robustness of the shock detection methods, which
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essentially removes the need of specifying parameter εMR. Wang et al. [34] proposed a
shock detection method based on radial basis function (RBF). However, it requires the
inverse of the matrix, which results in lower computational efficiency. Yang et al. [38]
derived the RBF method of finite difference form (RBF-FD) formula in the Lagrangian
form based on radial basis function interpolation, which avoids the complex calculation
of matrix inverse and greatly improves the computational effort. In [24], the authors con-
structed a shock detection method by considering a variation of Harten’s idea [10] and
consecutive discrete slopes. It is effective in detecting shock waves, but there a significant
drawback that the smooth sine waves cannot be interpreted as the smooth functions [39]
correctly because the first-order derivatives are usually large for high frequencies and the
second-order derivatives are also large at critical points. Zhao et al. used the troubled cell
indicator based on the extreme point of approximated polynomial and deigned a new hy-
brid WENO scheme for hyperbolic conservation laws in [41]. In [2], the authors improved
the troubled cell indicator [41], then used it to design the hybrid WENO-AO method. Fu
proposed a discontinuity indicator based on the high order TENO paradigm and con-
structed a hybrid method with TENO scheme for hyperbolic conservation laws [7]. Guo
et al. [9] constructed the hybrid schemes which based on the discontinuity indicator us-
ing a more straightforward numerical condition. The VF/CF hybrid method has been
constructed in [31] for solving Euler equations and the critical regions were identified
using a modified Bhagatwala-Lele shock sensor. Using the nonlinear indicator based on
the second-order derivative of the concentration, Hu et al. [12] constructed a hybrid first
order and WENO scheme for the high-resolution and computationally efficient modeling
of pollutant transport.

However, many edge detection algorithms usually require specifying a problem de-
pendent parameter (see Section 2 for details). Vuik et al. [32] used the Tukey’s boxplot
method [29] to pinpoint the locations of discontinuities by the outlier-detection algo-
rithm, which identifies the corresponding outliers from the coefficients obtained via the
troubled-cell indicator algorithm. Based on the analysis of a large number of field data,
an outlier monitoring method based on the PauTa criterion is proposed by Li et al. [19],
the experimental results showed that the PauTa criterion could effectively detect abnor-
mal points of groundwater in the process of water level monitoring. Compared with
the Tukey’s boxplot method, the PauTa criterion does not need to sort the data, which
can save the computational time. Therefore, we first propose an efficient edge detector
based on the PauTa criterion and remove the problem-dependent parameters in the MR
analysis. To improve the performance of the PauTa criterion in discriminating the edge
locations from other parts, the physical domain is divided into a set of subdomains con-
taining 30v 50 grid points. Then the PauTa criterion is applied to each subdomain to
detect the edges respectively. Due to the sensitivity of PauTa criterion, small perturba-
tion points may be misjudged as the non-smooth grids. For example, a constant function
has a small perturbation on a grid point, and then the small perturbation point may be
misjudged as a discontinuous point. In order to overcome this problem, we modify the
original PauTa criterion by including the global mean of the data set in the definition of
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fences in each segmented subdomain. The resulted PauTa criterion can further improve
the accuracy, efficiency, and robustness of the edge detection methods. Moreover, we
design two new edge detection methods to detect the locations of discontinuities. One
is based on the second-order central difference scheme, which is similar to the RBF-FD
scheme, but intuitively simpler than the RBF-FD scheme. We refer to this method as the
C2 method. The other one is an improved method based on Ren’s idea in [24], which
will be referred to as the IR method. The accuracy of the proposed methods is verified
by several one- and two-dimensional examples in the image processing. We further in-
vestigate its capability in detecting the shock locations of complex shocked solutions of
compressible Euler equations computed by the hybrid scheme.

This paper is organized as follows. The edge detection algorithms of MR analysis,
C2 method and IR method are briefly introduced in Section 2. The new edge detection
method based on the PauTa criterion are introduced in Section 3. In Section 4, we inves-
tigate the capability of the new methods by several one- and two-dimensional examples
in the image processing. A large number of classical one- and two-dimensional shocked
flow described by the compressible Euler equations are discussed in Section 5. Conclu-
sions are given in Section 6.

2 Edge detection methods

In this section, we introduce three edge detection methods used to detect the edges of
images and the locations of large gradients in the flow filed. However, all of these three
methods include the problem-dependent parameters. Our goal is to assume the feature
point sequence computed by these methods as the normal distribution, and then use the
PauTa criterion to detect the locations of edges.

2.1 Multi-resolution analysis

The basic idea of multi-resolution (MR) analysis [11] is to produce a coarser grid of av-
erages of the point values of a function and measure the differences (MR coefficients) di
between the interpolated values from the sub-grid and the point values themselves. It
has been successfully applied to the high order hybrid schemes [4–6].

Given the grid number N0 and the initial value of grid spacing ∆x0 in the domain
[0,1], a set of nested binary grids are considered,

Gk ={xk
i , i=0,··· ,Nk}, 0≤ k≤L< log2 N0, (2.1)

where xk
i = i∆xk with ∆xk =2k∆x0, Nk =2−kN0 and the cell averages of function u at xk

i :

ūk
i =

1
∆xk

∫ xk
i

xk
i−1

u(x)dx. (2.2)
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Let ũk
2i−1 be the approximation to ūk

2i−1 by a unique polynomial of degree nMR = 2s that
interpolates ūk

i+l , l≤ s at xk
i+l .

The approximation error (or multi-resolution coefficients), taking k = 1 for a single-
level MR, di = ū0

2i−1−ũ0
2i−1 at xi, has the property that if u(x) is a Cp−1 function, then

di≈
{

[u(p)
i ]∆xp

1 , p≤q,

u(q)
i ∆xq

1, p>q,
(2.3)

where q=2s+1 is the order of approximation, [·] and (·) show the jump ([ fi]= | fi+1− fi|)
and the derivatives of the function ( f (p)

i = dp

dxp f (xi)), respectively. The MR coefficient di
represents how close the data at the finer mesh can be interpolated by the data at the
coarser mesh. Therefore, MR coefficients can be used to evaluate the local smoothness of
the function at a given point and MR Flag, Flagi at xi, can be given as

Flagi =

{
1, |di|>εMR, Non-smooth,
0, otherwise, Smooth,

(2.4)

where εMR is the MR tolerance and it is a problem-dependent parameter. Inappropri-
ate selection of εMR will lead to the failure of detecting smooth and non-smooth stencils
correctly.

2.2 Second-order central difference scheme

A edge detection algorithm based on radial basis functions (RBF) [34] was proposed and
successfully applied in the hybrid scheme. However, in the process of computation, we
need to take the inverse of the matrix, which takes a lot of time. The complex matrix
inversion process was avoided by the RBF-FD scheme [38]. In this study, we use a new
approach based on the C2 method to detect the locations of discontinuities, which is
similar to the RBF-FD scheme, but intuitively simpler than the RBF-FD scheme.

Three uniform grid points {xi−1,xi,xi+1} are considered, where ∆x=xi−xi−1=xi+1−
xi. Second-order central difference scheme is obtained by expanding both f (xi+1) and
f (xi−1) using Taylor’s formula:

f ′i = f ′(xi)=
f (xi+1)− f (xi−1)

2∆x
, (2.5a)

f ′′i = f ′′(xi)=
f (xi+1)−2 f (xi)+ f (xi−1)

(∆x)2 . (2.5b)

The key issue in the edge detection method is to increase the difference between discon-
tinuity and smoothness. The edge set E can be defined by using the information of Eqs.
(2.5a) and (2.5b)

E={xi|di =( f ′i )
2+( f ′′i )

2≥ ξ1>0, xi∈X, i=1,2,··· ,N},
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where ξ1 is the problem dependent parameter, di is used to measure the smoothness of
the function at xi, and X is the set of grid points.

The definition of edge set takes the information of the first- and second-order deriva-
tives into consideration, which can deal with the discontinuity of the first-order deriva-
tive, and increase the differences between smooth and discontinuous regions. In this way,
smooth and discontinuous regions can be quickly and easily detected.

2.3 Improved indicator based on Ren’s idea

Traditional shock sensors [10, 13, 24] also relied on the first- or second-order discrete
derivatives of the flow variables. Harten [10] designed a shock detection function aimed
at identifying large variations in the slope of the numerical solution. Ren et al. [24] con-
structed a shock detection method by considering a variation of Harten’s idea [10] and
consecutive discrete slopes. The corresponding edge indicator is designed as

ri =1−min
(

1,
zi

rc

)
, (2.6)

with

zi =
|2( fi+1− fi)( fi− fi−1)|+ε

( fi+1− fi)2+( fi− fi−1)2+ε
, (2.7)

where ε = 0.9rcξ2/(1−0.9rc). This method is effective in tracking shocks by giving the
suitable threshold parameters ξ and rc. However, the two parameters are problem-
dependent and it is difficult to determine two appropriate parameters at the same time
in practical problems. For example, the high frequency smooth sine waves can be in-
correctly interpreted as non-smooth functions [39] by this method (ξ =10−3 and rc =0.5
used in the method). Another disadvantage of Ren’s detector is that it is difficult to em-
ploy the PauTa criterion introduced in this study to remove the two problem-dependent
parameters. Therefore, we modify the edge indicator based on the Ren’s idea as follow:

di =( fi+1− fi)
2+( fi− fi−1)

2−|2( fi+1− fi)( fi− fi−1)|
=(| fi+1− fi|−| fi− fi−1|)2

=

{
( f ′′)2(∆x)4+o(∆x)6, ( fi+1− fi)( fi− fi−1)≥0,
4( f ′)2(∆x)2+o(∆x)4, ( fi+1− fi)( fi− fi−1)<0,

(2.8)

where ∆x = xi−xi−1. Then the edge set E can be defined by using the information of
Eq. (2.8)

E={xi|di≥ ξ2>0, xi∈X, i=1,2,.. .,N},

where the only threshold parameter ξ2 is related to the problem.
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3 Edge detection algorithm based on the PauTa criterion

The threshold parameter plays an important role in the performance of edge detection
algorithm. In order to increase the robustness of the algorithm, the idea proposed in [32]
is to use the statistical techniques in data analysis. Gao et al. [8] combined the Tukey’s
boxplot method [29] with the MR analysis [11] to enhance the robustness of the edge
detection method by removing the need of specifying threshold parameter εMR and solve
the system of hyperbolic conservation laws by the hybrid scheme. However, the Tukey’s
boxplot method needs to sort the data at the beginning of Runge-Kutta method, which is
relatively slow and inefficient, while the PauTa criterion [30] is relatively effective without
sorting data, which is often used to detect outliers of data in statistics [19, 33, 35, 37].

We first introduce the normal distribution before introducing the PauTa criterion. The
normal distribution is also known as the Gaussian distribution [40], which is the distri-
bution of a continuous random variable with two parameters µ and σ2. The parameter µ
is the mean of the random variable following the normal distribution, σ is the standard
deviation and σ2 is the variance of the random variable. Therefore, the normal distribu-
tion is denoted as N(µ,σ2). The mean value of a normal distribution µ determines its
position, and its standard deviation σ determines the magnitude of the distribution. It
can be seen from Fig. 1 that the curve is a bell shaped, so it is often called a bell shaped
curve. The PauTa criterion’s main idea is as follows:

Figure 1: The Normal distribution curve.

PauTa criterion: It is assumed that a set of test data contain only random errors, and stan-
dard deviations are obtained through calculation. An interval is determined according to
a certain probability. It is believed that any error exceeding this interval is not a random
error but a gross error, and the data containing such errors should be eliminated.

This discriminate processing principle is only limited to the normal or approximately
normal distribution of the sample data processing. The numerical distribution interval
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Table 1: The PauTa criterion.

Numerical distribution interval The proportion of the data
(µ−σ,µ+σ) 0.6827
(µ−2σ,µ+2σ) 0.9545
(µ−3σ,µ+3σ) 0.9973

and the proportion of the data are shown in Table 1. Compared with the Tukey’s boxplot,
the edge detection algorithm based on the PauTa criterion has the advantage that it is not
necessary to spend time in sorting the data. The main feature is that if most of the data is
well distributed (containing only a small number of outliers), it can detect outliers very
accurately. Another important feature is that it does not need to specify the number and
range of outliers in advance. Furthermore, we assume that there are few discontinuities
and shock waves in the numerical solution of system of hyperbolic conservation laws.
From the point of view of feature point series computed by the shock detection methods,
since the feature values are small in the smooth region while is large in the discontinuous
region, the data is approximately normal distribution, so the discontinuous points are
similar to the outliers. Therefore, the PauTa criterion can remove the threshold parameter
to enhance the robustness of the edge detection algorithm.

A data set is assumed to be as d = (d1,d2,··· ,dN). Because the global region may
contain complex solution structure (including strong discontinuity, weak discontinuity
and fine scales structures), therefore the data points maybe too complex to discriminate
the discontinuities from the smooth parts. In this paper, it is recommended that the full
physical domain be segmented into n subdomains, each of which contains m data. The
data of the jth subdomain is dj =(dj

1,dj
2,··· ,dj

m). The mean of the jth subdomain is called

Mj =
1
m

( m

∑
i=1
|dj

i |
)

.

The standard deviation of the jth subdomain is

Sj =

√√√√ m

∑
i=1

(dj
i−Mj)2

m
.

To identify the potential outlier(s) in the data set dj, we give fences Fj
1 = Mj−αSj and

Fj
2 = Mj+αSj. Using the fences, the domain can be defined as Ωj = [Fj

1,Fj
2]. Any data dj

i

that lies outside Ωj (dj
i /∈Ωj) is considered to be an outlier and assumed to be the non-

smooth Flag at its corresponding grid point that is, Flagj
i =1. Otherwise, we set Flagj

i =0.
The choice of α= 3 is commonly used in many literatures such as [19], sometimes α= 2
can also be selected.

Due to the sensitivity of PauTa criterion, small perturbation points may be misjudged
as the outliers and marked as the non-smooth stencils. For example, one can consider the
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following test function f (x):

f (x)=



5, −1.5≤ x≤−1,

0, −1< x≤− π

64
,

0.05sin(256x), − π

64
< x≤ π

64
,

0,
π

64
< x≤1.5,

7, 1.5< x≤2.

(3.1)

In the left of Fig. 2, the blue line scale represents the MR coefficients, which are ap-
proximately normal distribution. The black square shows the locations of discontinuity
detected by combining the MR coefficients with original PauTa criterion. It is observed
that when a constant function has the small perturbations, the small perturbations are
misjudged as discontinuous points. In order to remove false identification of smooth
stencils as the non-smooth stencils, we modify the definition of the fences to be

Fj
1=min{Mj−αSj,−M} and Fj

2=max{Mj+αSj,M},

where

M=
1
N

( N

∑
i=1
|di|
)

and N=n×m.

As we can seen from the right of Fig. 2, after including the global mean in the definition
of fences in each segmented subdomain, all discontinuities are correctly identified and
there is no false identification of smooth stencils as non-smooth stencils.
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Figure 2: The non-smooth stencils of f (x) identified by the (a) original and (b) modified PauTa criterion with
mesh resolution N=280.
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Remark 3.1. By testing many numerical examples, we find that the proposed methods
can detect the edges accurately when m∈[30,50]. For the sake of simplicity, we use m=40
in this paper. In the two-dimensional problems, the one-dimensional algorithm is applied
in the x- and y-directions respectively. The means Mj, M in the x- and y-directions are
computed separately, to obtain Mj

x, Mx and Mj
y, My. In addition, we set α=2 for the MRS

method and α=3 for the C2/IR method in our study.

As the end of this section, we summarize the shock detection algorithm based on the
PauTa criterion in the following Algorithm 3.1.

Algorithm 3.1 The edge detection algorithm based on the PauTa criterion.

1: Divide the whole physical domain into n uniform subdomains, the data of the jth
subdomain is marked as dj = (dj

1,dj
2,··· ,dj

m), (j= 1,··· ,n), where m is the number of
grid points in each subdomain.

2: Compute the mean of jth subdomain

Mj =
( m

∑
i=1
|dj

i |
)/

m, (3.2)

and the standard deviation of the jth subdomain

Sj =

√
m

∑
i=1

(dj
i−Mj)2/m. (3.3)

3: Compute the modified fences for jth subdomain

Fj
1=min{Mj−αSj,−M} and Fj

2=max{Mj+αSj,M}, (3.4)

where M=(∑N
i=1 |di|)/N, α=2 for MRS method and α=3 for C2/IR method.

4: By defining Ωj =[Fj
1,Fj

2] on the jth subdomain, the non-smooth/smooth Flag at each
grid point in the subdomain will be decided accordingly as

Flagj
i =

{
1, dj

i ∈Ωj, non−smoothstencil,
0, others, smoothstencil.

(3.5)

4 Numerical results for edge detection

In this section, we will present some one- and two-dimensional examples in the image
processing to illustrate the performance of the capability of MR analysis, MR analysis



C. Zhang, Z. Gao, S. Ye and P. Li / Adv. Appl. Math. Mech., 15 (2023), pp. 1379-1406 1389

with Tukey’s boxplot method (MRQ), MR analysis with PauTa criterion (MRS), C2 with
PauTa criterion and IR with PauTa criterion in the image edge detection. The edge set
E contains all the centers which are identified as the edges/boundaries/sharp gradients,
which means E={xi|Flag(xi)=Flagi =1, ∀i}.

4.1 One-dimensional piecewise function

Consider the piecewise function g(x):

g(x)=



−3, 0≤ x≤1,
2, 1< x≤2.3,
6, 2.3< x≤3.8,
−1, 3.8< x≤5,
8, 5< x≤2π,
3sin(15x), 2π< x≤12.

(4.1)

Fig. 3 shows the results of the five detection methods. It can be observed that the
smooth sine function is misjudged by the MR analysis with the MR tolerance εMR =
1×10−1 under the low mesh resolution N = 200. However, the MRQ, MRS, C2 and IR
methods can accurately identify the discontinuous region accurately, but MRQ method
needs more grid points to resolve a discontinuity. With the mesh resolution N=400, the
MR analysis and MRQ method reach the similar detection results while the MRS, C2 and
IR methods accurately identify the discontinuity region with fewer grid points around
the discontinuity.

x

g
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)

0 5 10

0

5

g(x)
MR
MRQ
MRS
C2
IR

x

g
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)

0 5 10

0

5

g(x)
MR
MRQ
MRS
C2
IR

(a) (b)

Figure 3: Discontinuity detection of the piecewise function by the five methods with (a) N = 200 and (b)
N=400.
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4.2 One-dimensional multi-wave function

We consider a multi-wave function, which includes the smooth Gauss function, dis-
continuous square function, piecewise linear triangular function and continuous elliptic
function. This function is a good example to test the ability of the discontinuity detec-
tion methods in identifying the smoothness, discontinuities and first derivative of the
function with different mesh resolutions. The function is given as follows:

h(x)=



1
6
[G(x,β,z−δ)+4G(x,β,z)+G(x,β,z+δ)], x∈ [−0.8,−0.6],

1, x∈ [−0.4,−0.2],
1−|10(x−0.1)|, x∈ [0,0.2],
1
6
[F(x,α,a−δ)+4F(x,α,a)+F(x,α,a+δ)], x∈ [0.4,0.6],

0, else,

(4.2)

where

G(x,β,z)= e−β(x−z)2
, F(x,α,a)=

√
max(1−α2(x−a)2,0),

z=−0.7, δ=0.005, β=
log2
36δ2 , a=0.5, α=10.

Fig. 4 shows the detection results, the jump locations in the function at x=−0.4 and
x=−0.2 are accurately determined by the MR analysis with εMR = 2×10−2, but the MR
analysis cannot identify the jumps in the first derivative. The MRQ method and MRS
method perform better than the MR analysis and can capture the jump in the first deriva-
tive at x= 0.1. The locations of all the discontinuities (both in the jumps in the function

x

h
(x

)

-0.5 0 0.5
0

0.2

0.4

0.6

0.8

1
h(x)
MR
MRQ
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C2
IR

Figure 4: Discontinuity detection of the multi-wave function by the five methods with mesh resolution N=240.
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and its first derivative) of the multi-wave function are identified more clearly, accurately
and sharply by the C2 and IR methods. The results show that the C2 and IR methods can
not only capture each discontinuity, but also only with a fewer grid points around it.

4.3 Edge detection of two-dimensional image

In the two-dimensional image detection, the final edge is the union of detection results
in the x- and y-directions. Let’s consider the Shepp-Logan image, which is used to sim-
ulate the gray image of human brain. It consists of a large ellipse (representing the brain
with a relatively large function value) and several smaller ellipses (representing some
characteristic structures of the brain with a relatively small function value). It is often
used to test the ability of edge detection methods to catch small edges with multi-scale
discontinuities.

The image mesh resolution is N×M = 256×256. Fig. 5 shows the detection results
obtained by the five methods. It is clearly observed that the C2 and IR methods can
capture the large edges and small discontinuities accurately.

The results of Shepp-Logan image edge detection along the x-direction at y= 170 is
presented in Fig. 6. It shows that the MR analysis with εMR =5×10−5 and MRQ method

Shepp-Logan image MR MRQ

MRS C2 IR

Figure 5: Edge detection results of Shepp-Logan image.
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Figure 6: Detection results of Shepp-Logan image with the image resolution N×M = 256×256 along the
x-direction at y=170.

can catch the edge accurately, but they need more grid points to detect a discontinuity.
The edge detection method based on the MRS, C2 and IR methods can not only accu-
rately detect the edge of discontinuities with different jump sizes, but also only need two
grid points to capture a discontinuity. The result shows that the three new methods are
superior to the MR analysis and MRQ method in identifying the edge positions.

Fig. 7 shows the edge detection results of a simple image and other three classical im-
ages by the five methods with the resolution N×M=256×256. It is easy to observe that
although some images contain noise and very small discontinuities, the three new meth-
ods show good accuracy in detecting strong discontinuities and very small structures.

5 Numerical results for the hybrid schemes

The hybrid scheme in this study conjugates sixth-order central compact finite difference
scheme with fifth-order WENO-Z scheme as the framework in [4,6]. For clarity, we show
the hybrid compact-WENO scheme in the following Algorithm 5.1 and Fig. 8. The details
of the sixth-order compact finite difference scheme and the fifth-order characteristic-wise
WENO-Z finite difference scheme with the global Lax-Friedrichs flux splitting via the
Roe eigensystem used in this study can be found in [1, 16] and will be briefly introduced
in Appendix. After spatial discretization, the resulting ordinary differential equations are
advanced by the third-order TVD Runge-Kutta time integration method [27]. The CFL
number is taken as 0.45.

Remark 5.1. In this study, the derivatives f ′0 and f ′N in (A.3) at the left and right com-
pact stencil boundaries are computed by the WENO scheme. This boundary treatment
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Figure 7: Edge detection results of classical images (256×256). The first line is the original images, which
from left to right are Sunflower, Airplane, Resolution and Clock. The second to sixth lines are the image edges
detected by MR, MRQ, MRS, C2 and IR methods.
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Algorithm 5.1 Hybrid compact-WENO scheme.

1: Determine the smoothness of solution at the given grid points by a shock detect Al-
gorithm 3.1 for one or more suitable variable(s) (typically, density ρ) at the beginning
of the Runge-Kutta time step.

2: The grid points which is marked as the non-smooth Flag in Algorithm 3.1 will be set
as the non-smooth grid points in the hybrid scheme.

3: Create a buffer zone (blue circle in Fig. 8) around the non-smooth grid point xi such
that all the grid points inside the buffer zone are flagged as the non-smooth sten-
cils. This technique prevents that the derivatives of the fluxes are computed by the
compact scheme at the non-smooth grid points.

4: Compute the derivative of the fluxes at each cell center by

• non-smooth stencil (Flag=1): the WENO scheme.

• smooth stencil (Flag=0): the Compact scheme.

method will destroy the conservation of compact scheme [16], and as a result, the hybrid
compact-WENO scheme is not conservative. However, extensive numerical experiences
included the numerical examples in this study shows that the proposed hybrid scheme
is effective for solving the system of hyperbolic conservation laws [5, 8, 38].

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

Figure 8: Diagram of the stencils for the hybrid scheme.

For simplicity, we denote the the hybrid scheme with the MR analysis, MRQ method,
MRS method, C2 method and IR method as the Hybrid-MR scheme, Hybrid-MRQ
scheme, Hybrid-MRS scheme, Hybrid-C2 scheme and Hybrid-IR scheme respectively.
The WENO percentage is defined as the percentage of non-smooth stencils used by the
fifth order WENO scheme in the whole domain. The performance of corresponding hy-
brid schemes are verified by simulating several classical shocked flows.

5.1 One-dimensional shock-density wave interaction problem

As a standard example in shock detection, the shock-density with Mach number 3 [14]
can easily demonstrate the performance of hybrid schemes in resolving small structures
and capturing small shocklet waves, as well as the ability to detect high frequency smooth
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Figure 9: Shock-density wave interaction problem. The density ρ (Top) and WENO Flag (Bottom) identified
by the hybrid schemes with mesh resolution N=800 at time t=5.

regions. The high frequency waves behind the main shock are smooth functions but are
often misidentified as a strong gradient by a lower order shock detection algorithm [4].
The initial conditions are given by

(ρ,u,P)=


(27

7
,
4
√

35
9

,
31
3

)
, −5≤ x<−4,

(1+εsin(kx),0,1), −4≤ x≤15,

where x∈ [−5,15], ε=0.2 and k=5.
The reflective boundary conditions are setup in this problem. In Fig. 9, it is observed

that the locations of the shock are detected accurately by the four hybrid schemes with
mesh resolution N = 800. Due to the use of PauTa criterion, the Hybrid-MRS scheme,
Hybrid-C2 scheme and Hybrid-IR scheme behave better than the Hybrid-MRQ scheme
by identifying the shock locations with fewer grids. They not only accurately detect the
big and small shocks, but also successfully identifying the high frequency waves. The
CPU times and WENO percentages of the Hybrid-MRQ scheme, Hybrid-MRS scheme,
Hybrid-C2 scheme and Hybrid-IR scheme are shown in Table 2. It can be seen from the
results the Hybrid-C2 scheme and Hybrid-IR scheme have lower WENO percentage and
are faster than Hybrid-MRQ scheme.

5.2 Two-dimensional Riemann initial value problem

According to the two-dimensional Riemann problem, 19 different initial configurations
are given in literature [25], which contain rarefaction-(

−→
R ), shock-(

←−
S ), and contact-wave

(J±). The arrows (−→· ) and (←−· ) indicate forward and backward waves, and the super-
scripts + and − refer to negative and positive contact waves respectively. Next, we solve
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Table 2: Shock-density wave interaction problem. The CPU times (in seconds) and the WENO percentage of
the four hybrid schemes.

Time Hybrid-MRQ Hybrid-MRS Hybrid-C2 Hybrid-IR
CPU Percentage CPU Percentage CPU Percentage CPU percentage

t=5.0 1.370 23.5% 1.246 21.7% 1.227 19.7% 1.206 19.7%

the classical two-dimensional Riemann problem with initial conditions as follows:

Q=(P,ρ,u,v)=


Q1=(P1,ρ1,u1,v1), if x> x0 and y≥y0,
Q2=(P2,ρ2,u2,v2), if x≤ x0 and y≥y0,
Q3=(P3,ρ3,u3,v3), if x≤ x0 and y<y0,
Q4=(P4,ρ4,u4,v4), if x> x0 and y<y0.

Considering that the calculation and shock capture results of different configurations are
similar, other configurations are omitted to avoid duplicated description, and only the re-
sult of configuration 3 is presented in this paper. For configuration 3, the center (x0,y0) is
moved from (0.5,0.5) to (0.8,0.8) in order to verify the performance of the hybrid scheme
for long time numerical simulation and shock capturing. The configuration 3 is as fol-
lows:

• (
←−
R21,
←−
R32,
←−
R34,
←−
R41), (x0,y0)=(0.8,0.8), t=0.8,

Q=


(1.5,1.5,0,0),
(0.3,0.5323,1.206,0),
(0.029,0.138,1.206,1.206),
(0.3,0.5323,0,1.206).

Fig. 10 shows the corresponding contour of density, Flagx and Flagy computed by the hy-
brid schemes. The large scale structures (including incident shock, reflected shock, Mach
bar and slip plane) are consistent with those in the literature [6, 8, 25]. The correspond-
ing Flag (black line) shows that the hybrid schemes can accurately capture the locations
of discontinuities and large gradient. However, the Hybrid-MRS scheme, Hybrid-C2
scheme and Hybrid-IR scheme can detect the non-smooth regions with less grid points
than the Hybrid-MRQ scheme. It results in that the Hybrid-MRQ scheme is unable to
effectively depict small vortex structure.

Table 3 and Table 4 present the percentages of the WENO scheme, CPU times and
speedup factors of the WENO and the four hybrid schemes for configuration 3. It can
be seen from the results that the WENO percentage of Hybrid-MRS scheme, Hybrid-C2
scheme and Hybrid-IR scheme are much lower than the Hybrid-MRQ scheme. The CPU
times show that three new hybrid schemes are faster than the Hybrid-MRQ scheme and
about 2.8 times as fast as the WENO-Z scheme with mesh resolution N×M=400×400.



C. Zhang, Z. Gao, S. Ye and P. Li / Adv. Appl. Math. Mech., 15 (2023), pp. 1379-1406 1397

Hybrid-MRQ Hybrid-MRS Hybrid-C2 Hybrid-IR
D

en
si

ty
ρ

Fl
ag

x P 
二

-a
Z主

主......... 

0.8 

0.6 

>-

0.8 0.6 

-42
-

x 
0.4 。 .2

0 .4 

O 
O 

0.2 

Fl
ag

y Mhh|, t J1 

>- i川-dW|

。 .2 0.4 0.6 0.8 
x 

Figure 10: Riemann initial value problem. Density ρ, Flagx and Flagy identified by the hybrid schemes with

mesh resolution N×M=400×400 at time t=0.25.

5.3 Two-dimensional Mach 10 double mach reflection problem

For the two-dimensional problem, the Mach 10 double Mach reflection problem (DMR)
is also considered, which can be described in detail in the article [36]. The computational
region is defined as [0,4]×[0,1]. The initial conditions are

Q=(ρ,u,v,P)=

{
(8,8.25cosθ,−8.25sinθ,116.5), x< x0+y/

√
3,

(1.4,0,0,1), x≥ x0+y/
√

3,

with x0 =
1
6 and θ = π/6. The final time is t = 0.2. Supersonic inflow and free-stream

outflow boundary conditions are specified at x= 0 and x= 4, respectively. At the lower

Table 3: Riemann initial value problem. The WENO percentage of the four hybrid schemes with different mesh
resolutions.

N Hybrid-MRQ Hybrid-MRS Hybrid-C2 Hybrid-IR
200×200 28.8% 16.0% 13.8% 13.8%
400×400 19.4% 11.3% 8.6% 8.7%
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Table 4: Riemann initial value problem. The CPU times (in seconds) of the WENO-Z and hybrid schemes, and
the speedup factors (SF) of hybrid schemes.

N WENO-Z Hybrid-MRQ Hybrid-MRS Hybrid-C2 Hybrid-IR
CPU CPU SF CPU SF CPU SF CPU SF

200×200 229.4 138.2 1.66 108.4 2.12 107.9 2.13 109.0 2.10
400×400 1922 831.7 2.31 699.7 2.75 690.5 2.78 684.2 2.81

boundary y= 0, reflective boundary conditions are applied in the interval [x0,4]. At the
upper boundary y=1, the exact solution of the Mach 10 moving oblique shock is imposed.

Fig. 11 shows the density and Flag computed by the four hybrid schemes. Similar to
the Hybrid-MRQ scheme, the Hybrid-MRS scheme, Hybrid-C2 scheme and Hybrid-IR
scheme perform well in detecting the locations of shock waves and large gradients. The
number of grid points around the locations of discontinuities and high gradient detected
by the three new hybrid scheme are obviously less than that of the Hybrid-MRQ scheme.
Therefore, the small structures resolved by the three new hybrid schemes are more abun-
dant, such as the curled vortex structures in the locally enlarged density contour shown
in Fig. 11.

We run the hybrid schemes with mesh resolutions 400×100 and 800×200 respectively.
Table 5 and Table 6 show the percentage of WENO scheme, the CPU times along with the
speedup factors of WENO-Z and hybrid schemes for solving DMR problem with differ-
ent mesh resolutions. The WENO percentage of the three new hybrid schemes especially
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Figure 11: DMR problem. Density ρ, Flagx and Flagy identified by the hybrid schemes with mesh resolution

N×M=800×200 at time t=0.2.
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Table 5: DMR problem. The WENO percentage of the four hybrid schemes with different mesh resolutions.

N Hybrid-MRQ Hybrid-MRS Hybrid-C2 Hybrid-IR
400×100 23.0% 14.9% 10.6% 10.5%
800×200 13.6% 8.5% 5.9% 6.0%

Table 6: DMR problem. The CPU times (in seconds) of the WENO-Z and hybrid schemes, and the speedup
factors (SF) of hybrid schemes.

N WENO-Z Hybrid-MRQ Hybrid-MRS Hybrid-C2 Hybrid-IR
CPU CPU SF CPU SF CPU SF CPU SF

400×100 157.5 77.8 2.02 64.9 2.43 51.5 3.06 50.8 3.10
800×200 1243 496.7 2.50 432.8 2.87 426.9 2.91 421.3 2.95

Hybrid-C2 scheme and Hybrid-IR scheme are less than that of the Hybrid-MRQ scheme.
Similar to the Hybrid-MRQ scheme, the three new hybrid schemes are more efficient than
the WENO-Z scheme. Compared with the Hybrid-MRQ scheme, the three new hybrid
schemes especially Hybrid-C2 scheme and Hybrid-IR scheme can be three times faster
than the WENO-Z scheme even at a lower mesh resolution.

5.4 Two-dimensional explosion problem

The two-dimensional explosion problem is considered, which was described in detail
in the article [28]. The computational region is defined as [−3,3]×[−3,3]. The initial
conditions include the inner and outer regions of the circle with radius R=0.4 centered
on (0,0). The initial velocities are u= 0,v= 0 and the final time is t= 3.18, density and
pressure distributions are given as follows:{

ρ(x,y)=1, P(x,y)=1, if x2+y2< (0.4)2,
ρ(x,y)=0.125, P(x,y)=0.1, otherwise.

The boundary conditions are reflective boundary conditions and the computational re-
gion is [0,3]×[0,3]. As can be seen from Fig. 12, for the explosion problem, the four hybrid
schemes can find the discontinuities in oblique symmetry, but the Hybrid-MRS scheme,
Hybrid-C2 scheme and Hybrid-IR scheme can identify the high-frequency smooth re-
gions with large amplitude, so as to capture the discontinuities in the large gradient
structures more accurately. The Hybrid-MRQ scheme is sensitive to small perturbations
and show low efficiency. The three new hybrid schemes are insensitive to those small
perturbations and can accurately capture the discontinuities in the large gradient struc-
tures. Therefore, the Hybrid-MRQ scheme is not as accurate as the three new hybrid
schemes. The percentages of the WENO-Z scheme, CPU times and speedup factors of
the WENO-Z and the four hybrid schemes are presented in Table 7 and Table 8. One
can find that the WENO percentage of the three new hybrid schemes are much lower
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Figure 12: Explosion problem. Density ρ, Flagx and Flagy identified by hybrid schemes with resolution 400×400
at time t=3.18.

than that of the Hybrid-MRQ scheme. The CPU times show that the three new hybrid
schemes, especially the Hybrid-C2 scheme and Hybrid-IR scheme, are about 3.3 times
faster than the WENO-Z scheme while the Hybrid-MRQ scheme only 2.5 times with the
mesh resolution N×M=400×400.

Table 7: Explosion problem. The WENO percentage of the four hybrid schemes with different mesh resolutions.

N Hybrid-MRQ Hybrid-MRS Hybrid-C2 Hybrid-IR
200×200 25.2% 15.5% 13.2% 13.1%
400×400 16.4% 9.8% 7.8% 7.7%

Table 8: Explosion problem. The CPU times (in seconds) of the WENO-Z and hybrid schemes, and the speedup
factors (SF) of the hybrid schemes.

N WENO-Z Hybrid-MRQ Hybrid-MRS Hybrid-C2 Hybrid-IR
CPU CPU SF CPU SF CPU SF CPU SF

200×200 84.3 47.4 1.78 37.6 2.24 34.4 2.45 32.6 2.59
400×400 700 271.9 2.57 226.8 3.08 208.4 3.36 199.6 3.51
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5.5 Two-dimensional implosion problem

The implosion problem is one of the more challenging problems described by Liska and
Wendroff [22]. The gas is in a square area [−0.3,0.3]×[−0.3,0.3]. The initial density and
pressure distributions are as follows:

(ρ,u,v,P)=

{
(0.125,0,0,0.14), if |x−0.3|<0.15 and |y−0.3|<0.15,
(1,0,0,1), otherwise.

The boundary conditions are periodic boundary conditions. The computational domain
is [0,0.6]×[0,0.6] and the final time is t = 0.75. The density with flooded contours and
lines are shown in Fig. 13. Compared with the Hybrid-MRQ scheme, we observe that the
WENO Flag of the three new hybrid schemes are very sharp in the x- and y-directions.
Each segmented domain only contains a small number of grid points, which confirms the
accuracy of the three new shock detection algorithms.

Table 9 and Table 10 present the percentages of the WENO-Z scheme, CPU times and
speedup factors of the WENO-Z and the four hybrid schemes. The results show that the
speeds of hybrid schemes are obviously faster than the WENO-Z scheme. The speeds of
the three new hybrid schemes, especially Hybrid-C2 scheme and Hybrid-IR scheme, are
faster with less WENO-Z percentage than the Hybrid-MRQ scheme.
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Figure 13: Implosion problem. Density ρ, Flagx and Flagy identified by the hybrid schemes with mesh resolution

N×M=400×400 at time t=0.75.



1402 C. Zhang, Z. Gao, S. Ye and P. Li / Adv. Appl. Math. Mech., 15 (2023), pp. 1379-1406

Table 9: Implosion problem. The WENO percentage of the four hybrid schemes with different mesh resolutions.

N Hybrid-MRQ Hybrid-MRS Hybrid-C2 Hybrid-IR
200×200 40.1% 23.0% 17.8% 18.4%
400×400 26.7% 15.7% 12.0% 13.0%

Table 10: Implosion problem. The CPU times (in seconds) of the WENO-Z and hybrid schemes, and the
speedup factors (SF) of hybrid schemes.

N WENO-Z Hybrid-MRQ Hybrid-MRS Hybrid-C2 Hybrid-IR
CPU CPU SF CPU SF CPU SF CPU SF

200×200 134.6 97.5 1.38 71.8 1.87 68.9 1.95 67.1 2.01
400×400 1183 596.9 1.98 478.8 2.47 439.5 2.69 428.3 2.76

6 Conclusions

In this study, we replace the Tukey’s boxplot method in the MR edge detector with the
PauTa criterion to remove the problem-dependent parameters and improve its efficiency.
Furthermore, two new edge detection approaches, which are based on second-order cen-
tral difference scheme and Ren’s idea, are also proposed. The accuracy, efficiency and
robustness of the new edge detectors and the designed hybrid compact-WENO scheme
are verified by numerous classical one- and two-dimensional examples in the image pro-
cessing and compressible Euler equations with solutions containing both discontinuous
and complex fine scale structures.

Appendix A: Compact finite difference schemes

The sixth-order central compact finite difference scheme [16] can be written compactly as

Af′=Bf+b, (A.1)

where A and B are the banded coefficient matrices,

A=



1
1
3

1
3

1
1
3

. . . . . .
1
3

1
3

1
3

1
3

1


, (A.2a)
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B=
1

36∆x



0 28 1
−28 0 28 1
−1 −28 0 28 1

. . . . . . . . . . . . . . .
−1 −28 0 28

−1 −28 0


. (A.2b)

The vector b is

b=
1

36∆x
(− f−1−28 f0,− f0,0,··· ,0, fN ,28 fN+ fN+1)

T− 1
3
(

f ′0,0,0,··· ,0,0, f ′N
)T , (A.3)

where f−1= f (x0−∆x) and fN+1= f (xN+∆x) are the ghost points.

Appendix B: Weighted essentially non-oscillatory schemes

We briefly review the fifth-order WENO-Z scheme [1]. The global stencil S5 =
(xi−2,··· ,xi+2) is subdivided into three 3-point substencils Sk =(xi+k−2,xi+k−1,xi+k), k=
0,1,2. The fifth-order polynomial approximation f̂i+ 1

2
to the function f (x) at the cell in-

terfaces xi+ 1
2

in the global stencil S5 is built through the convex combination of three

second-degree interpolation polynomials f̂ k(x) in each substencil Sk at the cell interfaces
xi+ 1

2
.

f̂i+ 1
2
=

2

∑
k=0

ωk f̂ k(xi+ 1
2
), (A.4)

where

f̂ 0(xi+ 1
2
)=

1
3

fi−2−
7
6

fi−1+
11
6

fi,

f̂ 1(xi+ 1
2
)=−1

6
fi−1+

5
6

fi+
1
3

fi+1,

f̂ 2(xi+ 1
2
)=

1
3

fi+
5
6

fi+1−
1
6

fi+2,

and the nonlinear weights are

ωk =
αk

∑2
j=0 αj

, αk =dk

(
1+
(

τ5

βk+ε

)p)
, (A.5)

with the ideal weights {d0 =
1

10 , d1 =
3
5 , d2 =

3
10} and τ5 = |β0−β2|, ε = 10−12 and p = 2

are used in this study. The smoothness indicators βk in each substencil can be explicitly
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expressed as

β0=
13
12

( fi−2−2 fi−1+ fi)
2+

1
4
( fi−2−4 fi−1+3 fi)

2 ,

β1=
13
12

( fi−1−2 fi+ fi+1)
2+

1
4
( fi−1− fi+1)

2 ,

β2=
13
12

( fi−2 fi+1+ fi+2)
2+

1
4
(3 fi−4 fi+1+ fi+2)

2 .
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