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Abstract. This paper is devoted to studying the initial-boundary value prob-
lem for the radiative full Euler equations, which are a fundamental system in
the radiative hydrodynamics with many practical applications in astrophysi-
cal and nuclear phenomena, with the slip boundary condition on an imper-
meable wall. Different from our recent paper named “Asymptotic stability of
rarefaction wave with slip boundary condition for radiative Euler flow”, in this
paper we study the initial-boundary value problem with the Neumann bound-
ary condition instead of the Dirichlet boundary on the temperature. Based on
the Neumann boundary condition on the temperature, we obtain that the pres-
sure also satisfies the Neumann boundary condition. This observation allows
us to establish the local existence and a priori estimates more easily than the
case of the Dirichlet boundary condition which is studied in the mentioned
paper. Since for the impermeable problem, there are quite a few results avail-
able for the Navier-Stokes equations and the radiative Euler equations, it will
contribute a lot to our systematical study on the asymptotic behaviors of the
rarefaction wave with the radiative effect and different boundary conditions
such as the inflow /outflow problem and the impermeable boundary problem
in our series papers.
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1 Introduction

The radiative full Euler equations are a fundamental system to describe the mo-
tion of the compressible gas with the radiative heat transfer phenomena, which
has many applications in astrophysics and nuclear explosions. Mathematically,
the one-dimensional radiative full Euler equations in the Eulerian coordinates are
a hyperbolic-elliptic coupled system of the following form:

(ot +(pu)x =0, (1.1a)
(ou)+ (pu*+p)x =0, (1.1b)
u? u?
{p <e—|—?>} —|—{pu <e+7>+pu} +4x=0, (1.1c)
t b
\_Qxx+aq+b(94)x:0/ (1.1d)

where p,u, p,e and 6 are respectively the density, velocity, pressure, internal en-
ergy and absolute temperature of the gas, and g is the radiative heat flux. Posi-
tive constants a2 and b depend only on the gas itself. Like the classic compressible
Euler equations, the Egs. (1.1a)-(1.1c) stand for the conservation of the mass, mo-
mentum and energy respectively. The Eq. (1.1d) is related to the radiative heat
transfer phenomenon, and one can refer [1,12,23,29,36,40] for more details. Sys-
tem (1.1) can also be derived by the non-relativistic limit (speed of light tending
to +-c0) from a hyperbolic-kinetic system, and rigorous mathematical derivation
can be found in [16]. Throughout this paper, we will concentrate on the ideal
polytropic gas
R
=1
where 7 >1 is the adiabatic exponent and R >0 is the specific gas constant.
In this paper, we will investigate the initial-boundary value problem of system
(1.1) on 0 < x <400 and 0 <t < +oco with the initial data

p=Rpb, e=C,0, C,= (1.2)

(p,u,0)(x,0)=(po,u0,00)(x) for x>0, and (po0,60)(x)>0,  (1.3)

inf
x€R+
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the asymptotic boundary condition at the far field x =40
(0,u,0,q)(+00,t) = (p+,u4,04,0), t=>0, (1.4)
and the Dirichlet-Neumann boundary conditions on the boundary x =0
u(0,£)=0, 6.(0,6)=6_, g(0,)=0, +>0, (1.5)

where p >0,u4,0+ >0 are given constants.

The slip boundary condition #(0,f) =0 means the wall is impermeable, so we
call the initial-boundary value problem (1.1)-(1.5) the impermeable wall problem.
We will consider the asymptotic stability of the 3-rarefaction wave of the imper-
meable wall problem (1.1)-(1.5). As far as we know, so far there is one rigorous
result obtained recently in [9] on the global-in-time solutions of the impermeable
wall problem for the radiative Euler equations, and most of the existing results
are on the global-in-time existence and stability of the elementary wave of the
Cauchy problem or the initial-boundary value (inflow /outflow) problem for the
one-dimensional radiative full Euler equations (1.1). Actually, due to the diffi-
culty that the velocity vanishes on the boundary, even for some strong dissipative
systems such as Navier-Stokes equations, there are quite few results (see [25] for
traveling wave and [28] for rarefaction wave) on the impermeable wall problem.

To study this problem, lots of additional boundary estimates on the perturba-
tion of the velocity is needed (see (4.23), (4.47), (4.51), (4.75)). However, we do
not need the estimates on the time-derivatives thanks for the Neumann bound-
ary condition on the temperature considered in this paper. It is very different
from those estimates in [9]. In fact, the combination of the condition 6,(0,{) =0
with 1(0,t) =0 implies px(0,t) =0, which greatly simplifies the estimates on the
boundary.

For the Cauchy problem, the global-in-time existence of solutions around
a constant state was shown in [17]. If the initial data is a small perturbation of
a given rarefaction wave with small strength, it was proved in [20] that the so-
lutions converge to the rarefaction wave as t — +-co. Then in [14], the authors
showed that when the absorption coefficient « tends to 4-co, the solutions con-
verge to the rarefaction wave with the convergence rate a~!/3|Ina|?, where the
absorption coefficient « is defined by the relationship a=3a? and b=4ac for pos-
itive constants a,b and the Stefan-Boltzmann constant ¢. The asymptotic stability
of a single viscous contact wave was proved in [37,38]. The existence and stability
for zero mass perturbation of the small amplitude shock profile were respectively
studied in [21,22]. The authors in [30] showed the nonlinear orbital asymptotic
stability of small amplitude shock profiles for general hyperbolic-elliptic coupled
systems of the type modeling the radiative gas. Analysis of large amplitude shock
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profiles was given in [2,24]. Finally, for the case of composite waves, the stability
of rarefaction waves and a viscous contact wave was investigated in [31,39]. The
unique global-in-time existence and the asymptotic stability of two viscous shock
waves were studied in [4] by employing the anti-derivative method.

We initiated the research of the initial-boundary value problem on a half line
for the radiative full Euler equations (1.1) in [5], where the asymptotic stability
of rarefaction wave for the inflow problem was established. Then the asymp-
totic stability of rarefaction wave for the outflow problem was established in [7].
Recently the asymptotic stability of rarefaction wave for the impermeable wall
problem was established in [9]. In addition, the asymptotic stability of viscous
contact wave for the inflow problem and the asymptotic stability of shock wave
for the outflow problem were established in [6, 8], respectively.

In order to systematically study the behaviour of rarefaction wave with the ra-
diative effect and of different-type boundary conditions such as the inflow /out-
flow problems [5,7], it is natural to consider the impermeable wall problem.

We need to mention that we are also motivated by the related investigations
on the simplified radiative Euler model (Hamer model), which gives a good ap-
proximation to the fundamental system in a certain physical situation, c.f. [13,19].
The investigations on the simplified model provide a good understanding on the
radiative effect. The exhaustive literature list is beyond the scope of the paper,
and thus, only few closely related results on the rarefaction waves are mentioned,
c.f.[3,10,11,18,32-34]. Interested readers can refer to them and references therein.

The rest of the paper is organized as follows. In Section 2, the smooth rarefac-
tion wave is constructed based on the Riemann problem of the full Euler equa-
tions. Properties of smooth rarefaction waves which will be frequently used in
this paper and the main theorem of this paper are given. In Section 3, we refor-
mulate the system and establish the local existence of the reformulated problem.
Then series of a priori estimates are established in Sections 4-5.

2 Construction on rarefaction wave and main results

In this section, we will introduce the smooth rarefaction wave which is the asymp-
totic profile considered in this paper. Then several properties of the smooth rar-
efaction wave and main theorem of this paper will be given.

2.1 Construction on rarefaction wave

It is well known that the 3-rarefaction wave curve through the right-hand side
state (o4,u+,04) is
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Rs(p+,u+,04):= { (0" ,07) : 0<p" <py, (") 70" =p "0,
2 -1 1t
u' =ueto g Rypl [(pr)'y2 —py }} 2.1)

In particular, there exist an unique pair (o—,6_) such that (o—,0,0_) Rz (04, u+,04).
The 3-rarefaction wave (p",u",0")(x/t) connecting (p—,0,6_) and (p+,u+,04) is
a global-in-time weak solution to the following Riemann problem of Euler sys-
tem:

(pf+(p"u")x =0,
(" u")e+[o" (u")?

R R

+

+
(07 1,6 (x,0) (p—,0,0— x <0,
P+,u+,9+ x>0.

"x=0,

\

In addition, 4" is defined by

qf=—g{(9f)4}x. (2.3)

Next, in order to give the details of the large-time behavior of the solutions to
the impermeable problem, it is necessary to construct a smooth approximation
solution (g,i,0)(x,t) from (o",u’,0")(x/t). As done in [15], firstly let us define
w(x/t) to be the solution of

W+ WD, =0,

_ ~ 1 B ex d]/
@(x,0) =1y (x)= E(uur-l—w )—I—wKV/O A+

(2.4)

where W= (w4 —w_)/2>0,e>0 and K, is a constant such that

00 dy
K, ——=1
/—oo (1 +y2)v

for v>3/2. The properties of the solution @ to the regularized problem (2.4) were
given in Lemma 2.1 of [26,27,35] as follows.

Lemma 2.1 ([26,27,35]). The regularized problem (2.4) admits a unique global smooth
solution W(x,t) satisfying the following properties:
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(i) w_ <@(x,t) <wy,Wy(x,t) >0 for each (x,t) ER x [0,00).

(it) For any p with 1< p <oo, there exists a constant Cp,, depending on p and v such
that

[ (1) ||} » < Cpymin(el P, @t 1),

-1
@ (8) 1y < Cpamin (e 1ot P~V -H)p= o017 ).

(iii) There exists a constant C,, depending on v such that

Wy
(iv) [0Lkw|c0 < Clwy —w_|HFH1 1 k>0,1+k<A4.

2
Wix

dx =

) Q1141
= gCme<82w,sl wp il 2v).
wx Ll

(v) supg |@(x,t) —wR(x/t)| =0, as t — +oo, where wR (x/t) is a classic rarefaction
wave connecting w_ and w- .

Letw_=A3(p—,0,0_) and w4 =A3(p+,u+,0). Here A3 is the third eigenvalue
of the full Euler system. Then the smooth approximated solution

Z(x,t) = (p(x,t),11(x,1),0(x,t))

is constructed by solving the following equations:

S"(p,11,0) (x,t) =5 (p+, 1,6+,

As(p,1,0)(x,t)=w(x,1+t),

I (2.5)
ﬁ:u+—/ As(u, S )du,
U+
where . )
Sr(ﬁ,ﬁ,@):R@ﬁl—’yl Sizsr(P+lu+,9+)=R9+P}F_7.
It is easy to check that
( B+ (P =0,
(ﬁﬂ)t‘i‘(ﬁﬁz—i—ﬁ)xzol
(R PV (R sl —o
% 1_1 2 ¢ p ’)/—1 2 p x— , (26)
(3,78 (0.6)=(p-,0,6-),
0 +
(ﬁ/ﬁ,Q)(x,O) — (9—1019_), xr = 0 ,
N (p+/u+,9+), X — +oo
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In addition, 4 is defined by

O
g=——(0")x. 2.7)

The following properties are satisfied by the smooth rarefaction wave Z and 4.

Lemma 2.2 (Property of Smooth Rarefaction Wave). Smooth rarefaction wave Z(x,t)
obtained via (2.4) and (2.5) satisfies

(1) iy >0 for x>0,t>0.

(2) Forany p (1<p<+00), there exists a constant C such that

| () 1) < Cpmin {7, (143,

~ 21 1 p-1 (28)
| (Brx e Bu) (1) < Cpomin{ 77, (148) 77 |,
(3) limys-+oosup, g+ | (5,18,8) (x,£) — (0, u,07) (x /)| =
(4) In particular, for p=2,
(T, i, 02) () |2 SeF (14875, [[7(B) > Ses(1+)7F, 2.9)
(T, B, B ) (£) || S €3 (148) 5.
(5)
02, 6 1 9
/w( x+ux>(x,t)dx S (141)5. (2.10)

The proof of Lemma 2.2 can be found elsewhere such as [7,35].
In this paper, we will use (p,1,0,7)(x,t) to represent (p,4,0,7)(x,t)|,>o for the
notational simplicity.

2.2 Main results

In this subsection, we will reformulate the impermeable problem mathematically
by introducing the difference of the solutions and the smooth rarefaction wave
defined by (2.5) and (2.7)

(@, 9,&w) = (p,u,0,9)— (0,i,0,7). (2.11)
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Then (¢,,¢,w) satisfies the following equations:

Pt upy+pPr=hy, (2.12a)
p(Pr+upy) +(p—p)x=ha, (2.12b)
Cop(Gt+ulx) +px+wy=hs, (2.12¢)
—Wax +aw+4b0° E +4b0: & (07 +60 +6%) =Gra, (2.12d)

where

hy:=—pxp—ilxp=O(1) | (px, )| | ($,9)],
hy:= —pﬁxip-l—%(P:O(l)‘ Px/uxz ‘ | (P ¢’ (2'13)
h3Z: —Rpgﬁx—cvgxp¢—ﬁxzo( ’ uX/ H ll) g ’—i_qx

with the initial-boundary conditions

{ (6,1,8)(x,0) = (d0,$0,E0) (x) = (0,0,0) as x— +co,
5 _ 4b -~ (2.14)
¥(0,t)=0, & (0,t)=—0,(0,t), w(O,t):—q(O,t)z;939,((0,15).

We are ready to introduce the main result of this paper in this subsection. First,
we define the solution space as
Xum(0,):= {(¢,¢,§) eC([0,t; H*(RT)),we C([0,{); H}(R")),
wr €C(0,5H*(RY)), (¢,9,8)x €L*(0,H (RT)),
weL2([0,4;H*(R")),wr € L (0, HA(RY)),
sup {H(4>,t/),§)(r)||z+Hw(r)||3+||wt(f)||z}§M}. (2.15)

7€[0,¢]

Now we turn to state our main result that the smooth rarefaction wave con-
structed in (2.5) and (2.7) is globally stable.

Theorem 2.1. Assume (p—,0,0_) € R3(p+,u4,0+). Suppose the initial data (1.3) and
the boundary data (1.5) satisfy the compatibility condition uy(0) =0, and the initial data

satisfy N
(po—ﬁo,uo—ﬁo,eo—eo) E(HzﬂLl)[O,—l—OO). (216)

If there exist constants €y >0 and 1y > 0 suitably small such that € S ey and

| (po—Po, 110 — i, 60— 00) ||, S 10, 2.17)
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then the impermeable problem (1.1)-(1.5) admits a unique solution (p,u,0,q)(x,t) satis-

fying

(0—p,u—11,0—0,g—7)(x,t) €Xp[0,40). (2.18)
Furthermore, it holds
sup‘(p,u,@,q)(x,t)—(pr,ur,Gr,qr) (%)‘ — 0 as t — 4oo. (2.19)
x>0

3 The local-in-time existence

In this section, we will prove the local-in-time existence of the initial-boundary
value problem (2.12)-(2.14), which is stated as follows.

Proposition 3.1 (Local-in-Time Existence). There exist positive constants €1,1, and
C(Cn1<mno) such that if n Sn1 and € Sey, then for any constant M e (0,171 ), there exists
a positive constant to=ty(M), which does not depend on T such that if

(¢, 8,w)(T)[l2<M,
then problem (2.12)-(2.14) admits a unique solution (¢,9,¢,w)(x,t) € X (T, T+Ht0)-

Proof. We will extend the initial data from being defined on {7} x R™ to {t} xR
to show the local-in-time existence. In fact, by the boundary condition (1.5), we
extend (u,0,9) by

(u(—x,7),0(—x,7),4(—x,7)) :=(—u(x,7),0(x,7),—q(x,7)) for x>0.

Moreover, by the Eq. (1.1b), p«(0,t) =0. So, by the first identity in (1.2), we know
that p(0,t) =0. Then we extend p by

p(—x,7):=p(x,T) for x>0.

Then define the initial data (¢,¢,i,w) on {T} xR by (2.11), it follows from
|(p,1,¢,w)(T)||2 <M that the extended functions (¢,¢,¢,w) also satisfy the same
estimate. Now, following the argument in the proof of [4, Theorem 4.1], we know
there exists a unique H2-solution (¢,1,&,w) of Egs. (2.12) on (T,T+ty) x R with
the initial condition (2.14) and estimate (¢, ¢,¢,w) (x,t) €Xp (T, T+10). Moreover,
for a given solution (p(x,t),u(x,t),0(x,t),q(x,t)) of Egs. (1.1), it is easy to see that
(p(—x,t),—u(—x,t),0(—x,t),—q(—x,t)) is also a solution of Egs. (1.1). Because the
two solutions satisfy the same boundary condition due to the fact that

(o(—x,7),u(—x,7),0(—x,7),9(—x,7)) = (p(x,7),—u(x,7),0(x,7),—q(x,7)),
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we have

(o(—x,t),u(—x,t),0(—x,t),q(—x,t)) = (p(x,t),—u(x,t),0(x,t),—q(x,t)).
So on the boundary x =0, we have the solution satisfies the boundary condition
(1.5). Finally, assume there are two solutions (p1 (x,t),u1(x,t),61(x,t),q1(x,t)) and
(p2(x,t),uz2(x,t),02(x,t),q2(x,t)) of Egs. (1.1). For i=1 or 2, define
(i (—x,8),ui (—2,1),0;(—x,t),q: (—x,t)) = (pi (x,£), —ui (x,1),0;(x,1), —qi(x,1)) .
Then they both are the solutions of Egs. (1.1) with the same initial data. So, by the
uniqueness, we know that
(Pl (x/t)/ul (xlt)lel (x/t)/ql (xlt)) == (PZ (x/t)/uz (x/t)/92 (x/t)/q2 (x/t)) .
Therefore, problem (2.12)-(2.14) admits a unique solution

(¢,9,6,w)(x,t) €Xep(T,T+to0).
The proof is complete. O

4 Energy estimates on fluid perturbation parts

Based on Proposition 3.1, the global-in-time existence can be established with
a priori estimates obtained in this section. Suppose that solutions (¢,,¢,w)(x,t)
of problem (2.12)-(2.14) has been extended to the time T > t, we will derive the
following a priori estimates.

Proposition 4.1 (A Priori Estimates). Under the assumptions of Theorem 2.1, there ex-
ist positive constants 4o <t;,€; <min{ey,1} and C such that for any t<T, if (¢,1,,w) €
X([0,t]) with satisfying € < e, and

N(t)= sup {[[(¢,$,¢)(D)ll2+[[w(D)|ls+][we(T)]2} Sz (4.1)

0<T<t
then it holds the estimate that

sup {11(¢,,6)(7) 3+ lw() 3+ i ()13}

0<t<t

t
+ /0 | (P P, W, P, P, W, Wi ) |2 (0,7)dt

+/0t(||(¢x,¢x,€x)(f)||‘%+HW(T)H%HIM(T)H%MT

1
Sl (9o ool 2 +es. (42)
Here both 111 and €1 are the same positive constants as in Proposition 3.1.
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Once Proposition 4.1 is proved, we can extend the local solution (¢,y,&,w)(x,t),
obtained in Proposition 3.1 to the time t=+-co by the standard continuation argu-
ment. Moreover, the estimate (4.2) with passing the limit t — co implies that

0 d
[ (190 DI+ 1 @) ()P ) e <+

Combining the Sobolev inequality, we can easily get the asymptotic behavior
(2.19), that concludes the proof of Theorem 2.1. Therefore, the remaining task
is to show the a priori estimate in Proposition 4.1.

At first, let

~ 0 2 ~
E=ROw (§)+7+c2,9w (%), w(s)=s—1—Ins. (4.3)

By the definition of w, we see that there exists a positive continuous function C(s)
such that
C(s) H(s—1)*<w(s) <C(s)(s—1)%

In addition, by direct calculations, one has

1 1
w(s)zglnzs as ]s—1|§1. (4.4)

Following the almost same calculations as in [9, Lemma 4.1], we have the basic
energy estimate on the fluid perturbation part (¢,1,¢)(x,t) as follows.

Lemma 4.1. Under the assumptions of Proposition 4.1, if € and N(t) are suitably small,
it holds

1@+ [ (IVE @@+ () ) e
S @00 80) P+ €8N [ Eowe) ()P (45)

4.1 First-order energy estimates

In this subsection, we will show the first-order energy estimates on the fluid per-
turbation part (¢,¢,¢)(x,t). Due to different boundary conditions from [9], here
differentiate (2.12) with respect to x instead of ¢, the reformed equations can be
written as

(,btx‘|‘u¢xx F0oYPxx = H;, (4'6a)
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O(Pix +Uuthrx) + Rolrx + ROPrx = Ho, (4.6b)
Cvp(gtx + qux) FPPxx +Wyx = H3, (4.6¢)
_Wxxx+an +4b93‘:xx :H4, (4.6d)

where
Hy:=hy,— UxPx — PxPx,

Hy:=hoy — px (P +utpx) — prixPx
— 2R (xCx +0xx+PxCx) — Roxxl— ROxxp, (4.7)
Hz:=h3x — Copx (8t +1uGx) — CopuixGx — pxiPx,
Hyi= o — 126670, 8 —4b [ 0,2 (62 +69+67) | .
Then we have the following first-order energy estimate.

Lemma 4.2. Under the assumptions of Proposition 4.1, if € and N(t) are suitably small,
then it holds for t € [0,T],

[ (1P, Gx ) (F) ||2+/0t (H (Cx)Wx, Wxx ) (T) ||2+ | (wx, W) |2(OIT))dT
S @090 80)-+ed+(e+N() [ 1@npapon) (0[Pt 49

Proof. Step 1. Multiplying (4.6a) by RO¢, /0%, we get
RO ROu
(Wi) (58) e

RO ROu
et (52) +(52) o @9

Multiplying (4.6b) by ¢, /p, we have

(%lp%) +(MT¢X) +— lPx(Pxx‘i‘Rlpxgxx Lpazc—i_ﬂHZ' (4.10)
t x P

Multiplying (4.6¢) by &x/(pf), we obtain
C Cou
(2_(;692() + ( 209 2) X+Rlpx§xx+§_2wxx

gx Cy Cou
oo (55) < (5) )& @1y
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Multiplying (4.6d) by w, / (4bp6*), we get
2
o ZUx ZUx awx Wx‘:xx _ ZUxHAL
<4bp94 w) 7 (4bp94)xwxx+4bp94 o0 T apper 12
Combining (4.9)-(4.12), one has
7?9, w, |l
< 2 "2 T2 5’f) <4bp94> Wax 4 op1 T 120

; RO\ (RO R
St et (3), 0 (52) Joi e (5),

gx % Cvu wa4 i
et (om) +(5) Jo it (o) e 69

where

. ROugy  uyy
hi==0 1 29 rie s (”x%

Cx

+RpxCx+ 00 (4.14)

Wyx — —4bp94 Wxx

Integrating (4.13) over R™ x [0,#], choosing € and N(t) suitable small, we obtain
@8O+ [ s (Ol
< 10p0.80) B+ (4N () [ (et e) (1) P
fa ;
+ /0 /]R | (B Bee) [ (0,8 Pt + /0 L(0,7)dr. (4.15)

Step 2. Estimates of the boundary integral fot L(0,7)dT.
Firstly, we see from u(0,t) =(0,t) =0, (0,t) = —6,(0,t) that

Cx

L(0,t)= ;<R9¢x¢x+Rplpx§x+ Wy — 43;94 )(0 ). (4.16)

From the Eq. (2.12d), it holds

Wy (0,8) =aw(0,t) +4b63 & (0, 1) + 126620, E(0,) — Gax (0,1). (4.17)
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That is
Wy Wy 3wx
(gp0m—5-6x ) () = o (aw—Gu) 0+ 5 6:2(01).  (418)
Hence, we obtain
t
[t ) 0
S/ ’wx szaxxzexg) }(OIT)dT
0
t I
< [ s () ol (B e Be2) (1) ot
t t
<2 [ Twn(lPdrs [ o(lidr+eh @19
On the other hand, we get from (2.12b) and boundary conditions that
(p—p)x(0,t)=0, (4.20)
(ROPx+Rpy)(0,t) = —R(pxE+0x¢)(0,t). (4.21)

Since | (7, i, 8:) (1)« Smine, (1)1}, it yields

[ (Rog+ Rpt) 90,0075 [ 39,214 0,000
< [ N@ 291D (BB (1) e
SNO) [ 1@ pa(Ollacs [ (@] (780 (0)| e

(+€) [ 1atbeotpen) (0) Pt 422)
Furthermore, we get
/ (00T < / (ROg+ Rl ) pr(0,7)d
+/ wxg" 4b94w”> (0,7)d
(1)+€) [/ 1o utpen) (1)

8/ e (T ||2d'r—|—/ oo(T)|2dT+eb. (4.23)
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Based on Lemma 4.1, we can control the boundary term and obtain

t
[ (@epe &)1+ [ eox() e
) t
<10 g0 F+el+ (e+N(D) [ 11@xtprtatpes) (7).

Furthermore, we see that
t t t
| w2omars [wx@l2ars [ s )llws () s
1 t t
Sg | len(@IPdr [ flws(x) .
0 0
By (4.17), it holds
t tooo
/0 w2, (0,7)dT < /0 | (B,0:2,32x) (0,7) | *dT
to o~
< [ 160:87) (0) ST 6.

At last, by (2.12d), it holds

t t t
Jlesolars [ @ Pars [ [ (@)

Thus, we get (4.8). This completes the proof.

Now we will deal with the term fot | (¢x, 1) (T)||d.

371

(4.24)

(4.25)

(4.26)

(4.27)

Lemma 4.3. Under the assumptions of Proposition 4.1, if € and N(t) are suitably small,

it holds

t ) t
L @)@ TS (G0t 0) [i+ed+ (e+N() [ gaa () Par. @28)

Proof. (2.12b) can be written as

hy

¢t+u¢x+%94>x+R€x=;—%(@;wﬁxé)-

Multiplying (4.29) by R0¢, /2, we get

292
NV 2 P2
(PX ZLPX

RO RQ p
() (o s ows) 5

(4.29)
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X R
——REROT + z(et O+ 1,0) ¢ — 5 OP (1 e+ Pt
1 + = Phix+5—¢p:h K (Bx¢p+px€) (4.30)
2lel)¢x ZLP 1x qubx 2 2P ¢x (OxPp+0xC). .
Multiplying (2.12c) by ¢, we have

(CopGipx )t — (CoplPt ) ‘Hﬂl)}zc + CopuGx Py
+Cv(Pu)xglpx‘f'cv(()‘:)xlpt"'wxlpx:h3¢’x~ (4'31)

Combining (4.30) with (4.31), we obtain

RO R p R?0? , p ,
<_¢x¢+C0PC¢X) + <§9”¢xlp+§¢¢’x_cvp‘:¢’t>x"‘?‘i’x“‘ilpx
——Rezgx(l)x (9t utly +uxb )‘lep_gell)(”x(l’x"‘()xll)x)
~ R RO
+§pxlp¢’x_ ?‘Px (9x¢+px‘:) _wx¢x+§¢h1x+$¢xh2+h3lpx
= (e+N (1) (92220 P+O 1) (| BB || (99,8) P+ Gxpa il ). (432)

Integrating (4.32) over R™ x [0,f] and using boundary conditions (1,¢:)(0,t) =
(0,0), one has

L@@ g0 il + (g e+N0) [ ool
+ /0 /]R+(‘(5x/9xx | |(¢/¢,§)Iz+§x+wx)dxdr. (4.33)

Using Lemmas 4.1 and 4.2, it yields (4.28). The proof is complete. O

Finally, we get H!-estimate on the solution (¢,1,&) by using Lemmas 4.1-4.3

10RO+ [ s 0,0)dr
+ [ (IVER@RD@IP+ 1@ i) (@) P+ (D) de
S @00 0)|-+ed+ (e +N(0) [ ()] 434)
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4.2 Second-order energy estimates

In this subsection, we will show the second-order energy estimates on the fluid
perturbation part (¢,,¢)(x,t). To do this, we first estimate the radial derivative.
Differentiate (2.12) with respect to t, then the reformed equations can be writ-
ten as

Q1+ uprx+pPix =E1, (4.35a)
p(Pr+uppee) +(p—P)ir =1, (4.35b)
Cop (Gt + UGty ) + put + Wiy = hs, (4.35¢)
— Wiy +aw; +4bO3Ery =Ny, (4.35d)

where _
hy:=hy— Ut — PPy,

Ez i=hyy —Pt(lPt-l-MlPx) —pusty,

h3 :=h3t — Cypt (Ct + ugx) — Copulyx — piipy,

Ry = — 12560, 8 —4b | 0,8 (62 +60+67) | .
First, we establish the space-time estimates as follow. We remark that the bound-
ary estimates are very different from [9].

(4.36)

Lemma 4.4. Under the assumptions of Proposition 4.1, if € and N(t) are suitably small,
it holds

t
||(¢txr¢txﬂ:tx)(t)||2+/0 (|(<PtxrwtxrwtxX)|2(OrT)+||(wtxrthX)(T)||2)dT
1 t
S||(4>o,¢’o,§0)||§+€8+(€+N(t))/0 (P P, G (7) | 2T (4.37)
Proof. Multiplying (4.35b) by 1 /p, we get
2 R

<%) t+ (%IPJ%Jx+R‘:txletx+7(Ptxletx
- {R9t¢xx+RPt§xx+ (Rgx(,bx‘l‘Rngx)t"'R(ﬁxg“‘ 5x¢) tx} %
+ {h2x leptt_ Pu Lptx} LPtx (4.38)

since

(P=P) txx = ROPrxx + RoGrxx + {R(gxﬁb"‘ﬁx‘:) }tx
+R9t¢xx+RPt§xx + (R9x¢x+Rpx§x)t~
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Multiplying (4.35a) by RO¢y;/p?, we have

RO ROu RO
ﬁcpxt t“‘ 7_‘th +7‘th¢txx

RO RO RO -
- { (?) . (?@?) x}¢’2‘t+p_2"”"* (=it —pxipx).  (439)

Multiplying (4.6c) by i/ (00), we obtain
Co 20 Cout Eix
<%§tx> t+ (ﬁ‘:tx) +R‘:txlptxx+ ‘09 Wixx
C, Cou )
= { <%) t+ < ) }gtx gt {h3x pr‘:tt_cv(pu)xgtx—R(pe)xlptx}. (440)

Multiplying (4.6d) by wyy / (4bp6*), we get

2
_ Wix Wex awe, | Wiy
( —4bp94 wtxx)x+ <4—bp94)xwtxx+4bp94 +— ‘:txx
wtx -~ 39

= whélx_lﬁ‘:txwtx' (4'41)

Combining (4.38)-(4.41), one has

R9 ¢7 t CZJ wtx wz
<2 2<th I + Ctx) <4bP94> txx+4bp94 +I3x

_ l Wiy Cpx + R wtx~ 39x§ w
— P9 N txGtx P (Ptxll)tx 94 4x PGZ txWtx
RO RGu 5 ~
+ 50 + 57 b3+ _247xt (hlx — Uy Pyt _leptx)

20 20
- {Ret(,bxx+RPt‘:xx+ (R9x¢x+Rpx‘:x)t +R(Pt§+9t¢) } LP:C

X C'U
+{h2x Px¢tt_ P” lexx}lp t {(29) +< 291/[) }‘:%x

gtx {hax CopxGtt — Co(ptt)xCx — R(00)x tx }, (4.42)

where

RGu w; -
b= 02 202 %t lp"t 29 iR+ R‘ftletxﬂL ‘Pfxlp“‘ 4bp24 W+ p;xé‘
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Integrating (4.42) over R* x [0,t], we have
a1+ [ ot o) (1) P
< 100,80) B+ @r .20 O) B+ + [ (0,00
HerN®) [ @) lfde
[ o) PA (9, P (4.4)

Similarly, using the boundary condition u(0,t) =0, we get

(0, = 5 (RoZusct RO9uatee) 00+ (558~ i) 0). (44t
Recall that (p—p)x(0,¢) =0 and
(p—P)tx =RpoCix +ROPi + RpixC+ Rgtxfp
+ Rp1Gx+ RO pr+RoxGe+ ROy (4.45)
Thus, it holds by w(0,t) = —4(0,t),di(0,t) =0,i=0,1,2,
(RoGtx+ROr) 1 (0,8) = — R(D1x G+ Orxp+ Prx+ 01 ) 1 (0,8) — Rpx i (0,1)
=—R{(0txC+O01x P+ 01+ 0:Px ) 1P }£(0,1)
+R(Pral +0rxp+Prx +0rp2 )19 (0,1)
+ Iéf; (pyx+ Rpdit, + Cvéxpll)) ¥ix(0,1)

= —R{ (P12 &4 O+ Pl 4O ) ¥ }+(0,1)
+ R(PrxE+Opxp+Prlx +0px ) 1 (0,1)
+R(y—1)0pxPx1x(0,1)
+R.Ox[(’Y—1)‘:ﬁx+§x¢]¢txmrt)

= —R{ (01§ +0xp+ 0 + 010 ) ¥ 11 (0,1)
+ R(DexE + 02+ Prlx +0:px )1 (0, 1)

+R('y—1)(9px¢"+px€‘ux¢x) 0,1)

2

—R(v—1>{<epx>¢ T (peiT), w}( N, (4d6)
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which implies

/Ot |(RoGtx + ROy )i | (0,T)dT
<@, OB+(4,9, )3+t
t
+(€+N(t))/0 | (@ i) [2(0,7)dT

In addition, we have

t
S3 /O ot (7) P+ [ e () Pt
Since wWyyy = 4b03¢;, —hy+aw;, we have
[ @0 0)t5 [ () @) eh
0
In summary, we get
[ 5(0,0dw S 10,2 ()15 +1(6,,8) 0 4¢3
t
+(e+N(t)) /0 | (¢, Px,Pex) 17 (0,T)d T
At last, (4.45) implies
t
[ 00 [ @0,0dt+ [ 15nBie) 0,20,
+ 16080 (0 8P (0,007
+ [lppomnhs) 00
t 5 %
S [l O)dr+e

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)
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<[ 2 L
< [ @) (@) 2+

t ) |
< [ 1@ep (@) Fdrtet, @52)
t 1
/0 L(0,7)dt S| (¢, 9,8) ()1 +II(p, 1,0 (0)[[F +e8
t
(e+ND) [ 11@eapee) (7). (4.59)
Combining (4.53) and (4.43), we obtain (4.37). The proof is complete. ]

Now we establish the estimate on the second-order derivatives as follow.

Lemma 4.5. Under the same assumptions listed in Proposition 4.1, if € and N(t) are
suitably small, it holds

t
@ enses) 1P+ [ (1Wree s PO+ @ 0, e () |2
1 t
Sl (9o o.0)l2+e5 + (e+N(8) /0 (e e) (T) | dT. (454)

Proof. Step 1. Multiplying (4.6a) by RO¢r/p?, we get

(50) (320) 20
2p2 XX . 2 rxx . p XX XXX

RO Ruf RO
N { <ﬁ) 7 ( 2Z ) }‘Pxx 2 —5 Prx (Hix — txPrx = 0xPx)- (4.55)

Multiplying (4.6b) by 1. /p, we have

(%?m)t—i- (z¢§x> +R—91Pxx¢XXX+RLPxx€xxx

prx +Pxx { ( I;)Iz ) ( ko ) Pxx } (4.56)

Multiplying (4.6¢) by xx/(00), we obtain

(5 5xx) (5

Co Cou xx
:{<%)t+<29) }gxx g {H3x CopxCx — Co(ptt) x Cox — lel)xx}- (4.57)

) + Rll)xxxgxx + ixex Wxxx
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Multiplying (4.6d) by ws. / (4bp8*), we get

2
[ Waxx Wxyx AWyy | Wxx
(—419994 wxxx) + <4bp94)xwxxx+4bpe4 + PG Cxxx
Wyxx wxx
4bp@4 4x xgxx

Combining (4.55)-(4.58), one has

¢xx Wy 2
{2 2(Pxx 2 +55 20 ‘:xx} (4bp94) xxx+4bp94 + Iy
= 0(1) (€+N(t)) ‘ ((Px/¢’x/§x/wx/(,bxx/lpxx/‘:xx/wxx) ‘2
+O(U)| (B3, 8xx.Brxx) [N (9,9.2),

where
Ru9 u C
2 (Pxx _ll)yzcx + e +Rll)xx§xx
R w w
+— (Pxxll)xx + p)éx Cxx— ﬁwxxx

(4.58)

(4.59)

(4.60)

Integrating (4.59) over R™ x [0, t], choosing € and N(t) suitable small, we have

t
H(4’xxfll)xx/€xx)(f)||2+/0 (lwxa (O[5 + 1G22 ()17 dT
) t
S||(¢o,¢o,€‘0)||%+€g+(€+N(t))/0 (@, P2, G) (T) || 7T
t t ~ o~ o~
+ /0 1,(0,7)dt+ /0 /]R (BB ) |1 (9,9,6) P,

where we used

[NewlPars [ [ (@t Haxde

Step 2. Deal with the boundary integral fot 1,(0,7)dT.
Due to u(0,t) =0, we get

Wxx
4bp6*

14(0,6) = %(Rp(fxx 1 ROGss ) P (0,) 255 (456%E s — 02 (O,1).

(4.61)

(4.62)

(4.63)
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At first, one has from (4.35)

P1x(0,8) +p9xx (0,1) = H1(0,1), (4.64a)
PP1x(0,8) + Rp8x (0,8) + ROPxx (0,1) = H2(0,8), (4.64b)
PPxx (0,£) +wxx(0,¢) = H3(0,t) — CopGix (0,t), (4.64c)
— Wy (0,) +4b60°F 1 (0,) = Hy (0,8) —aw, (0,t). (4.64d)

It holds by (4.64c) and ¢y (0,t) = —6,(0,t) that
[0 [ @G m) 00t
Sebt(e+N) [ (e 00
+ [ (168 (0.0 + ) 0,0
S(NW) [ 1) ()t
S(+N) [ Npepen) (0) Preh (4.65)
In addition, we see from (4.35d) that
— Wi+ AW+ 4BO3E e = Gy — 1266760, F, —4b [5x§(92 +00 +§2)] . (466
and &(0,t) = —0,(0,t) and w(0,t) = —§(0,¢) yield
[@n00irs [ @ Gt GBS O s @6
Recall that Cpp(Ex +ulxx ) + pPxx +wxx = H3, which implies

Cvp(gttx + ugtxx) +PPtxx T Wixx = Hz¢— Cvptgtx -G (Pu)tgxx —Pt¥xx,
[Cv,ogttx +pPixx +wtxx] (Olt) = (H3t - Cvpt‘:tx - Ptlpxx) (O/t)/ (4~68)

where
Hap:=hapy — [Cvpx (‘:t + u‘:x) +Copuxlx+ pxlpx} ¢

= (—Rp@ﬁx—Cvgxplp—ifx)tx— Cv%(h3_P‘Px_wx)+CvP“x§x+Px1Px
t
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(—Rp&ilx — Cobxptp—Gx) . — |:%(h3_wx)+cvpuxéx+R9xplpx t

= (—Rpgilx —x ),gx_cvgxP‘Ptx Cofxprxtp — Cobx (0x Pt +011Px) — Cobrxxptp

~ B s =t01) | ~Copttie—Cuptt— ROspa —Colp bt R(6sp)s
)

t

:(—RPCux Jx tx_CU thxL/J Cv (lePt+Pt1Px) Cvgfxxpll)

- ppx(h3 wx)} _Cv,ogxﬁtx_’)’cvpexlptx_Cv(pgx)tux_R(Pex)tlpx
L t

= 0(1) (| (‘Ptxr‘:txrth) | + | (ﬁxrgx) (fo/lPx,Cx) | + | (ﬁtxmgtxx) (‘Pr‘:) |
+Gtrx +YCopOx Pty (4.69)

From (4.68) and (4.69), 6,(0,t) =0 and & (0,t) = —6,(0,t) yield
t t
/Olptzxx(O/T)dTrS/O |(gttx/wtxx/H%/gtx/L/Jxx)IZ(OIT)dT
<[ 200,0)dt+ [ | (BrenBras i) (0, 7)d
N/O |(wtxlepxx/wtx/¢tx)| ( /T) T+/0 ‘( ttxs tx;‘]txx)‘ ( /T) T
t ~ -
+/0 (’ (11,0x) (@, P, Gx) }24‘ | (e, Oexx ) (,C) }2) (0,7)dt
t t .
S(e+NW) [ @)@+ [ wd0dr+el. @70
Hence, it holds
[ pta 0,07 = [ s 00— [ 0,00
A tx Pxx\Y, - 0 txlpxx s T ) x Wtxx\Y,

t
SPathx(0,1) _¢tx¢xx(010)+/() (¢t2xx+¢92c) (0,7)dt
S Wt r) ()24 | (P ) (O) |2+ €3
t
(e N) [ (@upe) () e+ / W2 (0,0)dT. (471)

Therefore, one has

t t t
/014(017)‘11—5,/0L/Jxxlljtx(off)d"f—/o %|l[)xxH2|(0,T)dT

+ [ low(Hy—aw)] (0,0)d (4.72)
0
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The second and third terms on the right-hand side of (4.72) are estimated as fol-
lows:

t t t
/0 PrrH(0,7)dT < /0 2 .(0,7)dT+ (e+N(1)) /O (¢2+92) (0,7)dt
t ~
+/ } ﬁxx/ﬂxx/exx) (47,5)}2(0,’['){1’(, (4.73)
[ ey~ [0 0)TS [ (4w + G4 B+ o) O )T (@78

Finally, by Lemma 4.4, we get

[ 1008 S 1G0p0.80) B+ b+ (+NW) [ @) (Olidr. @79

Substituting (4.75) into (4.61), we get (4.54). This proves the Lemma 4.5. O

Combining the results in Lemmas 4.1-4.5, we get

t
1@+ [ 1aon e pon o o) P(O,T)d
t
[ (1@t ) (0) P+ [20(2) I3+ e () ) e
1 t
S11 @003+t + (e N(®) [ (@rtpen) (D)2 476)

Finally, we will deal with f(; | (P, Pxx) (T)||?d.

Lemma 4.6. Under the assumptions of Proposition 4.1, if € and N(t) are suitably small,
it holds

t 1
/0 1@, o) (D) 2T S 1| (f0, 90, 0) |13 +€5. (4.77)

Proof. Multiplying (4.6b) by RO¢xx/ (2p) and (4.6¢) by 1rx, we can get
RO RO R?6% ,
Tbexl/Jx - 74)“51#3( + lpxx + —(Pxx

RO RZ RG RO
= $¢xxH2 (Pxxgxx‘i‘ < ) (Pxxlpx (7)3(4)”1#"

RO
- 747xxH1 + H31Pxx - Cvp(gtx + ugxx )ll)xx - wxxlpxx- (4-78)
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Integrating (4.78) over R™ x [0,t], choosing € and N(t) suitable small, we have

t t
/0 (@, o) (D) 1247 S (@, 2) (D11 + | (@0, Pox) ||2+/0 |fextpe| (0, T)dT

+/0tH(gtngxx/wxxr(,bxrlljx/gx)(T)HZdT
t ~ ~ o~
+ /0 /IR | (BB i) 1 (9,9,8) P,
t t t
| 19upsl©0)rs [ R0+ [ y20)dr
' 2 ' 2
< [ 0T+ [ ) 2ar
t 1 t t
< | R @DT+g [ s Par+ [ ()|

Using (4.76), we obtain (4.77). This completes the proof.
At last, (4.6d) yields

gtx = 0(1) ’ (H3/§xx/1/)xx/wxx) ’/
wr = O (1)|(hy, G, Wiy

Combining the results in Lemmas 4.1-4.6, we get

t
‘|(¢/¢I‘:)(t)||§+/0 |((lewxlwxleCXIlpxx/(Ptx/wtx/wtxx)|2(0,T)dT
t
+/O (I, C) (DT + e (D) P+ [w (D) |13+ e () [17) d T

S ||(4’011P0,§o)||§+6%.

5 Energy estimates on radiative perturbation w

(4.79)

(4.80)

(4.81)
(4.82)

(4.83)

In this section, we will establish the estimates on the radiative perturbation

lw(t)||s and ||w;(t)]|2 as follows.

Lemma 5.1. Under the same assumptions listed in Proposition 4.1, if e, N (t) are suitably

small, it holds

1
Sl?p] {lo®3+[we ()13} S (@0, 0,80) |5 +es-
T€|0,t

(5.1)
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Proof. The proof is divided into three steps as follows.
Step 1. Multiplying (2.12d) by w, we get
—(wxw)x+aw2+w§+4b63§xw+4ngw§(92+95+ @2) =y W.

Integrating (5.2) over R™, choosing €, N (t) suitable small, we have
[ (et +wd) (xS [ (@487 (x)dr+ [ 0,0),
and

Y

(146) % |wx (8)]| 2 [|woxx (£) |2
(lwsx (B) |12+ [l wx (£)]2) +€5.

|wyw|(0,8) < |Oxwie | (0,£) < [|0x(1)]| Jlws (£) [l oo
<e
S

Qo= Qo=

€

Thus, we obtain ) )
lw(£) (17 Sed lwax (B) [P +118(E) |15 +-€5.

Step 2. Multiplying (4.6d) by —wyxy, we get
wazcxx +aw§x - (aZwaxx)x _4b936xxwxxx = H4xwxx.

Integrating (5.5) over R, choosing €, N(t) suitable small, we obtain

[ (awdwde) (edx S [ (&t HE) (et [oroas] 0.0).

383

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

Furthermore, by Holder inequality, Agmon inequality and Young inequality, one

has
[wxtxx|(0,) S [[wa (T) oo || (T) [l oo
1 1
Sllwx ()12 |wxx () [[ [|wxxx (T) [] 2

1 2 4
S e lwsx ()12 48w (T) |13 [[wxx (7) 3

1 1
S g e (DI + g w0+ (D)1,
Therefore, combining (5.4), (5.6) with (4.83), we obtain

(8113 < [ (o, o, &) |3+€5.

(5.7)

(5.8)
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Step 3. Multiplying (4.35d) by w; and —wyyy respectively, we get

—(wtwtx)x—t—w%x+aw%+4b93wt§tx =E4wt, (5.9)
w%xx +aw%x - (awtwtx)x _4b93wtxx€tx = —Wixxhy. (5.10)

Integrating (5.9) and (5.10) over R respectively, choosing € and N(t) suitable
small, one has by (4.83)

() IBS [ (E+IR)dx-+ wrawns 0,0) 1)

Similar to (5.7), it holds

Wit (0,8)] S [wr (0,8) ||| (£) lloo

Ses (1) 78 e (1)]|2 eorax (1) 2

Sesllwrn (1) >+ €8 (144) 78 wona (1)

S €8 [wra () |2+ €5 |wrs ()| +-€5. (5.12)
Thus, we get

e ()12 < (9o, o, Eo) 13 +eb. (5.13)

Combining (5.6) with (5.13), one has (5.1). This completes the proof of Lem-
ma 5.1. L

Combining (5.1) and (4.83), we can get (4.2). This completes the proof of
Proposition 4.1.
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