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Abstract

We present Alikhanov linearized Galerkin methods for solving the nonlinear time frac-
tional Schrodinger equations. Unconditionally optimal estimates of the fully-discrete sche-
me are obtained by using the fractional time-spatial splitting argument. The convergence
results indicate that the error estimates hold without any spatial-temporal stepsize restric-
tions. Numerical experiments are done to verify the theoretical results.
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1. Introduction

We consider the Alikhanov finite element method (FEM) for solving the following nonlinear
time fractional Schrodinger equations (TFSEs) [29]:

iICDfu+ Au+ f(lul)u=0, (x,t)€Qx(0,T],
’LL(X, 0) = UO(th)a X € Qa (11)
u(x,t) =0, (x,t) € 0Q x [0,T7,

wherei = /—1,Q € R4, d=1,2,3, and f € C3(R) is a nonlinear function, u(x, ) is a complex-
valued function. Here © Dfu denotes the Captuo fractional derivative, which is defined as

¢
CDlu(z,t) = / wi—q(t — S)%d&
0 S
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where wg(t) = t°~1/T'(B) and T'(-) is the common Gamma function. Fractional Schrédinger
equations were investigated extensively. For example, Laskin [16,17] proposed the fractional
Schrédinger equations by using the Feynman path integrals instead of Lévy ones. In 2004,
Naber [29] pointed out that one could obtain a time fractional Schrédinger equation when non-
Markovian evolution was considered. In 2006, Xu and Guo [7] studied some physical evolutions
of fractional Schrodinger equation. Tofighi [32] considered the probability structure of TFSEs.
More details can be found in [1,9, 18,28, 30].

In the past several years, TFSEs were numerically investigated by using different algorithms,
including finite difference methods [5,11, 14,15, 26, 33], finite element methods [24], spectral
methods [3,8,35], local discontinuous Galerkin methods [34] and Krylov projection method [6]
and so on [2,10,12]. Most convergence results were obtained with certain time-step restrictions
dependent on the spatial mesh sizes. In order to remove such restrictions, Li et al. [21] intro-
duced the fractional temporal-spatial splitting argument and obtained unconditionally optimal
L2-error estimates for problem (1.1). The time-discretization in the paper is done by L1 scheme.
And the convergence order of the scheme is 2 — « in temporal direction if the exact solutions
satisfy u € C%([0,T]; L2(£2)). The regularity of the problems is not considered in the paper.

In this paper, we propose a linearized fully-discrete numerical scheme for solving problem
(1.1), taking the initial singularities into account. The temporal discretization is done by
applying the Alikhanov scheme on graded meshes and the extrapolation method. The spatial
discretization is done by using the r-degree Galerkin FEM. It is shown that the convergence
order in L?-norm of the fully-discrete scheme can be of 2 in the temporal direction and of
r 4 1 in the spatial direction. Such error estimates hold without any spatial-temporal stepsize
restrictions. The key to the proof is the so-called temporal-spatial splitting argument, which
is firstly proposed by Li and Sun [19,20]. This technique has a successful application in the
time-dependent problems [21-23,37]. We introduce the approach in our proof and obtain the
unconditionally convergent results for the time fractional problems in the complex spaces.

The rest of this paper is organized as follows. In Section 2, Alikhanov linearized Galerkin
FEM is established for solving problem (1.1), and our main results are also presented. In
Section 3, a rigorous analysis of our results is obtained by applying discrete fractional Grénwall
type inequality. In Section 4, numerical examples are given to confirm our theoretical results.
Finally, some conclusions are drawn in Section 5.

Throughout this paper, C,, and Cy denote two positive constants, not always the same in
different occasions, which dependent on the given information but independent of temporal and
spatial stepsizes.

2. The Alikhanov Galerkin FEM

Following the standard FEM discretization [31], let 75 be a subdivision of 2 into triangles
T, in R, R? or tetrahedra in R® and h = maxr.c7,{diam Tk} be the mesh size. The

finite-dimensional subspace of H}(Q) is named Vj. It is comprised by continuous piecewise
polynomial {¢;}L, whose order is 7 (r > 1) on Tj,. Let 7,, = t, 41 — t, be time step. Denote

th =T(n/N)?,0<n < N,§>1, th—as2 = (1 —a/2)t, + (a/2)t,—1, where N is a given integer
and u™ = u(z,t,,). For a set of functions {w™}, we define

w”’a:(l—%)w"—i—%wn_l, L<n<N,

" = (2—%) Wl — (1—%) w2 p>2.

(2.1)
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With the above notations, the Caputo’s fractional derivative at ¢,_ /2 is approximated by

o bn-g
oyt = [ (b )6 (s

2

wlR

n—1 t t,_
= Wi o (tn-a — s)¢'(s)ds + wi—o(th-a — s)¢'(s)ds
Y[, ol f e

tn—1

p—

~ Z/tl W1 —a (tn,% - S) (HQ,l(b)/(s)d‘s +/ ’ W1 -« (tnfg - S) (Hl,nd))I(S)dSv

2
=1 -1 tn—1

where Il ;¢ signifies the quadratic interpolation at ¢;_1,¢; and ¢;41, and II; ;¢ means the linear

interpolation with t;_1,¢;. The Alikhanov formula is obtained by removing the truncation
errors, i.e.,

noloen Vool 2(s—t_1)
DX, )% = Wi—g(th_a — s LR —2 V.ot — v, 0! | ds
(D3:9) ; /tll 1=a(tn—g ) T (1 + Ti41) (V0 ?)
t a
n—g V. o"
—|—/ ’ wl_a(tn_% — s) ¢ ds
tn—1 Tn
n—1
= gén)vr(bn + Z (Zfln_)lvr(bl + plgfln_)lv'r(bprl - gfln_)lv'r(bl)
=1
n—1
= B{"V,¢" + > B"\V,4, (2.2)

=1

where the discrete coefficients 2(()"), 27(1"_)1 and 3]7(1"_)1 are

Zy = — wl_a(tn_% — s)ds,
Tn tn—l
ty
sn) _ 1
Zy = — W1—q (tn_% — s)ds,
T Jty

_(n) 2 t B o
yn—l - Tl(Tl +Tl+1)/ (S tl_%)'wlfoz(tnfE S)dS,

ti—1

and
2V + puaii” L=n,
B7(ln_)l = 27(171)1 + pl—lgfln,)l+1 - g,f:i)la 2 S l S n— 13
g I=1.

Let U} approximate u". Then Alikhanov linearized Galerkin FEM scheme is to find U} € V},
such that, for all v € V},,

i(DgtU,’Z*%,u) — (VU Vo) + (f(|Ug|2)U,;W,u) 0, n=2...,N. (2.3

We take U} to be the solution of the following equation:

Z_(U,gv,g

- ,v> — (Vo vo) + (U UL ) =0 (2.4)
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with g = (1 — a/2)/(I'(2 — «)). As for the initial time step, let UY = II,u’, where IIj, is the
interpolation operator. From the property of Eq. (2.4), we can get that it satisfies ||U}l||z2 <
1031125

The typical solution of problem (1.1) satisfies (e.g., see [13])

<COA+t*7), j=0,1,2,3, r=1,2, (2.5)

Huij) ||L°°(O,T;HT+1)

where C' is a constant.
Now, the optimal convergent result is presented here and it is proof is left in the next section.

Theorem 2.1. Suppose that ug € H™1(Q) (N H} () and problem (1.1) has a unique solution,
satisfying (2.5). Then there exist positive constants Ny and hg, such that when N > Ny and
h < hg, system (2.3), (2.4) has a unique solution Uj*,m =1,2,3,..., N, satisfying

[u™ = U|| . < Co(N70 4 A7), (2.6)

where 1 < § < 2/a,u™ = u(-, t,,) and Cy is a positive constant independent of 7 and h.

3. Proof of the Main Results

In this section, we focus on proving our main results.

3.1. Preliminaries
Some features of Bff_)k are listed here, which are proved in [25,26].
B1. The discrete kernels are non-increasing with respect to k becoming larger, i.e.,

0<B™ <B™ 2<k<n<N

B2. There exists a constant w4 = 11/4, such that

1
TATE

23
/ Wi—q(tn — 8)ds < Bfln_)k

tp—1
holds for 1 <k <n < N.
B3. There is a positive constant p satisfying pr, < p,1 <k < N — 1, where py := 75 /Ti+1-
The following lemmas could be obtained with the help of these properties.

Lemma 3.1 ([27]). Let

P == S (B, - B PY, 1<i<n-1 3

Then, we have

and
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Lemma 3.2 ([27]). For any sequence {v"}N_,. it holds
1 - n n,o « n—%
52 B V. (IIv*]?) < Re(v™*, (DXw)""%) for 1<n<N. (3.3)

Lemma 3.3 ([27]). Suppose the nonnegative sequences {v™, "} satisfy
Z B 22 F X H2 230" )2 F 0™ (E £ ), n > 2. (3.4)

Then, it holds

k
V" < 2B, (2maMS) |0” + max P(k) 5] +7al(2 — a)ton|, (3.5)

1<k<n 4
j=1

where T, satisfies maxi<p<n Tn < (2mal(2 — ANV XN =X + Xy + )3, and

kZ:OFIJrka

is the Mittag-Leffler function.
Lemma 3.4 ([25]). Suppose that v € C3((0,T]) and there exists a constant C,, > 0 such that
" ()] < Co(1+t*73) for 0<t<T.

Then, it holds that
Z P’r(z’ri)] ’T.” < C’U (TaNfzia + Ta537a8571N7 min{&a,Bfa}),

where

1 tn-g  1/(s) n—e
T = —— ds — (DX 2,
1 1“(1—@)/0 (t—spe” (D3w)

Lemma 3.5 ([26]). Suppose that v € C?(0,T] with
[0" ()| Low (0,7:12) < Cu(1 +1272).
Then, it holds that
ST R < O (TN minlel) 1 <n < N, (3.6)
j=1

where
Ty% = Av(ty_q/2) — Av™%, 1<n<N.

Lemma 3.6. Suppose that v € C%((0,T)]) satisfies |V'(t)] < C,(1 +t*~1) and the nonlinear
function g € C*(R). Denote
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and

Then

n
SRR <20, 72N w2t < < N,
j=1
Proof. Applying Taylor expansion which has integral reminder, we can arrive at

ti—1
=77 E 10 (tj-g) (ti-1 — ti-g) +/ V'(s)(s —tj-1)ds,
t a

iz

. — tj—2
l/]_2 = l/]_7 + I/I(t]‘,%) (t]‘,Q — t]‘,%) +/ I/H(S)(S — tjfg)ds.

tj,%

Recalling the definition of &7, we can get

VITE ) = (2 - %) (ij% — l/jfl) — (1 — %) (ij% — 1/3;2)
< (2 - %) /t:jg (1+5*72) (s —tj_1)ds — (1 - %) /ttjg V'(s)(s —tj_q)ds

—1

<(2-%5)(1-%) (7 +mte3). (3.7)
2 2
Together with inequalities (3.6), (3.7) and the assumption g € C%(R), we obtain there exists
a positive constant Cy, such that the following inequalities hold:
(BRI = g7~ 2 P)7 =% —g(|07)v™ % + g(|07 )7 ™% — g(|27[*) 1"
= 772 |Leelg O~ 212 = 127 P[] o + |27 =2 =072 L
< Gyl =3P = 197 o + 077% = 7lps
< Co(I7 ™ F llpoe + 197 poe) (177 F = 07| 22) + Cyll? ™% — 079 2
< Cy(77 + 7ty +157777).
Moreover

|RH SC'B(TlJrTfY), (3.8)
which further implies

D !RJ!—P<"1!R1!+ZP(" 7]

<T(2-a)TaT] ’R ’ +2r<nkaé<n ’Rk’ ZP("

—2
<0y (e g t?)

< C'u (TQaN—26a + t% max (Ta52N—5ak2(5—1) (k _ 1)6(04—2)))
2<k<n

<
=Y " olk<n N

2a 26« e ) k-1 Pamin{oes2} — min{da,2}
TN~ 4t max 4° [ —— N '

< C’U (TQOzN— min{éa,Q}) )
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Here the property of graded meshes 75, < 6k~ TN 9 1 < k < n, is used, which finishes the
proof. O

Let Ry, : H}(2) — V; be Ritz projection defined by
(Vx,Vw) = (VRyx, Vw), Vw e V. (3.9)
According to classical FEM theory [31], for any v € H*(Q) N HE (), we have
lv = Rpvllpz + h||V(v — Rpv)|| 2 < Coh®||v||gs, 1<s<r+1. (3.10)
The following inequality is important for our proof [4]:
0]l < Cah™ 2 ||v]|z2, Vo € Vi (3.11)
Here, we give the following time-discrete system:
iDX, U™ % + AU™ + f(U") U™ =0, n=2,...,N (3.12)
with initial and boundary conditions

U™(z) =0, z€d, n=2,3,...,N, (3.13)
uo(x), x €. (3.14)

-

S

&
|

In the case of n = 1, we have the following scheme:

Ul _ UO
et AU + f(IU°P)UR> = 0. (3.15)
1

We divide the errors into two parts, i.e.,

[u = UR| <[l =U™ | + U™ = UR| == [le"[| + 1U™ = Ui|l. (3.16)
Then, we will prove our main results by giving the error estimates of two terms in above
inequality, respectively.
3.2. Analysis of |[u™ — U"||

We now focus on the regularity of U™, followed with the error estimates.
Taking t = t,,_q /2 in Eq. (3.12), we can find u™ satisfies the following equation:

iDXu" T + A + f([a")u™™ = P, n=2,3,...,N, (3.17)
where
P =i(DRu" "% ~C Dy u) + Au" — Aty g)
+ £(1a"P)um = f(lultn-2)?)u(ta-g). (3.18)
Moreover, u! satisfies

ul —

7

0
au + Aul® 4+ f(Ju)ut = P, (3.19)

KTy
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where
ul — w0
Pl=i ( - —¢ Dtlau) + Aub® — Au(tl_%)
uT 2
+ f([W®P)ut = f(Julti—g)?)u(tis). (3.20)

Applying (3.4), (3.20) and Taylor’s theorem, there exists a positive constant Cx dependent on
C such that
| P2 < Cx N0, (3.21)

Let e :=u" —U",n=1,2,...,N. Subtracting (3.12) from (3.17), we arrive at that
iDX,e""% + Ae™® + R} = P", n=2,3,...,N, (3.22)
where
R’iz _ f(|,an|2)un,a _ f('Un|2)Un,oz.
Similarly subtracting (3.15) from (3.20) yields

1

i—— + Al 4 f(ju%]?)el = P, (3.23)
KTy
Define
Kj:= max |u"||p~ + max |u"| g2 + 1. (3.24)
1<n<N 1<n<N

Lemma 3.7. The solution U' of semi-discrete system (3.15) is valid and unique, and there is
a constant Ny > 0 such that, when N > N7,

e 2 < CTNTO, (3.25)
@ 1_% *ok
10U a2 + |[(DRU) || e < CFF, (3.26)
where CY, CT* are two positive numbers independent of N and h.
Proof. We leave the proof in the appendix for the reader’s convenience.
Theorem 3.1. Suppose that the regularity condition (2.5) holds. Then system (3.12)-(3.14)

has a unique solution U™, and there is a constant N3 > 0 such that, when N > N3, for
n=23,...,N,

™[> < CTNT%, (3.27)
1U™ |12 + [[(DRU)" % |2 < CFF, (3.28)

where dae < 2 and CF,CT* are two positive numbers independent of N and h.

Proof. 1t is sufficient to gain the solution U™ is existent and unique, by the fact that system
(3.12) becomes a linear elliptic equation at each time level. Next, the main results were proved
by taking the mathematical induction into account. Firstly, one can check that the result holds
for n = 1 by using Lemma 3.7. Now, we suppose that (3.27) holds for n < k — 1. Based on
inequality (3.24), we have, for n <k —1,

1U* |z < [lullzee + [leF]|ze
< [lutl|z + Calle® | 2

< |Juk|| g + CoCFN % < K, (3.29)
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where N > Ny = (CoCf)'/ ). Together with f € C3(R), the boundedness of U™ and the
regularity of u, we arrive at that
18] o = (1 Q) = £ (10 )0 s

< [l QanPyurms = (U F)am | + 17 (U )™ = £ (U F)U™] s

< [lF €)@ = 10" Pl o llw™ e + [[FQT )| oo €™ 122

< CrRR|le™ Lz + Crlle™ | e (3.30)

Now we consider the case of k = n. Taking inner product of each side of (3.22) with ™
and the imaginary part of the resulting equation to obtain
Re( Ktenfg,e"’o‘) = flm( ?,e”’”‘) + Im(P™, e™%)

[BY | plle™la + 1P e lle™ ] 2o

IN

Substituting (3.30) into the above equation and recalling Lemma 3.2, we have

1< .
5 2 BVl Ee < (Cr KRN e + Cplle™[22) o™ e + [ Pl alle” e
k=1 2, . 1
< (CrE) N5 + Jle™ s + Clle™I3a + 1P|z le™] o2
< Cille™)22 + Colle™ 22 + Cslle™ 2122 + PP ||z ]le™ | 12,

where

B a2 [ 1+ 4C; _9CFKY o2 G
le(ug) <T) Cp = —I—+ (1 +40p, G =L

Applying Lemmas 3.3-3.6 and the discrete Gronwall inequality, we have there exists an
NQ Z (27TAF(2 — a)(01 + 02 + Cg))a such that

k
HenHLz < 4Ea (47TA(01 —+ 02 —+ Cg)tz) 121}?2(712 PIEIX)JHPJHLZ
sksnim]

k
a (k) j
<4F, (47TA(02 + Cg)tn) 121}?%(" Zl Pk—j HPJ HLZ
]:
<0y (C'u (TaNfzia + Ta537a8571N7 min{5a,37a}) + T20 N— min{5a,2})
< O (N~ mintoe2}) (3.31)

where (5 is a positive constant independent of n, N and h.
To estimate ||e”|| 1, Eq. (3.22) is multiplied by D%,e"~*/? and integrated over Q2. Consid-
ering resulting equation’s real part and applying Green’s equality, we arrive at

Re(VDX,e""2,Ve™®) < | (R}, DX,e" )|+ |(P™, Dae™ %) (3.32)
Similar to the analysis of (3.30), by using (3.29) we can obtain

IVRY |22 < [[(VF(a")um = (VLU YU o + [[£(a"P) T = F(T VU™,
< [[(Vr(ar?))ume = (V") U™+ (VF(a")U™ = (V02U
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+{| £V = f(O PV o+ (TP T = F(O PO

< Cylle™® |2+ (£ (€ (a" 2 = [0 )V P+ /(10" P)VIar 2=V |0 P U],
+ || )V ([ = [072) + F(U" ) Ve,

< Ci(IVemle + IVe 22 + Ve 2| 2), (3.33)

where C}; is a constant independent of n but dependent on K;,Cy and Cq. Together with
(3.22), (3.33) and (3.31), we obtain that

(R}, D&,e"~%)| < |Re(VRY,iVe™)| + [Re(RY,iP")|

IN

1 1 1 1
SIVen@l3e + SIVRZ: + SIRIZ: + 5 1P 3

N N — * n— 1 n
< G| Ve |[f2 + CaVe e + (Cr)? Ve 2|72 + S I1P 72, (3.34)

where )
a=[(-9) + @] =5+
Moreover,
|(P™, DX,e" % )| < |Re(iVe™®, P™)| + [Re(iR}, P")|
< IV B + IVPMIE: + IR + 51213
< Gl Ve 3 + Call Ve + (Ci)* Ve
FIVP 3+ 1P, (3.35)

where

2 2 8 K
Substituting (3.34) and (3.35) into the inequality (3.32), we get

Cy = [1 (1§)2+(0;;)2], Cy = {O‘—QHC* )2].

Re(D&,Ve" 2, Ve™)
< (C~'1 + ég) [Ve™||2. + (C~'2 + és) [Ver 12,
+2(Cx) Ve 2|3z + | VP32 + | P73
Together with Lemmas 3.2-3.4, there exists an N > Ns,
Ve (|2 < CgN ~mintoe2h, (3.36)

where C is a positive constant only dependent on C,C¢, C,, Cq.
To estimate |[e”| sz, we multiply (3.22) by D%,Ae" */2 and integrate it over Q. Taking
the real part of the resulting equation and applying Green’s equality, we arrive at
Re(Ae™®, DX, Ae™™ %)
= —Re(R},DX,Ae""2) + Re(P", D%,e" " 2)
= —Re(AR},DX,e"2) + Re(AP", DX 2). (3.37)
Using the similar approach as the proof of (3.36), we arrive at that there exists an N > Ny,

|Ae™|| L2 < Cp N~ min{oe2} (3.38)
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Now, by (3.27), (3.36) and (3.38), we get, when N > N5 = max{N;, No, N3, N},

™| 2 < \/Henlliz +IVer|7z + [[Aen|[7.

< V5 T Oy 4 G N-mintio)

<C.N~ min{da,2}
— (& Y
which further implies that
U™z < Nl |z + Nl lrz < [ gz + CoN ™m0 02 < Ky

when N > Ng = (C,)"/ min{0a:2}  Taking Nf = max{Ny, N, N3, Ny, N5, Ng}, the result (3.27)
holds for m = n.
Using the definition of (D% ,v)"~*/2, and

n ~(n ~(n 24 b
B(() ) < Z(() ) + pnflyg ) < / wlfa(tn - S)dS,
7, Jy, |

which can be found in [25,36], we arrive at that

n—1
1DR0e)" ™ [lgo < BNl + 3 (B = By ) le e = B e
k=1

n—1

< B(g") + Z (B'Ezri)k _ Bgi)kil) CTN7 min{éx,2} < Bén)CfN7 min{dc,2}
k=1

< 24N° N min{da,2} < 24 o

1102 —a)To * 102 —-a)Te Y

where the assumption da < 2 is used in the last inequality. Therefore
(DX e < 1(DRe)" 2 [ + 1(DRe6)" ¥ | o < O,

the mathematical induction is finished and the proof is accomplished. ]

3.3. The boundness of ||U}"| p~

In this subsection, the boundedness of |[U}'||e is derived. Firstly, by Theorem 3.1 and
|Rrv||L= < Callv| gz for any v € H?(Q), we can obtain ||[R,U™|| > is bounded. Therefore,
we define

Ky = max |[|[RyU™||L~ + 1. (3.39)
<m<N

1<
Eq. (3.12) can be rewritten as
i(DX,U)" %, 0) — (VU™ Vo) + (F([U" U™, 0) =0, n=2,...,N. (3.40)
Let
Ur — U = U™ — RyU™ + RyU™ — Ul = U™ — R,U™ + 97, n=0,1,2,...,N.
Subtracting (2.3) from (3.40) and applying (3.9) gives

i((DXOR)" 2, 0) — (VO Vo) + (R, v) = —z‘((th(U - RhU))"_%,v), Vv €V, (3.41)
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where
5= F(IUMP)U™m — f(lUpP)Ue (3.42)
Moreover, from (3.23) and (3.15) we get
; ﬂflt La 012\771,a 012\77l,«
i L v ) = (V9,%, Vo) + (U ) US> = FIURP) U v
KTy
1 _ 1 0 _ 0
= —i (%,u) +1 (7[] f’w) . (3.43)
HTy KTy

Lemma 3.8. Let U' and U} be the solutions of (3.40) and (3.43), respectively. Then there
exist N5 > 0, hi > 0 such that, when N > N3, h < hj,

93], <, 3.44)
U] o < Ko. 3.45)
Proof. We leave the proof in the appendix for the reader’s convenience. O

Theorem 3.2. Let U™ and U;" be the solutions of (3.40) and (3.41), respectively. Then there
exist Ny > 0, hi > 0 such that for m =1,2,3,...,N, when N > N3, h <hj,

(3.46)
(3.47)

95| 2 <

Ui < K.

[

Proof. Taking v = U,;"“ in (3.40) and the imaginary part of the equation, we get
Re((DX,Up)""2,U;"%) = 0.

Together with Lemma 3.2 and B1, B2 yields

0,

1 - n n,a o n—a
LS BT (WEIP) < Re(Up, (D30 %)
k=1

which further implies

1O 2 < O3] -

It is obvious that the solution of Eq. (3.40) exists and is unique. Next, we still use mathematic
induction to prove (3.46). By Lemma 3.8, we have (3.46) holds for m = 1. Now, assume that
(3.46) is valid for m = 2,...,n— 1. Then we prove that it holds for m = n. By the assumption
and (3.39), we have

IO e < 1BAU™ [ + [ BaU™ = U

[P

<
<

<

| R + G~ [RaU™ ~ U
|RhU™| o + Cah™ 2R
|RU™|| e +1 < Ky

[
(3.48)

[P

ford=2,3,and h < h; = 056/(11—311).
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With the analogous argument for 7™, considering the boundedness of ||U™| gz, U™
and f € C3(R), we can obtain that

IR, = £ (U U™ = F(URPU™ + F([OFP) U™ = F1URP) U
< Ko £() = (107 = RaD™ [ 12 + [93112) + C (U™ = RaU™ 2 + |97 1)
< Crc (107122 + 19712 + 12), (3.49)

where the classical FEM theory (3.10) is used in the last inequality, and Ck is a constant
related to K, Cy and Cq.
Taking v = 9;"" in Eq. (3.41) and the imaginary part of the resulting equation, we obtain

Re (Dgtﬂ’;*% : 19;3&) +Re(Ry, 0% = —Re((DZt(U — RyU))"E, 19;;@). (3.50)

Combining (3.49), (3.50) with Lemma 3.2, we arrive at
1« n
92 Z V HﬂhHm
k=1

<Rz,

< [ex(

< e (IRI + 19815 ) + CloR 5 + o+ ok 07 ot

"5

95| o + [ (DR = RuD) "™ % | 93],
(977 o+ 12) + Call(DRU)" [ al?] 972

< Gol| 7|17 + Coll 95" |22 + Crol| 97272 + (Crc + Cali) 937 o,

where

08:2<E+CK> (1—%)2, cgch(z—%)Q, cmch(1—g)2.

Together with the inequality (3.28), Lemma 3.3 and U = Rju’, we arrive at

195

|2 < 2Ba(47a(Cs + Co + Cro)t) [[] 2 + 27aT(2 = @)t (Ci + CaCy )1

<A4Eq(4m4(Cs + Co + Cro)ts) [raT (2 — a)T*(Ck, + CaCy*)|h* < hs,

where

o=

1 _
h<hyg= .
=" 4Ea(47TA(Cg + Cq + Clo)ﬁ%)(ﬂ'AF(Q — a)TO‘(Ck + CQCT*))]

Furthermore,

1O < 1RO |+ 197 e < [ BAU [ + Cah™ %07 < K.

Then (3.46) and (3.47) hold for m = n. The proof is complete. O

3.4. Error estimates for the fully discrete system

In Section 3.3, the numerical solution U}’ is proved to be unconditionally bounded in L*°
norm. Based on the results, we can start to verify our main conclusions.
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The weak form of Eq. (3.17) satisfies for all v € V}, and n =2,3,..., N,
i((DXu)"™2,0) + (Au™*,v) + (F(|a")*)u™*,v) = (P™,v). (3.51)
Denote
u" =Ul =u" — Rpu" + Rpu" — U =u" — Rpu" +mp;, n=0,1,2,...,N. (3.52)
Subtracting (3.51) from (2.3) gives
i(DXymn)"~ % ,0) = (V. Vo) + (Ry,v) = (P",v) — (R}, v), (3.53)

where

o
n—3

Ry = f(ja"*)u™* = f(URP) UL, R =i(DR,(u — Ryu))
Moreover, from (3.19) and (2.4) we get

(o) = (Vo 90) + (7P — F(URF)ULo)

uTY

— Roul 0_ 70
= (#,v) +i <“ aUh,v> . (3.54)
KTy KTy

Now prove one of the previous results.

Proof of Theorem 2.1 Taking v = n; in Eq. (3.54) and using the same approach applied in
Lemmas 3.7 and 3.8, we obtain that (2.6) holds for n =1,

[u' = UL||,» < Co(N7% + h"H1).

Iz

Next, we consider the case of 2 < n < N.
Recalling (3.47) and (3.10), we arrive at

[ P (L e A (L i Lo/ PP A D L e (G Lo/
< Cy(llu™® = Ruu™| 2 + [yl 2)
+ |7 (€)]| oo (180" = Rt || 2 + 107 || 22) | U |12
< Cp(CaBR™ [y 2) + CrCoKh™ Ky + Cr Koy | 2
< CpCoK (14 Ka)h™ ™ + Cr K| 07|, + Cr |97 . (3.55)

I,
Substituting v = 7,"* into (3.53) and taking the imaginary part, we derive
[Re((DRemn)" =%,y )| < (B, m )|+ [ (P )| + [(B i) |
< B3l o 190 1o + 1P L2195l o + (R a0
< CrEa |77 + (Cr Ko/ + Cp) |95 o + | RE| o 197
< Cur |97 + Coall 05 |22 + Caal[95 17
+ Cuah™ 00| o+ (P2 + RS L2) 197 o (3.56)

Iz

where Cauchy-Schwarz inequality is used and Ci1,Ch2,Ci3, C14 are positive constants depen-
dent on «, Ko, C’f. Together with (2.5), we get

k

k
xS IRl < e 35RO B~ i)
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k
max >0 ||V (' = Brul) |

=1

IN

|| (u — Rpu)'(t) ||L2dt

AN
AE
e

o

\é\;x;
N
e\

tn
< CQhT“/ [0/ ()| fyrsrdt < Co(tn + 1) R"F
0

By Lemmas 3.3, 3.4 and 3.6, there exists a constant N3 > 0, when N > N3, it holds

il > < 4Ea(2maA3C12ty)
k

k j j a r
x| e + max ST B (1P + | Rl2) + 7aT(2 — @)t3CraCoh’™!

<4F, (67TA01215%) (012C(zhr+1 + Cpr min{6a,2})
< 013 (hTJrl 4+ N— rnin{50¢,2})7

where Ci3 = 4E,(6m4C12t%)(C12Cq + Cp). With (3.10), the above inequality further implies
that

b = UR | < flu® = Buu"|[ o + || Ruw™ = UR |l 2
< (CaC + Cyg) (N~ mintoe2} 4 prt) (3.57)
for 1 < mn < N. Therefore, (2.6) holds when N > Ny = max{N{, N5, Ni}, h < hy = hj and
Coy > CqC + C13. Theorem 2.1 is proved. O

4. Numerical Results

In this section, some numerical experiments are presented to illustrate the convergence
results. All numerical examples are calculated by using the software FreeFem++. And the
errors are computed by L?-norm with setting da = 2.

Example 4.1. Consider the following two-dimensional time-fractional Schrodinger equation:

i D+ Au — |ul?u + |ul*u = g(z,y,1t), (x,y,t) € (0,1) x (0,1) x (0,1],
u(0,y,t) = u(l,y,t) = u(z,0,t) = u(z,1,t) = 0, te0,1],
u(@,y,0) = 2*(1 - 2)°y*(1 — y)°, (z,y) € (0,1) x [0,1], (4.1)

where g is obtained correspondingly to the exact solution
u(@,y,t) = (1+t%)2°(1 - 2)°y*(1 - y)*.

We solve the time-fractional Schrédinger equation (4.1) by using linear finite element method
(L-FEM) and quadratic finite element method (Q-FEM) with different stepsizes. In temporal
direction, the numerical errors and convergence rates are verified with taking M = 80 with
N = 5,10,20,40. Here and below, a triangular partition with M + 1 points in every direction
is applied. Similarly, we take the spatial stepsize as M = 5,10,20,40 and N = 1000 with
a = 0.8 for r = 1,r = 2, respectively. The numerical results are displayed in Tables 4.1 and
4.2, respectively. All these experimental consequences agree with theoretical findings.
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Table 4.1: Errors and convergence rates in temporal direction (Problem (4.1)).

H.Y. QIN, F.Y. WU AND B.Y. ZHOU

a=0.4 a=0.6 a=0.8
N Errors Orders Errors Orders Errors Orders
5 7.0112e¢ — 06 * 5.2198e — 06 * 2.9147¢ — 06 *
10 | 1.9080e — 06 | 1.8776 | 1.1692¢ — 06 | 2.1584 | 7.7054e — 07 | 1.9194
20 | 4.9848e¢ — 07 | 1.9364 | 2.9833¢ — 07 | 1.9706 | 1.9776e — 07 | 1.9621
40 | 1.2711e — 07 | 1.9714 | 7.5210e — 08 | 1.9879 | 4.2101le — 08 | 2.2318
Table 4.2: Errors and convergence rates with a = 0.8 (Problem (4.1)).
L-FEM Q-FEM
M Errors Orders Errors Orders
5 | 2.8760e — 04 * 1.9307e — 05 *
10 | 8.7236e — 05 | 1.7211 | 2.3501e — 06 | 3.0384
20 | 2.3003e — 05 | 1.9216 | 2.8795¢ — 08 | 3.0289
40 | 5.8384e — 06 | 1.9782 | 3.5770e — 09 | 3.0090
\ Quadratic FEM(2D) \ Quadratic FEMs
10 10 : : :
—.— =155 —.— =15
—e—=1/10 —e—=1/10
&, b 1=1/20 & —l— 1=1/20
=140 || AN =1/40 ||
g o \ E i \
< —4 < —_—
107 107
10° ’ ’ s s s s 10° : : ‘ ‘ : :
10 15 20 25 30 35 40 10 15 20 25 30 35 40
M M

Fig. 4.2. 2D problem: L2-errors of Q-FEM with
fixed 7 and different spatial step sizes (a = 0.4).

Fig. 4.1. 2D problem: LZ-errors of Q-FEM with
fixed 7 and different spatial step sizes (a = 0.6).

In order to confirm the unconditional convergence of the proposed method, we solve problem
(4.1) by using Q-FEM in spatial direction with different stepsizes. The numerical results can be
seen in Figs. 4.1 and 4.2, respectively. These results imply that for each fixed 7, the error tends
to be a constant. It implies that the errors hold without any time-step restrictions dependent
on the spatial mesh size.

Example 4.2. Consider the following three-dimensional time-fractional Schrodinger equation:

i D+ Au + |u*u = g(x,y,2,t), (x,y,2t) € (0,7) x (0,7) x (0,7) x (0,1],

u(07y, Z, t) = u(ﬂ-, y7 Z7t) = u(x7 0’ Z, t)
= u(x7ﬂ-, Z, t) = u(x7y’ 07 t)
= u(z,y,m,t) =0, t €1[0,1],

u(z,y, z,0) =0, (x,y,2) € (0,1) x (0,1) x (0,1), (4.2)
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Table 4.3: Errors and convergent orders with linear element. (Problem (4.2)).

a=0.4 a=0.6 a=0.8
M=N Errors Orders Errors Orders Errors Orders
M =5 | 1.1084e — 03 * 1.1284¢e — 03 * 1.1439¢ — 03 *
M =10 | 3.0391e — 04 | 1.8667 | 3.1175e — 04 | 1.8559 | 3.2256e — 04 | 1.8263
M =20 | 7.7705e — 05 | 1.9676 | 7.9941e — 05 | 1.9634 | 8.1830e — 05 | 1.9788
M =40 | 1.9523e — 05 | 1.9928 | 2.0111e — 05 | 1.9910 | 2.0598e — 05 | 1.9901

Quadratic FEMs
10 T

—a—=1/5
~ - —e— =1/10
—a— =120
©=1/40

107+

L%norm errors

10°

Fig. 4.3. 3D problem: L*-errors of Q-FEM with fixed 7 and different spatial step sizes (o = 0.6).

where g is chosen correspondingly to the exact solution
u(z,y,z,t) = t*sinxsinysin z.

L-FEM with M = N is applied to solve problem (4.2). The numerical results in Table 4.3
confirm the convergence results of the proposed methods. Moreover, we solve problem (4.2) by
using Q-FEM in spatial direction with different stepsizes. The numerical results can be seen
in Fig. 4.3. These results imply that for each fixed 7, the error tends to be a constant. It
implies that the errors hold without any time-step restrictions dependent on the spatial mesh
size, again.

5. Conclusions

In this paper, the nonlinear TFSEs are effectively solved by a linearized Alikhanov FEM.
We have applied a discrete Gronwall inequality to obtain the optimal error estimates. Such
convergence results hold unconditionally. Numerical results are given to confirm the theoretical
results.

Appendix A

Proof of Lemma 3.7. Multiplying (3.23) by e!, integrating it over €2, and considering the
imaginary term of the corresponding equation, we obtain
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letl|ze < pCreri®,

where the result (3.21) is used. Moreover, we multiply (3.23) by Ae! and integrate it over € to
get

_Ivels.

prit

We consider the imaginary and real part to obtain

F (1= D) hac e+ (1= ) (PRI Ac) = (PLe). (Ad)

IVelllze + il Aet|| 2 < O,

which further implies
||€1||H2 S CikN_(sa.

Applying above inequality, we arrive at

U 2 < llullzz + ez < [lu'|| g2 + CTN T < K,
DR o < (DRw)' "% | o + (| (DRe)' ™ F | o < €7

when N > N; = (ngCf)l/(éa). Thus, the proof is complete. O

Proof of Lemma 3.8. To estimate |04/ 2, we take v = ¥} in Eq. (3.43) and the imaginary
term to arrive at
2 a a N
[94]I2 = —prf T (FUO YU = F(URPUL, 95)
—Re(U' = R,U", 9;) + Re(U° — U, 9},).

As for the boundedness of ||U}| 1, we consider the fact Up = II,u’ and inequality (3.11) to
obtain
R < (| ReT®

S

+ || BaU? = Uh| o < [|RRT°
+2C2K 2 < K.

+Ch™2||RyU° — UP|,.,

Iz I [

[P

Taking the boundedness of ||U!| = and ||U}| L= into account, we get
[Re(U" — RuU", 0})| < ACRKER* + 1[04 7.
1
[Re(U° — U2, 0})| < 4CR K30 + [0 5.
and

pr{ | Im (F(JUC U — FIURH UL, 93) |
= pr|Im(f/ (&) ([U)2 = |UR YU + F(IURD U = Up), 0})|

1
< CK,le‘Hﬁ;lLHiQ + Cgoh' < ZHﬂ;llHiQ + Ck 2h*,

when N > Ng = (Cg1T)"/®®). Then, we can easily get

O, < 24/8C2K2 + Croh® < hw,
H hilL Q1 )
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when .
1 %
h<hs= .
<2 SC%K% + C}gg))
Furthermore,
030 < R+ 193] e < [T + Co 0% <
Then the proof is complete. O
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