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Abstract

This paper proposes an interior-point technique for detecting the nondominated points

of multi-objective optimization problems using the direction-based cone method. Cone

method decomposes the multi-objective optimization problems into a set of single-objective

optimization problems. For this set of problems, parametric perturbed KKT conditions

are derived. Subsequently, an interior point technique is developed to solve the parametric

perturbed KKT conditions. A differentiable merit function is also proposed whose sta-

tionary point satisfies the KKT conditions. Under some mild assumptions, the proposed

algorithm is shown to be globally convergent. Numerical results of unconstrained and con-

strained multi-objective optimization test problems are presented. Also, three performance

metrics (modified generational distance, hypervolume, inverted generational distance) are

used on some test problems to investigate the efficiency of the proposed algorithm. We

also compare the results of the proposed algorithm with the results of some other existing

popular methods.
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1. Introduction

The vast majority of practical optimization problems [2,16,31,33] consist of multi-objective

problems. Applications of multi-objective optimization problems can be found in a various

fields, including engineering design [2], optimal control systems [31], chemical engineering [33],

machine learning [16], etc. Therefore, identification and characterization of the solutions to

MOPs have become a very important task. MOPs consider to optimize several conflicting

objectives simultaneously. Therefore, most often, a single solution that performs well for each

objective functions does not exist. In solving MOP problems, sometimes decision makers come

up with a compromise solution by analyzing a set of points that are representative of the entire

Pareto set [29]. A feasible point is called Pareto optimal (non-dominated point) if no objective
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can be improved without sacrificing at least one other objective. When solving an MOP, the

goal is to identify all possible Pareto optimal solutions.

MOPs have been solved through several techniques [23] over the last few years. The reputed

classical methods such as weighted sum [19, 24], ǫ-constraint [18], physical programming [26],

normal boundary intersection [5], etc., are known to find the Pareto optimal solutions. However,

these methods either not able to yield a complete Pareto front or require some prior information

regarding its location. Recently, a cone method [12] has been established that can generate all

Pareto solutions, and no knowledge about the position of the Pareto front is required.

The formulation of cone method is found to be similar to the Pascoletti-Serafini [30] tech-

nique for vector optimization. Cone method [12] has the ability to generate both convex and

nonconvex parts of the Pareto front. The formulation of the cone method (see Section 2) trans-

forms the multi-objective optimization problem into a set of direction-based-parametric single

objective problem. Although the formulation of cone method is detailed in [12], how to effec-

tively solve the formulated direction-based parametric subproblems is not given therein. In this

paper, we concern towards this direction and attempt to apply interior-point method to solve

the subproblems.

In 1955, foundation of the interior-point approach was laid introduced by Frisk [11]. Subse-

quently, Fiacco and McCormick [10] reformulate the problem min{f(x) : c(x) = 0, x ≥ 0, c(x) ∈
R

m, x ∈ R
n} as an unconstrained minimization problem and proved the global convergence

of interior-point method. In 1960’s, one type of interior point methods (classical log-barrier

method) was used broadly. In 1970’s, it was proven [27] that the Hessians for barrier methods

are ill-conditioned near the optima. Therefore, despite fair finding of the log-barrier method,

other methods became primary topics for research.

In 1984, Karmarkar [17] published an algorithm that solves linear programming problems

in polynomial time. This was a huge improvement over existing simplex method, which solved

linear programming problems in the worst-case by exponential time. In a very short time, it was

found that Karmarkar’s algorithm was equivalent to the log-barrier method [13]. Thereafter,

the interest in interior-point methods resurged.

In 1989, Megiddo [25] first presented an interior-point method, which simultaneously solves

the primal and dual problems and describes the properties of primal-dual central path for linear

programming. Thereafter, a primal-dual barrier method to solve linear programming problems

was implemented in [20]. To solve linear programming problems and quadratic programming

problems, widely used method was barrier methods [32, 41].

As a result of the popularity of interior-point methods for linear and quadratic program-

ming studies on their use for nonlinear optimization continue till today. The proposed method

exploits the efficiencies of the cone method [12] and interior-point method. In this work, we

introduce a novel differentiable merit function that helps to decide the convergence of the pro-

posed algorithm towards the solution. The stationary points of this merit function satisfy the

perturbed KKT conditions. Further, a Newton-type method is applied to solve KKT conditions.

We also present the global convergence results of the proposed method.

This paper is structured as follows. In Section 2, we provide the required terminologies and

notations, and briefly explain the cone method. In Section 3, we formulate an interior-point

method for a nonlinear problem, which is formulated in Section 2, and find the search direction

formulas. In Section 4, a merit function and its properties are presented. In Section 5, we show

that the proposed algorithm is globally convergent. Section 5, refers to numerical results of the

proposed method. Finally, Section 6 ends with a few concluding remarks.
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2. Preliminaries and Terminologies

The following is a multi-objective optimization problem (MOP):

(MOP)

{

minimize F (x)

subject to x ∈ X,
(2.1)

where F (x) = (f1(x), . . . , fp(x))
⊤
, p ≥ 2 is a vector-valued function (multiobjective function),

and X = {x ∈ R
n : θi(x) ≥ 0, xj ≥ 0, i = 1, . . . ,m, j = 1, . . . , n}. Each component function of

F (x) and each θi(x), i = 1, . . . ,m, are twice continuously differentiable.

We call the vector x = (x1, . . . , xn)
⊤

as the vector of decision variables and the set X as

the decision feasible region. We denote the image of the decision feasible region X under the

vector-valued objective function F by Y, i.e., Y = F (X) = {(f1(x), . . . , fp(x))⊤ : x ∈ X}. The

set Y is referred to the objective feasible region. Note that X is a subset of Rn and Y is a subset

of Rp.

Due to the conflicting nature of the objective functions f1, f2, . . . , fp, and the nonexistence

of a linear ordering in R
p, the optimality concept for an MOP gets differed from that of conven-

tional single objective optimization problems. The notion of optimality for an MOP is Pareto

optimality [29]. The definition of Pareto optimality is based on a dominance structure on R
p.

For the required dominance relation for Pareto optimality, we use the following notations:

• R
p
≧

= {y ∈ R
p : y ≧ 0} is referred to the non-negative orthant of Rp, where for a y =

(y1, y2, . . . , yp)
⊤ ∈ R

p, y ≧ 0 represents yi ≥ 0 for all i = 1, . . . , p.

• R
p
≥ = {y ∈ R

p : y ≥ 0}, where y ≥ 0 denotes y ≧ 0 but y 6= 0.

• R
p
> = {y ∈ R

p : y > 0} represents the interior of Rp
≧
, where y > 0 indicates that yi > 0

for all i = 1, . . . , p.

• The relations ≦,≤ and < can also be defined in a similar way.

• For two vectors y1, y2 ∈ R
p, we say that the vector y1 dominates y2 (in the sense of

minimization) if y1 ≤ y2.

Throughout the paper, we also use the following notations. For an x ∈ R
n,

• ‖x‖ =
(
∑n

i=1 |xi|2
)

1
2 .

• Given a vector x ∈ R
n, we write X = diag(x), e represents a column vector whose all

components are one, and denote x−1 = X−1e.

• d(x, P ) = min{‖x− y‖ : y ∈ P}.

Definition 2.1 (Pareto optimality [7]). A point x̂ ∈ X is called efficient or Pareto optimal

if there is no other x ∈ X such that F (x) ≤ F (x̂). If x̂ is efficient, F (x̂) is called a nondominated

point.

The collection of all efficient points of the MOP (2.1) is denoted by XE. The set of all non-

dominated points, also known as Pareto front is represented by YN . Evidently, YN = F (XE).

Generally, Pareto front contains a large number of points. Therefore, it is estimated by a suffi-

ciently large and diverse set of points on the Pareto front.
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The next section briefly describes the idea of cone method [12] to generate the Pareto optimal

points of an MOP.

2.1. Description of the Cone method

As described in [12], firstly, it determines the ideal point F ∗ = (f∗
1 , . . . , f

∗
p )

⊤, where f∗
i =

min{fi(x) : x ∈ X}. Then, by solving the following minimization problem corresponding to

a particular β̂ ∈ S
k−1
≧

= S
k−1 ∩Rk

≧
(where S

k−1 represents the unit sphere in R
k), the solution

of the MOP (2.1) can be obtained

CM(β̂)























minimize t

subject to tβ̂ ≧ F (x)− F ∗,

θi(x) ≥ 0, i = 1, . . . ,m,

x ≧ 0, t ≥ 0.























(2.2)

Note that the problem (2.2) is a single-objective parametric problem with parameter β̂.

To generate the nondominated set, one needs to solve the problem (2.2) for several values of

β̂ in S
p−1
≧

. For generating a set of spreaded nondominated points, [12] suggested to take the

expression β̂ as follows:

(

cosφ1, cosφ2 sinφ1, cosφ3 sinφ2 sinφ1, . . . , cosφp−1

p−2
∏

i=1

sinφi,

p−1
∏

i=1

sinφi

)

, (2.3)

where 0 ≤ φi ≤ π
2 , i = 1, . . . , p− 1.

The next section formulates the Newton scheme for an interior-point method (IPM) to solve

the parametric problem CM(β̂).

3. Interior-Point Method

In this section, an IPM is discussed to solve CM(β̂) for each given β ∈ S
k−1. In the sequel,

CM(β̂) is formulated into barrier problem and then Karush-Kuhn-Tucker (KKT) conditions are

derived. Thereafter, IPM takes the advantage of Newton method to solve the system of KKT.

Introducing the vectors x = (x1, . . . , xn, t)
⊤, c = (0, . . . , 0, 1)⊤, β̂ = (β1, . . . , βp)

⊤, and

denoting fj(x) = fj(x), j = 1, . . . , p and f(x) = F (x) − F ∗, CM(β̂) reduces to the following

problem:






















minimize c⊤x

subject to β̂c⊤x− f(x)− v = 0,

θ(x)− w = 0,

x ≧ 0, v ≧ 0, w ≧ 0,

(3.1)

where v = (v1, . . . , vp)
⊤, w = (w1, . . . , wm)⊤ and θ(x) = (θ1(x), . . . , θm(x))⊤.

In problem (3.1), the exclusion of the non-negative vectors x, v and w are achieved by setting

them within a barrier function as follows:
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minimize b (x, v, w, µ)

subject to β̂c⊤x− f(x)− v = 0,

θ(x)− w = 0,

(3.2)

where

b (x, v, w, µ) = c⊤x− µ





n+1
∑

j=1

log(xj) +

p
∑

i=1

log(vi) +

m
∑

l=1

log(wl)





and µ > 0 is the barrier parameter.

In this paper, our main focus will be on solving the following first order perturbed KKT

conditions. For µ > 0 and (x, v, w, s, y, z) > 0





















c− s−∇x

(

β̂c⊤x− f(x)
)⊤

y − (∇xθ(x))
⊤z

−µe+ V Y e

−µe+WZe

−µe+ SXe

−f(x) + β̂c⊤x− v

θ(x)− w





















= 0, (3.3)

where s = µX−1e, X = diag(x1, . . . ,xn, t), V = diag(v1, . . . , vp), W = diag(w1, . . . , wm), Y =

diag(y1, . . . , yp), Z = diag(z1, . . . , zm) and S = diag(s1, . . . , sn, sn+1). For the rest of the paper,

we denote the matrix in the left-hand side of (6) by Dµ(x, v, w, s, y, z).

The KKT system (3.3) need not an ill-conditioned system of equations [9], and also the

vector (x, v, w, s, y, z) keep away from the zero at every iteration. For any µ > 0, we call

Λµ = (xµ, vµ, wµ, sµ, yµ, zµ) a perturbed KKT point if it satisfies the perturbed KKT conditions

(3.3). Clearly, for µ = 0, the perturbed KKT system is the KKT system corresponding to the

problem (3.1).

Definition 3.1. (i) A point Λ = (x, v, w, s, y, z) is said to be an interior point for the barrier

problem (3.2) if

(x, v, w, s, y, z) > 0.

(ii) A point Λ = (x, v, w, s, y, z) is said to be a quasi-central point for the problem (3.2) if it

satisfies the following conditions for any µ > 0 :



































−µe+ V Y e = 0,

−µe+WZe = 0,

−µe+ SXe = 0,

−f(x) + β̂c⊤x− v = 0,

θ(x)− w = 0.

(3.4)

The set of all points that satisfy (3.4) is called quasi-central path.

We simplified the expressions below by using the following notations:

Aβ̂(x) = ∇x

(

β̂c⊤x− f(x)
)

, B(x) = ∇xθ(x),
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H(x, y, z) =

s
∑

j=1

yj∇2fj(x)−
m+1
∑

i=1

zi∇2θi(x), y ≧ 0, z ≧ 0. (3.5)

For a fixed µ > 0, the Newton step ∆Λ = (∆x,∆v,∆w,∆s, ∆y,∆z) at the interior-point

Λ = (x, v, w, s, y, z) is obtained by solving the following system:

D̄µ(Λ)∆Λ = −qβ̂(Λ, µ), (3.6)

where

D̄µ(Λ) =



















H(x, y, z) 0 0 −I −(Aβ̂(x))
⊤ −(B(x))⊤

0 Y 0 0 V 0

0 0 Z 0 0 W

S 0 0 X 0 0

Aβ̂(x) −I 0 0 0 0

B(x) 0 −I 0 0 0



















,

qβ̂(Λ, µ) =



















c− s− (Aβ̂(x))
⊤y − (B(x))⊤z

−µe+ V Y e

−µe+WZe

−µe+ SXe

β̂c⊤x− f(x)− v

θ(x)− w



















.

The matrix D̄µ(Λ) is not symmetric. However, it can be made symmetric by multiplying

the first row by −1, the second row by −V −1, the third row by −W−1 and the forth row by

S−1. Accordingly, we get



















−H(x, y, z) 0 0 I (Aβ̂(x))
⊤ (B(x))⊤

0 −V −1Y 0 0 −I 0

0 0 −W−1Z 0 0 −I
I 0 0 S−1X 0 0

Aβ̂(x) −I 0 0 0 0

B(x) 0 −I 0 0 0





































∆x

∆v

∆w

∆s

∆y

∆z



















=



















σβ̂

−γ1
−γ2
γ3
̺β̂
ρ



















, (3.7)

where

σβ̂(x, s, y, z) = c− s− (Aβ̂(x))
⊤y − (B(x))⊤z,

γ1(v, y) = µV −1e− y,

γ2(w, z) = µW−1e− z,

γ3(x, s) = µS−1e− x,

̺β̂(x, v) = f(x) + v − β̂c⊤x,

ρ(x, w) = w − θ(x). (3.8)

Note that ̺β̂ and ρ together find primal infeasibility and σβ̂ gives dual infeasibility. If ρβ̂ and

ρ vanish at a point, then the point is primal feasible. Moreover, let

ν(Λ;µ) = max{‖ρ‖, ‖ρβ̂‖, ‖σβ̂‖, ‖γ1‖, ‖γ2‖, ‖γ3‖}. (3.9)
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For a given ǫ > 0, we define the approximated perturbed KKT point as an interior point

Λ that satisfies ν(Λ;µ) ≤ ǫ. Note that ν(Λ;µ) = 0 and Λ is interior point if and only if Λ is

a perturbed KKT point. Also, ν(Λ; 0) = 0 and Λ ≥ 0 if and only if Λ is a KKT point of the

problem (3.1).

We note that second and third equations of (3.7) can be used to eliminate ∆v and ∆w

without producing any off-diagonal fill-in in the remaining system with the help of the following

equations:











∆v = V Y −1(γ1 −∆y),

∆w = WZ−1(γ2 −∆z),

∆s = SX−1 (γ3 −∆x) .

(3.10)

Accordingly, from (3.7), the resulting reduced KKT system is given by







−
(

H(x, y, z) + SX−1
)

(Aβ̂(x))
⊤ (B(x))⊤

Aβ̂(x) V Y −1 0

B(x) 0 WZ−1











∆x

∆y

∆z



 =







σβ̂ − SX−1γ3
̺β̂ + V Y −1γ1
ρ+WZ−1γ2






. (3.11)

The system (3.11) has a unique solution, provided the matrix H(x, y, z) + SX−1 is nonsin-

gular (see [40]). The solution of the system (3.11) provides ∆x,∆y and ∆z. Then, by using

(3.10), one can obtain ∆v,∆w and ∆s. The following theorem gives explicit formulas of the

solution to system (3.11).

Theorem 3.1. We denote

Nβ̂(Λ) = H(x, y, z) + SX−1 + (Aβ̂(x))
⊤V −1Y Aβ̂(x) + (B(x))⊤W−1ZB(x).

If at a point Λ = (x, v, w, s, y, z), Nβ̂(Λ) is nonsingular, then the system (3.7) has a unique

solution. In particular,

∆x = N−1

β̂

(

−σβ̂ + SX−1γ3 + (Aβ̂(x))
⊤(γ1 + V −1Y ̺β̂) + (B(x))⊤(γ2 +W−1Zρ)

)

,

∆v = Aβ̂(x)∆x− ̺β̂ ,

∆w = B(x)∆x− ρ. (3.12)

Proof. By solving the second and the third equations of (3.11) for ∆y and ∆z, we obtain

∆y = V −1Y ̺β̂ + γ1 − V −1Y Aβ̂(x)∆x,

∆z = W−1Zρ+ γ2 −W−1ZB(x)∆x.

Eliminating ∆y and ∆z from the first block of the system (3.11), we get

∆x = N−1

β̂

(

−σβ̂ + SX−1γ3 + (Aβ̂(x))
⊤(γ1 + V −1Y ̺β̂) + (B(x))⊤(γ2 +W−1Zρ)

)

.

We notice that the square matrix of order (n+m+ p+1)× (n+m+ p+1) in the left side

of the system (3.11) is quasi-definite, and therefore is nonsingular in nature (see [40])). Hence,
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we can compute ∆v and ∆w uniquely as follows:

∆v = Aβ̂(x)∆x− ̺β̂, ∆w = B(x)∆x− ρ.

The proof is complete. �

Note: Let Λ = (x, v, w, s, y, z) be the current point of iteration and the matrix Nβ̂(Λ) is

nonsingular. Then, Theorem 3.1 provides the solution of the system (3.11). If at any iteration

the matrix Nβ̂(Λ) is singular, we replace the matrix H(x, y, z) by Ĥ(x, y, z) to make the matrix

Nβ̂(Λ) nonsingular, where

Ĥ(x, y, z) = H(x, y, z) + λI

and λ > 0 is chosen such that the matrix Ĥ(x, y, z) is positive definite, I being the identity

matrix of the order of Ĥ.

To find a solution of (3.3), the algorithm that we propose below proceeds from an initial

point (x(0), v(0), w(0), s(0), y(0), z(0)); then, at the k-th iteration, it determines a search direction

(∆x
(k),∆v(k), ∆w(k),∆s(k), ∆y(k),∆z(k)) with the help of Theorem 3.1 at (x(k), v(k), w(k), s(k),

y(k), z(k)); lastly, it chooses a step length α(k), and then finds the next iterate by















































x
(k+1) = x

(k) + α(k)∆x
(k),

v(k+1) = v(k) + α(k)∆v(k),

w(k+1) = w(k) + α(k)∆w(k),

s(k+1) = s(k) + α(k)∆s(k),

y(k+1) = y(k) + α(k)∆y(k),

z(k+1) = z(k) + α(k)∆z(k),

(3.13)

where the choice of α(k) is detailed in the next section.

As described in (3.13), to move from current to the next iterate, the proposed algorithm

first determines the search direction and then the step length. To make the barrier function in

(3.2) well defined across the iterates, the step length is suitably chosen. Also, the identification

of every iteration towards the solution of the KKT system (3.3) is discussed in the upcoming

section.

4. Computation of Step Size

In this section, we discuss the computation of step length to be taken along the search

directions that are determined in Theorem 3.1. The proposed algorithm updates the iteration

point by (3.13). To guarantee that the successive points x+ = x+α∆x, v+ = v+α∆v, w+ =

w + α∆w, s+ = s + α∆s, y+ = y + α∆y are interior points, we choose the step length α by

the following standard ratio formula (see [3]):

α = min

{

δ

(

max
i,j,l

{

−∆xl

xl
,−∆vj

vj
,−∆yj

yj
,−∆wi

wi
,−∆sl

sl
,−∆zi

zi

})−1

, 1

}

(4.1)

for some 0 < δ ≤ 1.
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Although the step length calculated by (4.1) ensures that the vectors x, v, w and s remain

in the interior, there is no guarantee of the reduction in the objective function and convergence

of the generated sequence to a minimum point. This can be seen by taking the unconstrained

optimization problem f(x) = (1 + x2)1/2 with an initial |x0| > 1. Merit functions shorten the

interval [0, α] such that an appropriate reduction towards optimality can be made along the

search direction.

4.1. Merit function

To solve nonlinear constrained optimization problems, IPMs simultaneously minimizes both

of objective function and an infeasibility measure. Therefore, the progress in the proposed

IPM towards optimality is measured by a merit function that incorporates both the objective

function and the infeasibility terms. In this article, we introduce a merit function that is

corresponding to the barrier problem (3.2).

For any µ > 0, consider the merit function Mη,µ : R(n+1)+p+m+(n+1)+p+m → R, defined by

Mη,µ(Λ) = c⊤x+ ̺⊤
β̂
y + ρ⊤z − s⊤x+ ηΨµ(Λ), (4.2)

where η is the nonnegative penalty parameter, and

Ψµ(Λ) =
1

2

(

̺⊤
β̂
ρβ̂ + ρ⊤ρ

)

+x
⊤s+v⊤y+w⊤z−µ





n+1
∑

i=1

log(xisi) +

p
∑

j=1

log(vjyj) +

m
∑

l=1

log(wlzl)





is the penalty term of the merit function Mη,µ. Clearly, the penalty term is well-defined for

Λ > 0. If the penalty parameter η > 0 is big and we attempt to minimize the merit function

Mη,µ, then a lot of computaional effort will be concentrated on making the penalty term Ψµ

towards zero.

The next two theorems address the global property of the merit function.

Theorem 4.1. Consider the barrier problem (3.2). Let the interior point Λ∗
µ = (x∗

µ, v
∗
µ, w

∗
µ, s

∗
µ,

y∗µ, z
∗
µ) be such that Dµ(Λ

∗
µ) = 0 for µ > 0. Then, for any η > 0, the point x∗

µ is the stationary

point of Mη,µ(x, v
∗
µ, w

∗
µ, s

∗
µ, y

∗
µ, z

∗
µ).

Proof. The gradient of the merit function Mη,µ at point (x, v∗µ, w
∗
µ, s

∗
µ, y

∗
µ, z

∗
µ) is

∇xMη,µ(x, v
∗
µ, w

∗
µ, s

∗
µ, y

∗
µ, z

∗
µ)

= c+
(

∇x̺β̂(x, v
∗
µ)
)⊤

y∗µ +
(

∇xρ(x, w
∗
µ)
)⊤

z∗µ − s∗µ

+ η
[

(

̺β̂(x, v
∗
µ)
)⊤∇x̺β̂(x, v

∗
µ) +

(

ρ(x, w∗
µ)
)⊤∇xρ(x, w

∗
µ) + s∗µ − µX−1e

]

.

For any µ > 0, at the interior point Λ∗
µ, the primal infeasibilities ̺β̂(x

∗
µ, v

∗
µ) and ρ(x∗

µ, w
∗
µ)

vanish. Therefore, after replacing x by x
∗
µ in the last expression, we get

∇xMη,µ(Λ
∗
µ) = c− s∗µ −

(

Aβ̂(x
∗
µ)
)⊤

y∗µ −
(

B(x∗
µ)
)⊤

z∗µ + η
[

s∗µ − µ(X∗
µ)

−1e
]

= σβ̂(x
∗
µ, s

∗
µ, y

∗
µ, z

∗
µ) + η

[

s∗µ − µ(X∗
µ)

−1e
]

= 0,

because the dual infeasibility σβ̂ and the complementarity terms vanish at Λ∗
µ (see (3.3)). �
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Theorem 4.2. Consider the barrier problem (3.2). Let the interior point Λ∗
µ = (x∗

µ, v
∗
µ, w

∗
µ,

y∗µ, z
∗
µ) be such that Dµ(Λ

∗
µ) = 0 for µ > 0. Then, there exists η̄ > 0 such that for η ≥ η̄, the

Hessian of the merit function ∇2
xMη,µ(Λ

∗
µ) is positive definite.

Proof. The Hessian of the merit function Mη,µ is

∇2
x
Mη,µ(Λ

∗
µ) = H(x∗

µ, y
∗
µ, z

∗
µ)

+ η
[

(

∇x̺β̂(x
∗
µ, v

∗
µ)
)⊤∇x̺β̂(x

∗
µ, v

∗
µ)
(

∇xρ(x
∗
µ, w

∗
µ)
)⊤∇xρ(x

∗
µ, w

∗
µ) + µ(X∗

µ)
−2
]

= H(x∗
µ, y

∗
µ, z

∗
µ) + ηS∗

µ

(

X
∗
µ

)−1

+ η

[

(

∇x̺β̂(x
∗
µ, v

∗
µ)
)⊤∇x̺β̂(x

∗
µ, v

∗
µ) +

(

∇xρ(x
∗
µ, w

∗
µ)
)⊤∇xρ(x

∗
µ, w

∗
µ)

]

.

Choosing η̃ = max{|λH | : λH is an eigenvalue of H(x∗
µ, y

∗
µ, z

∗
µ)}, we notice that η̃ > 0 and the

matrix H(x∗
µ, y

∗
µ, z

∗
µ) + η̃S∗

µ(X
∗
µ)

−1 is positive definite. Hence, for all η ≥ η̃, ∇2
xMη,µ(Λ

∗) is

positive definite. �

Note: By Theorems 4.1 and 4.2, for any µ > 0, if Λ∗
µ satisfies Dµ(Λ

∗
µ) = 0, then there exists

a η̄ > 0 such that

x
∗
µ = argminMη,µ(x, v

∗
µ, w

∗
µ, y

∗
µ, z

∗
µ) for all η ≥ η̄.

Theorem 4.3. For any µ > 0, the penalty term Ψµ has a unique minimum value 3µ(1− logµ).

Proof. The result can be obtained by computing the minimum of the following function:

ϕ(ξ, ς, ω) = ξ + ς + ω − µ (log(ξ) + log(ς) + log(ω)) .

The function ϕ has the minimizer ξ = µ, ς = µ, and ω = µ. Therefore, the minimum value of

the function ϕ is 3µ (1− log µ) . Also, the function ϕ is convex. Hence, ξ = µ, ς = µ, and ω = µ

is the unique minimizer of the function ϕ. �

4.2. Descent direction

This section ensures that the Newton direction (3.12) is descent for the penalty function Ψµ

and the merit function Mη,µ.

Theorem 4.4. Consider the barrier problem (3.2). Suppose that the point Λ = (x, v, w, s, y, z)

is an interior point. Then, for any µ > 0, the following results hold:

(i) The Newton direction ∆Λ = (∆x,∆v,∆w,∆s,∆v,∆w) is descent at Λ for the penalty

term Ψµ if and only if Λ is not quasi-central point.

(ii) The Newton direction ∆Λ = (∆x,∆v,∆w,∆s,∆y,∆z) is descent at Λ for the merit

function Mη,µ if and only if Λ is not quasi-central point.

Proof. (i) We can easily compute the following gradients:

∇xΨµ = −
(

Aβ̂(x)
)⊤

̺β̂ −
(

B(x)
)⊤

ρ+ s− µx−1, ∇vΨµ = ̺β̂ + y − µv−1,

∇wΨµ = ρ+ z − µw−1, ∇sΨµ = x− µs−1,
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∇yΨµ = v − µy−1, ∇zΨµ = w − µz−1.

The directional derivative of Ψµ in the direction ∆Λ is

(∇Ψµ)
⊤
∆Λ = (∇xΨµ)

⊤
∆x+ (∇vΨµ)

⊤
∆v + (∇wΨµ)

⊤
∆w + (∇sΨµ)

⊤
∆s

+ (∇yΨµ)
⊤ ∆y + (∇zΨµ)

⊤ ∆z

=
(

−
(

Aβ̂(x)
)⊤

̺β̂ −
(

B(x)
)⊤

ρ
)⊤

∆x+ s⊤∆x− µ(x−1)⊤∆x

+ ̺⊤
β̂
∆v + ρ⊤∆w + x

⊤∆s− µ(s−1)⊤∆s− µ
(

v−1
)⊤

∆v

− µ
(

w−1
)⊤

∆w − µ
(

y−1
)⊤

∆y − µ
(

z−1
)⊤

∆z

= −̺⊤
β̂
(Aβ̂(x)∆x−∆v)− ρ⊤(B(x)−∆w) + x

⊤∆s+ s⊤∆x

− µ
(

(x−1)⊤∆x+ (s−1)⊤∆s
)

− µ
(

(v−1)⊤∆v + (y−1)⊤∆y
)

− µ
(

(w−1)⊤∆w + (z−1)⊤∆z
)

= −̺⊤
β̂
̺β̂ − ρ⊤ρ+ 2(n+ 1)µ− µ

(

(x−1)⊤∆x+ (s−1)⊤∆s
)

− µ
(

(v−1)⊤∆v + (y−1)⊤∆y
)

− µ
(

(w−1)⊤∆w + (z−1)⊤∆z
)

,

where the last equality is obtained by the last two equations of the system (3.7) and the

complementarity conditions.

Now, if we set Θ = (XS)1/2e, Υ = (V Y )1/2e and Φ = (WZ)1/2e then we obtain

(∇Ψµ)
⊤
∆Λ = −

(

‖̺β̂‖2 + ‖ρ‖2 + ‖Θ− µΘ−1‖2 + ‖Υ− µΥ−1‖2 + ‖Φ− µΦ−1‖2
)

< 0. (4.3)

(ii) We have

(∇Mη,µ)
⊤
∆Λ = (∇xMη,µ)

⊤
∆x+ (∇vMη,µ)

⊤
∆v + (∇wMη,µ)

⊤
∆w + (∇sMη,µ)

⊤
∆s

+ (∇yMη,µ)
⊤
∆y + (∇zMη,µ)

⊤
∆z

= σ⊤

β̂
∆x− x

⊤∆s+ y⊤∆v + z⊤∆w + ̺⊤
β̂
∆y + ρ⊤∆z + η (∇Ψµ)

⊤
∆Λ.

Since (∇Ψµ)
⊤∆ℑ < 0, the least value of penalty parameter η to make the Newton direction as

descent for the merit function Mη,µ is

η̃ =
σ⊤

β̂
∆x− x

⊤∆s+ y⊤∆v + z⊤∆w + ̺⊤
β̂
∆y + ρ⊤∆z

| (∇Ψµ)
⊤∆Λ|

. (4.4)

Hence, for all η > η̃, the Newton direction ∆Λ is descent for the merit function if and only if Λ

is not quasi-central point. �

4.3. Sufficient decrease

If the penalty parameter η is such that η > η̃, then, we can write η = η̃ + δ, where δ > 0.

Since
(

∇Mη,µ(Λ)
)⊤

∆Λ = δ (∇Ψµ)
⊤
∆Λ (4.5)
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and (∇Ψµ)
⊤∆Λ < 0, then for any κ ∈ (0, 1), there exists a positive number ᾱ such that for any

α ∈ (0, ᾱ), the following condition is satisfied:

Ψµ(Λ + α∆Λ) ≤ Ψµ(Λ) + ακ (∇Ψµ)
⊤
∆Λ. (4.6)

As

(∇Mη,µ)
⊤ ∆Λ < 0 for η > η̃

for some α′ ∈ (0, ᾱ), we get

Mη,µ(Λ + α′∆Λ) ≤Mη,µ(Λ) + δα′κ (∇Mη,µ)
⊤
∆Λ. (4.7)

Definition 4.1. The following set of points represents the γ-neighbourhood of the quasi-central

path corresponding to µ :

Nγ(Λ;µ) =
{

Λ : x > 0, s > 0, v > 0, w > 0, y > 0, z > 0, ‖̺β̂‖2 + ‖ρ‖2

+ ‖Θ− µΘ−1‖2 + ‖Υ− µΥ−1‖2 + ‖Φ− µΦ−1‖2 ≤ γµ
}

, (4.8)

where (γ, µ) > 0, Θ = (XS)1/2e, Υ = (V Y )1/2e, and Φ = (WZ)1/2e.

By this definition, we are able to calculate the distance of an interior point from the KKT point

corresponding to a µ > 0.

4.4. Update of the penalty parameter

The penalty parameter η is chosen such that the Newton direction is a descent for the merit

function. Corresponding to a µ and a given δ̃, the current penalty parameter ηnew is updated

as follows:

ηnew =

{

η̃ + δ̃, if η̃ + δ̃ > η,

η̃ + δ, otherwise,
(4.9)

where η̃ is calculated by (4.4).

4.5. Description of the initial point and the barrier parameter

In Algorithm 4.1, the initial point is chosen such that all the components of the vectors

x
(0), s(0), v(0), w(0), y(0) and z(0) are positive. If an MOP has bound constraints with negative

values, then we can easily formulate the problem in the form of (2.1). Consequently, we can

always initialize x such that xi > 0 for all i ∈ {1, . . . , n}.
Algorithm 4.1 is based on the strategy of the quasi-central path (3.4). It solves the KKT

system (3.3) for decreasing values of µ > 0 until ν(Λ;µ) is not less than a given precision pa-

rameter ǫ (see (3.9)). In the proposed algorithm, we initialize the value of the barrier parameter

µ0 as (see [39])

µ0 =
x
⊤s+ v⊤y + w⊤z

p+m
. (4.10)

Then, we solve the KKT system (3.3) for µ0 until it satisfies the (µ, γ)-neighbourhood condition

(4.1). Suppose an iterate Λ = (x, v, w, s, y, z) lies in (µ, γ)-neighbourhood (see (4.1)) but fails

the stopping criteria condition ν(Λ;µ) ≤ ǫ for the outer loop, then we decrease the barrier
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parameter at the (k + 1)-th iteration by the value

µ(k+1) = ℘
(

‖̺(k)
β̂
‖2 + ‖ρ(k)‖2 + ‖Θ(k) − µ(k)(Θ(k))−1‖2 + ‖Υ(k)

− µ(Υ(k))−1‖2 + ‖Φ(k) − µ(Φ(k))−1‖2
)

, (4.11)

where ℘ ∈ (0, 1), Θ(k) = (X(k)S(k))1/2e, Υ(k) = (V (k)Y (k))1/2e and Φ(k) = (W (k)Z(k))1/2e.

In Algorithm 4.1, we describe a step-by-step procedure for finding Pareto optimal points for

a given optimization problem with the help of the above process.

Algorithm 4.1. Ideal Cone-IPM (IC-IPM) for MOPs

1: Inputs:

(a) Given MOP:
{

minimize F (x)

subject to x ∈ X.

(b) Provide the number of subproblems to be solved, N

2: Finding the Ideal Point: Find f∗
i = min{fi(x) : x ∈ X} for each i ∈ {1, . . . , p} using

IPM [3], and then set ideal point F ∗ = (f∗
1 , f

∗
2 , . . . , f

∗
p )

⊤

3: Initialization:

Set Pareto set ← ∅
Give an initial point such that Λ(k) = (x(k), s(k), v(k), w(k), y(k), z(k)) > 0

Choose the values of the parameters δ̃ = 2 and κ = 0.85

Give a value of the precision parameter ǫ > 0 for the optimum solutions to (3.2)

Set k ← 0

4: for i = 1 : 1 : N do

5: Choose randomly a direction β̂ from (2.3)

6: whhile ν(Λ(k)) ≥ ǫ do

7: Choose µ(k) by (4.10)

8: while Λ(k) /∈ Nµ(k)(γ) do (inner loop)

9: Calculate the direction (∆x
(k),∆s,∆v(k),∆w(k)) by using (3.12)

10: Choose step length α by the formula (4.1)

11: Calculate η̃ by the expression (4.4)

12: Calculate η(k) and δ(k) from to ensure that the Newton direction is descent for

Mη,µ

13: Find α(k) ∈ (0, α) such that the following Armijo condition is satisfied

Mη,µ(k)(Λ(k) + α(k)∆Λ(k)) ≤Mη,µ(k)(Λ(k)) + δ(k)α(k)κ
(

∇Mη,µ(k)

)⊤
∆Λ(k)

14: Set Λ(k+1) = Λ(k) + α∆Λ(k)

15: end while

16: end while

17: Calculate F (x(k)) = β̂cTx(k) − v(k)

18: Update Pareto set ← Pareto set
⋃{F (x(k))}

19: end for

20: return Pareto set
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5. Global Convergence Results

The following section discusses the global convergence theory for the Algorithm 4.1. The

process of global convergence analysis begins with an additional set of assumptions and lemmas.

5.1. Assumptions

Assumptions for developing the convergence theory of Algorithm 4.1 are as follows:

(A1) For x ≥ 0, the set {∇θ1(x),∇θ2(x), . . . ,∇θm(x)} is linearly independent.

(A2) The iteration sequences x(k), v(k), w(k), y(k) and z(k) generated by the Algorithm 4.1

is bounded above.

(A3) The matrix H(x, y, z) + SX−1 is positive definite.

Lemma 5.1. Assume Λ = (x, v, w, s, y, z) is an interior point. Then, for any µ > 0 and under

the assumption (A3), the matrix Dβ̂(Λ) is nonsingular.

Proof. See [9]. �

Lemma 5.2. For any µ > 0, the sequence of interior points {Λ(k) : Λ(k) > 0}, produced by

the inner loop of Algorithm 4.1 is bounded whenever the conditions (A2) and (A3) follows.

Moreover, the components x
(k)
i , s

(k)
i , v

(k)
j , y

(k)
j , w

(k)
l and z

(k)
l are bounded away from zero.

Proof. By assumption (A2), the sequences {x(k)}, {v(k)} and {w(k)} are bounded above.

Let Ψ
(0)
µ be the value of penalty term at the initial point. Note that the inequality

3µ (1− logµ) ≤ Ψµ(Λ
(k) + α(k)∆Λ(k)) ≤ Ψ(0)

µ (5.1)

holds by Theorems 4.3 and 4.4.

Further, observe that

x
(k)
j s

(k)
j − µ log

(

x
(k)
j s

(k)
j

)

→∞ if either x
(k)
j s

(k)
j → 0 or x

(k)
j s

(k)
j →∞,

v
(k)
i y

(k)
i − µ log

(

v
(k)
i y

(k)
i

)

→∞ if either v
(k)
i y

(k)
i → 0 or v

(k)
i y

(k)
i →∞,

w
(k)
l z

(k)
l − µ log

(

w
(k)
l z

(k)
l

)

→∞ if either w
(k)
l z

(k)
l → 0 or w

(k)
l z

(k)
l →∞.

However, by (5.1), we see that the products x
(k)
j s

(k)
j , v

(k)
i y

(k)
i and w

(k)
l z

(k)
l are bounded above

and bounded away from zero. Therefore, the sequences s(k), y(k) and z(k) are bounded above

and the components x
(k)
j , s

(k)
j , v

(k)
i , y

(k)
i , w

(k)
l and z

(k)
l are bounded away from zero. �

Lemma 5.3. Under the assumption (A1), (A2) and (A3), the merit function Mη,µ is bounded

below.

Proof. By Theorem 4.3, the penalty term is bounded below and the term

c⊤x+ ̺⊤
β̂
y + ρ⊤z − s⊤x
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is bounded below due to Assumptions (A1) and (A2), and Lemma 5.2. Hence, the merit function

Mη,µ is bounded below. �

Theorem 5.1. (i) Consider µ > 0. Assume that the sequence {Λ(k) = (x(k), v(k), w(k), s(k),

y(k), z(k))} is created by the inner loop of Algorithm 4.1 and its limit point is Λ∗
µ = (x∗

µ, v
∗
µ, w

∗
µ,

s∗µ, y
∗
µ, z

∗
µ). If D̄β̂ is continuous at Λ∗ and D̄β̂(Λ

∗) is nonsingular then, Λ∗
µ lies on the quasi-

central path (3.4).

(ii) Suppose the problem (3.2) has an optimal point in Nγ(Λ;µ) for a fixed µ and γ. Let the

starting point Λ(0) is an interior point. Then Algorithm 4.1 will terminate in at most

log
(

γµ
Ξ(Λ(0))

)

log(1− τ)

iterations, where

Ξ(Λ(0)) =
(

‖̺(0)
β̂
‖2 + ‖ρ(0)‖2 + ‖Θ(0) − µ(Θ(0))−1‖2

+ ‖Υ(0) − µ(Υ(0))−1‖2 + ‖Φ(0) − µ(Φ(0))−1‖2
)

.

Proof. (i) Since the limit point of the sequence {Λ(k)} is Λ∗
µ then, there exists a convergent

subsequence Λ(kl) such that Λ(kl) → Λ∗
µ.

We need to prove three properties regarding the subsequence Λ(kl):

(a) The limit point Λ∗
µ is an interior point.

(b) The sequence of search direction {∆Λ(kl)} is bounded.

(c) The sequence of steplengths {α(kl)} is bounded away from zero.

The first property can be obtained by Lemma 5.2, stating that the components x
(kl)
j and s

(kl)
j

are bounded away from zero. Therefore,

x
(kl) → x

∗
µ > 0 and s(kl) → s∗µ > 0.

The property (b) holds because the set E = {Λ(kl),Λ∗
µ} is compact andD, (D̄)

−1
are continuous

functions on E.

To prove the property (c), if possible let the steplength sequence {αkl} generated by the

Algorithm 4.1 is not bounded away from zero. Then,

lim
l→∞

x
(kl)
j

|∆xj |(kl)
= 0 holds for at least one j ∈ {1, 2, . . .}.

Since x
(kl)
j is bounded away from zero, |∆xj |(kl) tends to infinity. However, this goes against

the fact that {∆Λ(k)} is bounded. Hence, (c) holds.
Now, we are able to proof for the key part of the theorem. Consider the iterative sequence

Λ(k+1) = Λ(k) + α(k)∆Λ(k),
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where α(k) is computed by (4.1) and ∆Λ(k) is determined by solving (3.11). At k-th iteration,

let η(k) > 0 and µ(k) > 0 stand for the value of the penalty parameter and barrier parameter,

respectively. Also, Λ(k) satisfies (see Theorem 4.4)

(

∇Mη(k),µ(k)(Λ(k))
)⊤

∆Λ(k) < 0.

Since the step length α(k) is bounded away from zero, the sequence {Λ(k)} satisfies (see [14])
(

∇Mη(k),µ(k)(Λ(k))
)⊤ ∆Λ(k)

‖∆Λ(k)‖ → 0.

However, the sequence {∆Λ(k)} is bounded and by (4.5), we obtain

(

∇Mη(k),µ(k)(Λ(k))
)⊤

∆Λ(k) = δ(k)
(

∇Ψµ(Λ
(k))
)⊤

∆Λ(k) → 0.

Since δ(k) > 0 and by (4.1), we obtain

(

∇Ψµ(Λ
(k))
)⊤

∆Λ(k) = −
(

‖̺(k)
β̂
‖2 + ‖ρ(k)‖2 + ‖Θ(k) − µ(Θ(k))−1‖2 (5.2)

+ ‖Υ(k) − µ(Υ(k))−1‖2 + ‖Φ(k) − µ(Φ(k))−1‖2
)

→ 0.

This directly implies that

lim
k→∞

̺
(k)

β̂
= 0, lim

k→∞
ρ(k) = 0, lim

k→∞
X

(k)S(k)e = µe,

lim
k→∞

V (k)Y (k)e = µe, lim
k→∞

W (k),

Z(k)e = µe.

(ii) From (5.2), we can conclude that there exists τ1, τ2, τ3, τ4, and τ5 such that

∥

∥̺
(k+1)

β̂

∥

∥

2 ≤ (1 − τ1)
∥

∥̺
(k)

β̂

∥

∥

2
,
∥

∥ρ(k+1)‖22 ≤ (1− τ2)
∥

∥ρ(k)‖2,
∥

∥Θ(k+1) − µ(Θ(k+1))−1
∥

∥

2 ≤ (1− τ3)
∥

∥Θ(k) − µ(Θ(k))−1
∥

∥

2
,

∥

∥Υ(k+1) − µ(Υ(k+1))−1
∥

∥

2 ≤ (1− τ4)
∥

∥Υ(k) − µ(Υ(k))−1
∥

∥

2
,

∥

∥Φ(k+1) − µ(Φ(k+1))−1
∥

∥

2 ≤ (1 − τ5)
∥

∥Φ(k) − µ(Φ(k))−1
∥

∥

2
.

Denoting

Ξ(Λ(k)) =

(

∥

∥̺
(k)

β̂

∥

∥

2
+
∥

∥ρ(k)
∥

∥

2
+
∥

∥Θ(k) − µ(Θ(k))−1
∥

∥

2

+
∥

∥Υ(k) − µt(Υ(k))−1
∥

∥

2

2
+
∥

∥Φ(k) − µ(Φ(k))−1
∥

∥

2
)

and τ = min{τ1, τ2, τ3, τ4, τ5}, we obtain

Ξ(Λ(k)) ≤ (1− τ)Ξ(Λ(k−1)) ≤ (1− τ)2Ξ(Λ(k−1)) ≤ · · · ≤ (1− τ)kΞ(Λ(0)), (5.3)
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suppose that at the k-th iteration, Λ(k) lies in the γ-neighbourhood of the quasi-central path

(4.1) corresponding to µ. Therefore,

Ξ(Λ(k)) ≤ (1− τ)kΞ(Λ(0)) ≤ γµ.

Hence, the number of iterations to reach γ-neighbourhood of the quasi-central path is

log
(

γµ/Ξ(Λ(0))
)

log(1− τ)
.

The proof is complete. �

We now show the global convergence of Algorithm 4.1.

Theorem 5.2. Assume that the assumptions (A1), (A2) and (A3) hold true. Then, the se-

quence {Λ(k) = (x(k), v(k), w(k), s(k), y(k), z(k))} generated by Algorithm 4.1 has a limit point

Λ∗ =(x∗,v∗,w∗,s∗,y∗,z∗). Moreover, the limit point Λ∗ satisfies D(Λ∗) = 0.

Proof. Since Λ∗ is the limit point of the sequence {Λ(k)}, there exists a convergent subse-

quence {Λ(kl)} such that Λ(kl) → Λ∗, where Λ(kl) ∈ Nµk
(γ) and µk → 0. As the step length is

bounded away from zero (by Lemma 5.2),
(

∆x
(kl),∆v(kl),∆w(kl),∆s(kl),∆y(kl),∆z(kl)

)

→ 0.

From the first equation of (3.6), we have

c− s(kl) −∆s(kl) −
(

Aβ̂(x
(kl))

)⊤(

y(kl) +∆y(kl)
)

−
(

B(x(kl))
)⊤(

z(kl) +∆z(kl)
)

= −H
(

x
(kl), y(kl), z(kl)

)

∆x
(kl).

Taking kl →∞, and since {H(x(kl), y(kl), z(kl))} is bounded, we obtain

c− s∗ −
(

Aβ̂(x
∗)
)⊤

y∗ −
(

B(x∗)
)⊤

z∗ = 0. (5.4)

Since Λ(kl) ∈ Nµk
l
(γ),

∥

∥̺β̂(x
(kl), v(kl))

∥

∥

2
+
∥

∥ρ(x(kl), w(kl))
∥

∥

2
+
∥

∥Θ(kl) − µ(kl)(Θ(kl)t)−1
∥

∥

2

+
∥

∥Υ(kl) − µ(kl)(Υ(kl))−1
∥

∥

2
+
∥

∥Φ(kl) − µ(kl)(Φ(kl))−1
∥

∥

2 ≤ γµkl .

Again taking kl →∞ then µkl → 0 and



































̺β̂(x
∗, v∗) = 0,

ρ(x∗, w∗) = 0,

X
∗S∗e = 0,

V ∗Y ∗e = 0,

W ∗Z∗e = 0.

(5.5)

Hence, from (5.5), D(Λ∗) = 0. Therefore, x∗ is a KKT point. �
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6. Numerical Experiments

This subsection reports the outcomes of several types of test problems found in the litera-

ture. The performance of the Algorithm 4.1 is tested on constrained multiobjective as well as

box constrained multiobjective problems. The test have been carried out on a PC with Intel

Core i7-4770U 3.40 GHz CPU and 4GB RAM in MATLAB 2020a. We take some widely used

multiobjective test problems (BNH, SRN, TNK, CONSTR, Kita, SWG) to test the perfor-

mance of Algorithm 4.1. The test problem Kita is a maximization problem and remaining are

the minimization problems. The details of these five constrained test problems are shown in

Table 6.1. The Pareto points of these problems are shown in blue (see Figs. 6.1-6.3).

Table 6.1: Constrained test problems used in this study.

Problem Source n p Number of subproblems Accuracy

BNH [4] 2 2 300 1.0E-6

SRN [36] 2 2 75 1.0E-6

TNK [37] 2 2 100 1.0E-6

CONSTR [6] 2 3 400 1.0E-6

Kita [6] 2 3 150 1.0E-6

SGW [34] 2 2 300 1.0E-6

Fig. 6.1. Obtained Pareto points of BNH and CONSTR problems by Algorithm 4.1.

Fig. 6.2. Obtained Pareto points of SRN and TNK problems by Algorithm 4.1.
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Fig. 6.3. Obtained Pareto points of Kita and SGW problem by Algorithm 4.1.

6.1. Performance metrics

To measure the performance of Algorithm 4.1, it is necessary to ascertain how close obtained

solution is to the actual solution. For this propose, the literature contains various evaluation

criteria (see [21]). In this article, we used three main performance measures such as GD+

(modified generational distance) [15], HV (hyper volume) [22] and IGD (inverted generational

distance) [44].

Let x∗ be an efficient point that is obtained by the proposed algorithm, and f∗ = (f∗
1 , f

∗
2 , . . . ,

f∗
p ) be an ideal point. Then, the modified generational distance (GD+) is calculated by the

following formula

GD+ =

√

√

√

√

p
∑

i=1

(

max{fi(x∗)− f∗
i , 0}

)2
. (6.1)

Apart from GD+, HV is calculated [22]. HV is the value obtained by finding the area en-

closed by the generated nondominated solution points and and a reference point, say R(x(0)) =

(f1(x(0)),f2(x(0)), . . . , fp(x(0))), which must be dominated by all F (xi), for i ∈ {1, . . . ,m}.
Suppose that the solution set is sorted by increasing order with respect to f1. Then, HV is

calculated by

HV =

m−1
∑

i=0

p
∏

j=1

(

fj
(

x(0) − fj(xi+1)
)

)

. (6.2)

A higher HV value indicates better algorithm performance.

Another commonly used performance measure is IGD. IGD is calculated as follows:

IGD(G,G∗) =

∑

x∈G∗ d(x,G)

|G∗| , (6.3)

where the setG consists the approximation of the Pareto front and the setG∗ contains uniformly

distributed known nondominated points.

6.2. Performance of the Algorithm 4.1 on some test problems

We take the following optimization problem (FON [38]) to test the performance measure of

Algorithm 4.1:



A Newton-Type Globally Convergent IPM to Solve MOPs 43















minimize

(

1− exp

(

−
n
∑

i=1

(

xi −
1√
n

)2
)

, 1− exp

(

−
n
∑

i=1

(

xi +
1√
n

)2
))⊤

subject to x ∈ [−4, 4].
(6.4)

The efficient set is
{

x ∈ R
n : xi ∈

[

− 1√
n
,

1√
n

]

, i = 1, . . . , n

}

.

The performance measures (GD+, HV, IGD) of Algorithm 4.1 for the problem (6.4) are calcu-

lated by taking different values of n (see Table 6.2). Also, the obtained Pareto points comparison

with true Pareto front are shown in Fig. 6.4.

Table 6.2: Performance measures of test problem FON.

Number of decision variables (n) Number of subproblems GD+ HV IGD

4 300 0.1760E-4 0.34047 6.2512E-4

9 200 1.4097E-4 0.33941 8.8491E-4

16 150 0.1171E-4 0.33880 8.8334E-4

25 100 8.1465E-4 0.33716 8.1986E-4

Fig. 6.4. Obtained Pareto points of test problem FON by Algorithm 4.1.
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• CEC09 and Zitzler, Deb and Thiele (ZDT) test suit

So far, we have seen the performance of IC-IPM on constrained MOPs and an unconstrained

MOP with bound constraints (FON). The efficiency of IC-IPM is demonstrated by the good

approximation of the Pareto fronts in all the above problems. Below, we use CEC09 test

problems and ZDT test suite to further test the algorithm’s capabilities. We evaluate the

problems from CEC09 test suite [42] that are smooth. In comparison to the previous test

problems, these are more complex problems. Table 6.3 shows the results of CEC09, obtained

by IC-IPM and other well-known techniques, such as MOEA [43], ENS-MOEA [43], etc. The

comparison Table 6.3 shows that the performance (based on IGD values) of Algorithm 4.1 (IC-

IPM) is better compared to other algorithms on test suite CEC09. The obtained Pareto points,

along with the true Pareto front, are depicted below in Fig. 6.5.

Table 6.3: Comparison of IGD scores for CEC09.

Problem FRD [42] FD [42] RD [42] OD [42] MOEA/ ENS-MOEA/ Cultural MOWOATS [1] IC-IPM

D [43] D [43] MOQPSO [1]

UF1 9.61E-3 6.40E-3 2.52E-3 2.78E-3 2.01E-3 1.64E-3 1.11E-2 2.32E-3 1.04E-4

UF2 8.41E-3 7.20E-3 9.43E-3 9.80E-3 4.82E-3 4.03E-3 2.15E-2 2.21E-3 1.12E-4

UF3 4.72E-3 3.11E-3 9.30E-3 1.05E-2 1.06E-2 2.66E-3 3.75E-2 9.77E-3 1.43E-4

UF4 5.92E-2 7.88E-2 8.81E-2 8.58E-2 6.24E-2 4.21E-2 5.98E-2 1.83E-3 1.33E-4

UF7 5.62E-3 6.30E-3 5.41E-3 3.24E-3 1.80E-3 1.72E-3 1.13E-2 2.12E-3 2.35E-4

UF8 6.60E-2 6.11E-2 5.69E-2 5.62E-2 4.28E-2 3.10E-2 1.18E-2 3.61E-3 5.78E-3

Fig. 6.5. Obtained Pareto points of test problem ZDT1, ZDT2, ZDT3 and ZDT4 by Algorithm 4.1.
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For the ZDT test suite, the outcomes achieved by IC-IPM and the reputed methods such

as MOEA/D PBI Approach, MOEA/D Tchebycheff (TE) Approach, MOEA/D Weighted Sum

(WS) Approach, Pareto-adaptive weight vectors (paλ) based MoEA/D approach, NSGA-II,

Cultural MOQPSO and MOWOATS are presented in Table 6.4. The obtained Pareto points,

along with the true Pareto front, are depicted below in Fig. 6.6.

Table 6.4: Comparison of IGD values for the ZDT benchmark suite.

Problem WS [35] TE [35] PBI [35] NSGA-II [35] paλ-MOEA/ Cultural MOWOATS [1] IC-IPM

D [35] MOQPSO [1]

ZDT1 5.42E-4 6.48E-4 1.14E-4 7.94E-4 5.79E-4 6.13E-3 1.30E-3 1.05E-4

ZDT2 1.30E-2 5.84E-4 7.02E-4 8.15E-4 6.02E-4 4.87E-3 7.32E-4 1.27E-4

ZDT3 4.93E-3 2.01E-3 2.06E-3 1.19E-3 1.97E-3 1.89E-1 2.87E-3 1.01E-4

ZDT4 7.01E-3 6.65E-4 7.85E-4 8.14E-4 5.93E-4 5.26E-3 2.85E-4 1.45E-4

Fig. 6.6. Obtained Pareto points of UF1, UF2, UF3, UF4, UF7 and UF8 by Algorithm 4.1.
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7. Conclusions

This work has introduced an interior-point approach, with the help of the cone method

(IC-IPM), to find a subset of nondominated points of an MOPs. In proposed method, IC has

been used to transform an MOP into a collection of single objective optimization problems.

Each single objective optimization problem of the collection has been solved by IPM. To find

the solution of each subproblem by IPM, a barrier problem and its KKT conditions have

been derived. In order to the solve KKT conditions, the iteration started with the initial

point and then calculated the direction by Newton method. Thereafter, step length has been

chosen so that the nonnegative variables remain nonnegative. A new merit function has been

also proposed with global properties (Theorems 4.1-4.3). Merit function has helped to take

a suitable step length along the search direction.

Theorem 4.4 shows that the search direction calculated by Theorem 3.1 is descent for the

merit function (4.2). Furthermore, we have proved the global convergence of the proposed

algorithm under standard assumptions. We have demonstrated through numerical experiments

that Algorithm 4.1 can solve constrained MOPs efficiently. We have used three performance

measures (GD+, HV, IGD) to test the efficiency of the Algorithm 4.1 on some standard test

suite. The performance of Algorithm 4.1 has compared with some existing popular algorithms.

Tables 6.3 and 6.4 has shown that Algorithm 4.1 is comparatively efficient.

Throughout the paper, the objective and constraints functions are assumed to be twice

continuously differentiable. As a result, IC-IPM method is not capable of dealing with non-

smooth problems. Hence, future study will focus on expanding this technique to tackle the vast

majority of problems (smooth and non-smooth).
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