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Abstract. The meandering river is an unstable system with the characteristic of non-
linearity, which results from the instability of the flow and boundary. Focusing on
the hydrodynamic nonlinearity of the bend, we use the weakly nonlinear theory and
perturbation method to construct the nonlinear evolution equations of the disturbance
amplitude and disturbance phase of two-dimensional flow in meandering bend. The
influence of the curvature, Re and the disturbance wave number on the evolution of
disturbance amplitude and disturbance phase are analyzed. Then, the spatial and tem-
poral evolution of the disturbance vorticity is expounded. The research results show:
that the curvature makes the flow more stable; that in the evolution of the disturbance
amplitude effected by curvature, Re and the disturbance wave number, exist nonlinear
attenuation with damping disturbances, and nonlinear explosive growth with positive
disturbances; that the asymmetry distribution of the disturbance velocities increases
with the curvature; that the location of the disturbance vorticity’s core area changes
periodically with disturbance phase, and the disturbance vorticity gradually attenu-
ates/increases with the decrease of the disturbance phase in the evolution process of
damping/positive disturbances. These results shed light on the construction of the
interaction model of hydrodynamic nonlinearity and geometric nonlinearity of bed.

AMS subject classifications: 76E30, 34C60

Key words: Curvature bend, hydrodynamics, weakly nonlinearity, disturbance vorticity.

1 Introduction

Since the 1980s, scholars have kept investigating the characteristics of the stability and
nonlinearity of meandering rivers. Callander [1] considered that the instability is the
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cause of the river bending or braiding. In the instability analysis by Ikeda, Parker and
Sawai [2], the most unstable wavelength was considered as the finite amplitude wave-
length of the meandering river, which assumed the curvature ratio (the ratio of the
half width to the curvature radius) is far less than 1. Parker, Sawai and Ikeda [3] an-
alyzed the geometrical nonlinear stability of meandering river, ignoring the nonlinear
dynamic terms. In the weakly nonlinear analysis of the meandering river by Seminara
and Tubino [4], the geometric weakly nonlinear analysis was carried out near the reso-
nance state, and the suppression of the nonlinear effect was revealed. Imran, Parker and
Pirmez [5] pointed out that the study of Sun [6] has a fundamental defect in simulating
the evolution of the meandering river because the nonlinear effect of flow dynamic is
ignored. The meandering river has the instability mechanism, which refers to the insta-
bility of the flow [7]. Pittaluga, Nobile and Seminara [8] thought that the linear theory of
the meandering river explains the resonance mechanism. However, the complete nonlin-
ear theory of the meandering river has not been established yet, and the nonlinear effect
has a certain influence on the flow field. Pittaluga and Seminara [9] argued that nonlin-
earity and instability are the important characteristics of the meandering river, while the
effects of nonlinearity have been seriously ignored. Bai et al. [10–12] suggested that the
nonlinear hydrodynamics theory is important to investigate the evolution of rivers under
disturbances. Nelson, Pittaluga and Seminara [13] presented a nonlinear asymptotic the-
ory of fully developed flow and bed topography subjected to unerodible bedrock layer,
but they ignored the nonlinearity of the flow itself.

The previous studies mainly focused on the geometric nonlinearity of the meandering
river and the bed disturbance. However, the study on the characteristics of the nonlinear-
ity and evolution of the flow dynamics in the meandering river with different curvatures
is insufficient. Different from the weakly nonlinear instability in the plane Poiseuille flow
and shear layers [14, 15], in this paper, the instability and nonlinear evolution of the flow
dynamics affected by the curved boundary with damping and positive disturbances are
analyzed by constructing the control equation under the small flow disturbance. Under
the conditions of the time mode, the Orr-Sommerfeld equation is used to analyze the sta-
bility characteristics of the hydrodynamic in the bend. And the Landau-Stuart equations
are used with the weakly nonlinear theory of flow stability [16, 17]. Then the nonlin-
ear evolution equations of the hydrodynamic of the constant curvature bend under the
nonlinear effect of the flow are derived. The influences of the material composition of
the river bank and the form of the bed surface are ignored. Generally, the river’s cur-
vature is constant along the bend, and the width is limited by the walls, such as in the
canyon channel of Jing River in Shaanxi Province, China (Fig. 1). And in order to re-
duce the complexity of equations, we take the constant curvature form to investigate the
stability and nonlinearity of hydrodynamic in the meandering river. The hydrodynamic
study in the constant curvature bend provides the nonlinear hydrodynamic basis for fur-
ther exploring the complete nonlinear relationship between river hydrodynamic and bed
morphology. And in natural rivers, a high-order method is an accurate tool to study
three-dimensional hydrodynamics [18].
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Figure 1: The canyon meandering channel in Jing River.

2 Theoretical model

2.1 Coordinate transformations

In order to simplify the governing equations of the meandering river possibly, Parker [2,
3] and Smith [19] proposed an orthogonal curvilinear coordinate system (Fig. 2). The
bend’s width is proposed to be constant along the river (2Br). The values of the x0 and
the y0 are the values on the X-axis and the Y-axis of the river centerline in the Cartesian
coordinate system, respectively, shown in the following figure. Then the transformation
relationship between orthogonal curvilinear coordinate system and Cartesian coordinate
system are as follows:

x= x0+∆x= x0−n
dy0

ds
, (2.1a)

y=y0+∆y=y0+n
dx0

ds
. (2.1b)

The radius of curvature R(s):

R(s)=
(

dx0

ds
d2y0

ds2 − dy0

ds
d2x0

ds2

)−1

. (2.2)

The relevant metric coefficients are:

hs =1− n
R(s)

=1−N, hn =1, hz =1. (2.3)

2.2 Control equations of the meandering bend

The object investigated in this paper is the constant curvature bend in the two-
dimensional case. Under the conditions of the orthogonal curvilinear coordinates, we
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Figure 2: Orthogonal curvilinear coordinate system in the meandering river.

take B∗
r , R∗

m, and U∗
m as the half-width of the bend, the minimum curve radius and the

maximum value of the base flow velocity respectively, ”*” means the dimensional quan-
tity. The scaling of the length, velocity and time are expressed by the B∗

r , U∗
m, B∗

r /U∗
m,

respectively. Then we have:

(s∗,n∗)=B∗
r (s,n), R∗=R∗

mR, (u∗
s ,u∗

n)=U∗
m(us,un),

p∗=ρU∗2
m p, t∗=

B∗
r

U∗
m

t, N=
B∗

r
R∗

m

n
R

, ψ=
B∗

r
R∗

m
.

In the above equations, p∗, ρ, and t∗ represent the pressure, the density of the flow and
the time respectively. ψ, called the curvature ratio, which refers to the ratio between the
half-width and the minimum curve radius, is the critical characteristic parameter of the
meandering river. In the case of the constant curvature, R=1, so hs=1−ψn. Then we can
derive the dimensionless governing equations of the meandering river with the constant
curvature:

1
hs

∂us

∂s
+

∂un

∂n
−ψun

hs
=0, (2.4a)

∂us

∂t
+

us

hs

∂us

∂s
+un

∂us

∂n
−ψusun

hs
=− 1

hs

∂p
∂s

+
1

Re
∆us−

ψ

Re

[
2
h2

s

∂un

∂s
+

1
hs

∂us

∂n
+

ψus

h2
s

]
, (2.4b)

∂un

∂t
+

us

hs

∂un

∂s
+un

∂un

∂n
−ψu2

s
hs

=−∂p
∂n

+
1

Re
∆un+

ψ

Re

[
2
h2

s

∂us

∂s
− 1

hs

∂un

∂n
−ψun

h2
s

]
. (2.4c)

In the above equations: Re(= B∗
r U∗

m
ν ) is the Reynolds number, ν is the kinematic viscosity,

∆= 1
h2

s

∂2

∂s2 +
∂2

∂n2 .

2.3 Perturbation analysis

The study of Zachmann and Lagasse [20] shows that the value of ψ in natural rivers
is mainly distributed at 0.05 ∼ 0.20. Therefore, in our study, ψ is regarded as a small
parameter; Eqs. (2.4a)-(2.4c) are solved with the perturbation method; and the velocity
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Figure 3: Sketch illustrating the constant curve river.

and pressure are divided into three parts:us
un
p

=
usψ0

unψ0

pψ0

+ ∞

∑
i=1

ψi

usψi

unψi

pψi

+ ∞

∑
i=1

εi

usi

uni

pi

. (2.5)

At the right of the above equation, the first part is the base flow of the open channel; the
second part is the curvature correction terms, which relate to ψ; the third part is the flow
disturbance terms, which consider the nonlinear effect arising from the flow disturbance
in the meandering river, and ε is an any small quantity. In the analysis of the base flow
terms and the curvature correction terms, because ψ is far less than 1, thus the influence
caused by weak curvature can only consider the effect of the first-order of ψ.

Considering the base flow terms of the open channel in Eq. (2.5), we set ψ=0, unψ0 =0,
∂/∂s= ∂/∂t=0, and the corresponding boundary conditions as unψ0 =usψ0 =0 (n=±1).
And then the solutions of the velocity and pressure are as follow:

unψ0 =0, usψ0 =1−n2, pψ0=0. (2.6)

The curvature correction terms, usψ1 , unψ1 , pψ1 in the constant curvature bend are:

unψ1 =0, usψ1 =−1
3
(n−n3), pψ1=−n− 1

5
n5+

2
3

n3. (2.7)

The base flow terms and the first-order curvature correction terms are combined as the
base flow of the constant curvature bend. And then, the base flow terms and the flow
disturbance terms are brought into the control equations of the constant curvature bend
thus we have:

us
un
p

=
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3
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pi

. (2.8)
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In Eq. (2.8), us, un, and p are the streamwise velocity, cross-section velocity, and pres-
sure of the base flow in the constant curvature bend, respectively. We take Eq. (2.8) to
Eqs. (2.4a)-(2.4c), and then the perturbation control equations of any order can be ob-
tained
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In the above equations,

L=
us

hs

∂

∂s
− 1

Re

(
1
h2

s

∂2

∂s2 +
∂2

∂n2

)
and i means the order (i=1,2,···).

2.4 Linear stability analysis

In the linear instability analysis of shear flow, Wu [21] introduced a small amplitude per-
turbation based on the base flow and obtained the solution form by separating variables
based on the approximate local parallel flow. In this paper, as us, un, and p in Eq. (2.8)
are merely the function of n, and the flow disturbance is considered a small amplitude
quantity. Therefore, the first-order disturbance quantity of us1 ,un1 ,p1 can be written as:us1

un1

p1

=
 ûs1(n)

ûn1(n)
p̂1(n)

exp[i(αs−ωt)]+c.c. (2.10)

In the above equations, ûs1(n), ûn1(n), p̂1(n) are the shape functions about n; α is the dis-
turbance wave number; ω is the disturbance frequency; and c.c is the conjugate complex
number. We take Eq. (2.10) into Eqs. (2.9a)-(2.9c) and then get the governing equations of
the first-order disturbance. Our goal is to investigate the flow’s instability and nonlinear
evolution process in the constant curvature bend under the time mode. Therefore, the
disturbance frequency can be written as ω =ωr+iωi. The imaginary part of the distur-
bance frequency (ωi) is related to the increase or decrease of the disturbance. Then the
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disturbance amplitude and disturbance phase can be written as a=exp(ωit) and θ=−ωrt,
respectively, and both of them satisfy the relation as follows:

F(α,ω,Re,ψ)=0. (2.11)

The Eq. (2.11) is the Orr-Sommerfeld equation for hydrodynamic characteristics of the
meandering channel with the constant curvature. Then under the influence of curvature
and the corresponding variation of the disturbance wave number and Reynolds number,
the neutral curve distribution can be obtained. The central difference method and Muller
method are used to solve Eq. (2.11). It can be calculated with the change of the ωr, ωi
under specific Re and α. When ωi =0, it is called the neutral state.

2.5 Nonlinear evolution equations under time mode

Wu [21] pointed out that the weakly nonlinear theory is closely related to the develop-
ment of shear flow at high Reynolds number. Due to the influence of nonlinearity, the
evolution process of the flow hydrodynamic can be expressed by the disturbance am-
plitude function. Moreover, higher harmonic terms are generated due to the nonlinear
interaction. In the nonlinear evolution of the hydrodynamics process in the constant
curvature bend, we use the classical weakly nonlinear theory of the Landau-Stuart equa-
tion [16] under the time mode. Because of the effect of nonlinearity, the evolution of the
disturbance amplitude and disturbance phase can be expressed as follows:

da
dt

=ωia+
∞

∑
m=1

Amam =A,
dθ

dt
=−ωr+

∞

∑
m=1

Bmam =B. (2.12)

And according to the chain rule, we have:

∂ui

∂t
=

∂ui

∂a

(
ωia+

∞

∑
m=1

Amam

)
+

∂ui

∂θ

(
−ωr+

∞

∑
m=1

Bmam

)
. (2.13)

In Eq. (2.12), A0 = ωia, B0 =−ωr, a = eωit, θ =−ωrt. Am and Bm, (m = 1,2,···) are the
Landau coefficients. In Eq. (2.13), ui, (i= 1,2,···) is the disturbance velocity component
at any order. If we take Eq. (2.13) back to Eqs. (2.9a)-(2.9c), then the weakly nonlinear
evolution equations of the constant curvature bend can be obtained at any order. Semi-
nara [9] pointed out that the analysis of the meandering river needs complete nonlinear
governing equations for simulation, and the effect of the sidewall boundary layer can-
not be ignored. The corresponding boundary conditions of the flow disturbance on the
sidewall in our study are:

uni =usi =0, (n=±1, i=1,2,···). (2.14)

Then the perturbed control equations of the first order to the fifth order under the weakly
nonlinear evolution of the constant curvature bend under the time mode are obtained.
The perturbed control equations are solved by the central difference method.
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3 Results

3.1 Model validation and neutral curve of stability theory

The critical Reynolds number (Recr) and neutral curve calculated when ψ = 0 are com-
pared with the experiment results of the plane Poiseuille flow made by Nishioka [22].
And we take the results of Re from Orszag [23] as the critical Reynolds number (Recr =
5772.22 and α=1.02059). And the results in our model, Recr =5772.2222 and α=1.02059,
are consistent with the results of Nishioka and Orzag (Fig. 4(a)). In terms of the nonlin-
ear evolution of the disturbance velocity, we compare our results with that of Zhou and
You [14] in the evolution of u1, u20 and u22 under the conditions of ψ = 0, Re = 10000,
α=1.096, ωr =0.270284, ωi =0.000088 (Fig. 4(b)), which are consistent well.

The black dots in Fig. 5 and Fig. 6 show the distribution of Recr under different ψ.
cr(=ωr/α) is the real part of the disturbance wave velocity (Fig. 6). The results show that
with the increase of ψ, the neutral curve moves toward the direction of the increasing Re.
The region outside the neutral curve is stable while the region inside the neutral curve
is unstable, which means with the increase of ψ, the area of the unstable region reduces,
the flow in the bend tends to be more stable and loses the stability at the higher Reynolds
number, which is consistent to the result of Bai et al. [24].

Except at Recr, there are two different neutral points at the neutral curve for the same
Re at the upper and lower branches, respectively. And with the increase of ψ, α, and cr
get closer to the lower branch. With the limit of the weak curvature ratio, ψ increases
from 0 to 0.20, Recr increases exponentially, while α and cr show a downward trend
monotonously (Fig. 7). It is because the curved boundary impacts on the flow, which
relates to the interaction among ψ and α, cr, as well as Re in Eq. (2.11). Besides, the results
also reveal that the river boundary is often curved in nature.

Figure 4: Verification of neutral curve Re−a (a) and the disturbance velocity (b).
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Figure 5: Effect of curvature on neutral curve of Re−α.

 

Figure 6: Effect of curvature on neutral curve of Re−cr.
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Figure 7: Stability characteristics under different curvature ratio.
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4 Discussion

4.1 Evolution characteristics of the disturbance amplitude and disturbance
phase

After obtaining Landau coefficients of A and B by using the solvable condition, the initial
disturbance amplitude (a0) is set to be 0.01 for analysis. The values of α and cr near the
neutral curve (see Supplement A) are taken to analyze the influence of different ψ on the
evolution of the disturbance amplitude (a) and disturbance phase (θ) near the neutral
curve with damping and positive disturbances, respectively. In the following analysis,
the imaginary part of the disturbance wave velocity is taken as ci (=ωi/α)= 0.005 and
−0.005, respectively. In a high-Reynolds number shear layer, the nonlinear evolution
of a pair of initially linear oblique waves can induce the explosive growth by nonlinear
effects [15]. So we aim to reveal the evolution characteristics of the positive and damping
disturbances under the weak nonlinear effect.

When Re keeps the same, with the increase of ψ, the attenuation rate of a increases
when ci =−0.005 (Fig. 8). However, when time increases to a certain value, the value of
the disturbance amplitude decreases to 0, the initial disturbance will disappear after a
certain period under negative ci. This effect can be called nonlinear attenuation. While
ci = 0.005, the disturbance amplitude increases with time, and explosively grows when
time reaches a critical value. And we found that the larger ψ is, the larger a is. However,
when time reaches another critical value, the magnitude of a under ψ= 0 is larger than
that of ψ=0.05∼0.10, which means that the existence of ψ will reduce the increase rate of a
under positive ci. θ presents a monotonic decreasing trend with time when ci is negative.
When ci is positive and the time value is larger than critical value, with the nonlinear
effect, θ is explosively increased when ψ≤0.05 and explosively decreases when ψ≥0.07.

Figure 8: Evolution process of the disturbance amplitude and disturbance phase under different ψ (left: the
disturbance amplitude; right: the disturbance phase, Re=10000).
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Figure 9: Evolution process of the disturbance amplitude and disturbance phase under different Re (left: the
disturbance amplitude; right: the disturbance phase, ψ=0.01).

Figure 10: Evolution process of the disturbance amplitude and disturbance phase under different α (left: the
disturbance amplitude; right: the disturbance phase, Re=12000)

When ψ≤0.05, the lower ψ is, the larger θ is, while when ψ≥0.07, the result is reversed,
which is related to the Landau coefficient.

We take ψ=0.01, Re=6000 to 12000 to analyze the evolution characteristics of a and θ
with Re. When ci=−0.005, both a and θ decrease with Re, and the larger Re is, the larger
the decreasing rate of a and θ is. While ci is positive, the larger Re is, the lower value of
a is. However, θ decreases with the increase of time. When time reaches critical values, θ
is in explosive growth and the critical time value increases with Re.

There are two different values of the disturbance wave number or disturbance wave
velocity at the neutral curve, except for Recr. In order to investigate the influence of
the disturbance wave number on the disturbance amplitude and disturbance phase, we
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take ψ = 0.01 and 0.07, Re = 12000, α = 1.0859 and 1.0614 at the upper branch, and α =
0.7579 and 0.7715 at the lower branch and then analyze respectively, as shown in Fig. 10.
With the same Re, time, and ci, the larger α is, the larger the absolute value of a is. And
when ci =0.005, a increases faster with high values of ψ, but when time reaches a certain
value, a increases slower under the effect of curvature. In terms of θ, the larger α is, the
larger the magnitude of θ is. When ci is positive, the critical time value of the explosive
growth/decrease point is smaller when α is larger.

4.2 Distribution of the disturbance velocity

The real part and the imaginary part of the components of the disturbance velocity can
be written as:

usr =Real

(
5

∑
i=1

εiusi

)
, usi = Img

(
5

∑
i=1

εiusi

)
, (4.1a)

unr =Real

(
5

∑
i=1

εiuni

)
, uni = Img

(
5

∑
i=1

εiuni

)
. (4.1b)

In Eq. (4.1), Real and Img mean the real part and imaginary part, respectively, and ε is any
small quantity. We take a (disturbance amplitude) to replace ε, neglect the effect of the
correction of the base flow and then analyze the distribution of the disturbance velocity.

4.2.1 Influence of the disturbance phase on the disturbance velocity

We aim to investigate the evolution characteristics of the disturbance velocity under dif-
ferent θ ranging from −4π to −6π. And we take ψ=0.10, s=0, k= θ, a0=0.01.

The distribution of the streamwise disturbance velocity (usr) in Figs. 11(a) and (c)
presents the sigmoid shape, which means that the maximum value is close to both sides.
Nevertheless, there is a turning point near the region of n=−1. When θ ranges from −4π
to −6π, usr near n= 1 decreases to θ =−5π and then increases in other periods. As usr
approaches to n =−1, the turning point increase to the maximum till θ =−4π−2π/3.
The shape function of usr is the same when ci is positive and negative.

The distribution of the cross-section disturbance velocity (unr) presents parabolic
shape. The location of the maximum absolute value of the disturbance velocity ranges
from n= 0.2 to 0.4, which is influenced by ψ. And this position changes with θ, which
moves to n = 1 when θ ranges from −4π−π/3 to −5π. In some certain values of θ
(=−4π), there exists the sigmoid shape of unr, and the magnitude of unr near n = 1 is
larger than that near n=−1.

4.2.2 Influence of the curvature ratio on the shape function of the disturbance velocity

For investigating the effect of ψ on the shape of the disturbance velocity, we take ψ =
0.03 ∼ 0.15, Re = 10000, s = 0, ci =−0.005 and 0.005. α and cr from the neutral curve
(Supplement A) and θ=−4π to −5π.
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Figure 11: The distribution of the disturbance velocity under different θ.

The streamwise disturbance velocities (usr and usi) at the cross-section of s=0 present
the sigmoid shape under different ψ. When ψ is large, such as ψ=0.15, the distribution
of usr near n=−1 shows a velocity turning point. Below the point, the direction of usr
keeps the same with usr near n= 1. Apart from this turning point, an extremum value
near n=−1 occurs corresponds to the extremum value of velocity near n= 1. With the
increase of ψ, the symmetry of usr and usi decreases gradually. The extremum value of
usr near n =−1 decreases with the increase of ψ, and when ψ = 0.15 and θ =−4π, the
magnitude of maximum value of usr near n=−1 is only half of that near n=1.

The transverse disturbance velocities (unr and uni) at the cross-section of s=0 present
the parabolic shape. But when ψ is larger (ψ= 0.10,0.15), θ =−4π and −5π, the distri-
bution of unr presents the sigmoid shape, and the magnitude of unr near n< 0 is lower
than that on the other side. This phenomenon also exists in the distribution of uni. These
results show that the distribution of unr and uni will move toward the direction of n= 1
with the increase of ψ, and the symmetry of the distribution of unr/ uni also transfers
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Figure 12: The distribution of the disturbance velocity under different ψ (Re=10000).

to asymmetry gradually. The shape function of the disturbance velocity keeps the same
when ci =−0.005 and 0.005.

4.2.3 Influence of the Reynolds number on the disturbance velocity

In order to investigate the effect of Re on the disturbance velocity under different θ, we
take ψ= 0.10, Re= 9000,10000,12000, respectively, ci =−0.005 and 0.005, s= 0, α and cr
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Figure 13: The distribution of the disturbance velocity under different Re.

from the neutral curve (Supplement A), and θ ranging from −4π to −5π.

In Fig. 13, the characteristics of both the disturbance velocity in streamwise and trans-
verse are as follow. Firstly, at the same θ, with the increase of Re, the extreme values of usr
and usi decrease when ci=−0.005 and θ=−4π,−5π, while when ci=0.005, the condition
is reversed. The changes of Re do not influence the shape function of the disturbance ve-
locity. Secondly, with the increase of Re, the extreme values of unr and uni decrease when
ci =−0.005 and θ =−4π−π/2, while when ci = 0.005, the condition is reversed. From
the analysis above, we can conclude that with the increase of Re, the extreme value of
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the disturbance velocity decreases when ci is negative and increases when ci is positive.
However, the changes of Re have not influenced the shape function of the disturbance
velocity.

4.3 Distribution characteristics of the disturbance vorticity

For the investigation of the distribution of the velocity and vorticity in the whole constant
curvature bend, we take ψ = 0.10, Re = 10000, ci =−0.005 and 0.005, α and cr from the
neutral curve (Supplement A) and θ ranging from −4π to −5π.

The distribution of the disturbance vorticity (Ω= 1
hs

∂un
∂s − ∂us

∂n + us
hsR ) in the whole con-

Figure 14: The distribution of the disturbance vorticity under different θ in the whole constant curvature bend.
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Figure 15: The distribution of the disturbance vorticity under different Re in the whole constant curvature bend.

stant curvature bend is characterized that Ω is negative (the clockwise is positive) at the
entrance. However, it is positive at the end of the bend when θ=−4π (Fig. 14). With the
decrease of θ (increasing in the negative direction), the negative Ω at the entrance begins
to migrate downstream. When θ decreases to −5π, Ω is positive at the entrance of the
bend, and negative at the end of the bend. Therefore, in the whole period of θ, the neg-
ative Ω begins to occupy the center of the bend and gradually moves downstream. The
positive disturbance vorticity begins to develop, moving downstream and occupying the
whole bend in the next half period. And the core area of Ω changes with θ. When ci is
negative, the core area’s intensity of Ω decreases gradually with θ, while it increases with
θ when ci is positive.

In order to investigate the influence of Re on the distribution of the disturbance vor-
ticity in the whole constant curvature bend, we take ψ = 0.10, Re = 9000,10000,12000,
ci =−0.005 and 0.005, θ =−4π−π/2, α and cr from the neutral curve (Supplement A).
The results are shown in Fig. 15. Through the distribution of Ω at different Re, it can be
seen that near the center area of bend apex, with the increase of Re, the magnitude value
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Figure 16: The distribution of the disturbance vorticity under different ψ in the whole constant curvature bend.

of Ω decreases as ci =−0.005 and increases as ci = 0.005. The higher magnitude value
of Ω is located near both sides. However, the variation of Re does not affect the spatial
and temporal evolution trend of the disturbance vorticity distribution but changes the
magnitude of the disturbance vorticity.

Then, we investigate the influence of ψ on the disturbance vorticity’s distribution in
the whole constant curvature bend, we take ψ= 0.05,0.07,0.10, respectively, Re= 10000,
ci =−0.005 and 0.005, θ =−4π−π/2, α and cr from the neutral curve (Supplement A)
(Fig. 16). With the increase of ψ from 0.05 to 0.10, the strength of Ω around the bend
center area decreases gradually, and the negative value of Ω approaches the concave
band (n = 1) gradually. From the whole distribution of Ω, the existence of ψ does not
cause any phase lag. The locations of the maximum value of Ω are near both side walls.
Ω rapidly decays when it gets away from the side wall. Combined with Fig. 11, it can be
seen that with the increase of ψ, Ω near the side of n= 1 gradually strengthens, while it
weakens on the side of n=−1.
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5 Conclusions

The characteristics of flow stability and nonlinear evolution under the influence of ψ (cur-
vature ratio), Re (Reynolds number) and θ (disturbance phase) in the constant curvature
bend under damping/poistive disturbances are studied in our paper. The conclusions
are as follows:

1. In the constant curvature bend, with the increase of ψ, the neutral curve moves in
the direction of the increasing Re, and the corresponding Recr (the critical Reynolds
number) also increases, making the bend tend to be stable. Under the small values
of ψ, α (the disturbance wave number) and cr (the real part of the disturbance wave
velocity) corresponding to Recr monotonically decrease with the increase of ψ.

2. The nonlinear evolution characteristics of a (disturbance amplitude) and θ in time
mode are as follows: when ci (the imaginary part of the disturabnce wave velocity)
is negative, the attenuation rates of a and θ are larger with ψ. The attenuation rates
of a and θ (increases in negative direction) are lower with the increase of Re. When
α is larger, the attenuation rate of a and θ is faster. When ci is positive and time
reaches the critical value under the nonlinear effect, a grows explosively, and the
increasing rate is larger when α, ψ, and Re is larger. Moreover, the explosive growth
exists in the evolution of θ, and the critical time value increases with the increase
of Re and decreases of α and ψ, while ψ ≥ 0.07, the explosive growth changed to
explosive decrease.

3. The distribution of the streamwise disturbance velocity shows the sigmoid shape,
while the parabola style in the transverse disturbance velocity, both of them chang-
ing periodically with θ. The symmetry of the disturbance velocities in both the
streamwise and transverse directions decreases gradually with ψ, and shifts toward
the convex bank (n=1). With the increase of Re, the magnitudes of the disturbance
velocity decrease/increase both in the streamwise and transverse direction when ci
is negative/positive. The values of ci and Re rarely influence on the shape function
of the disturbance velocity.

4. The characteristics of the disturbance vorticity (Ω)’s evolution in the constant cur-
vature bend are as follows: (1) In the half period of θ(−4π∼−5π), Ω moves from
the entrance to the exit gradually; in the other half period, the direction of distur-
bance vortex turns, and the location of the disturbance vortex core changes with θ.
(2) Around the center bend, Ω decays gradually and shifts to both sides with Re,
but it would not have much influence on the spatial-temporal evolution of Ω. (3)
With the increase of ψ, Ω around the center will gradually decays, and moves to the
convex bank. And Ω increases near the side of the convex bank (n=1) and decays
near the side of the concave bank (n=−1) when ψ is larger.
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