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Abstract. In this article, a new characteristic finite difference method is developed for
solving miscible displacement problem in porous media. The new method combines
the characteristic technique with mass-preserving interpolation, not only keeps mass
balance but also is of second-order accuracy both in time and space. Numerical results
are presented to confirm the convergence and the accuracy in time and space.
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1 Introduction

During recent years, the research of oil reservoir numerical simulation has been an im-
portant field in modern computational mathematics. In this field, two-phase flow dis-
placement (water and oil) is one of the most important basic problems. In this article, we
will consider to construct a new numerical method for the following incompressible mis-
cible displacement problem in porous media, which is governed by a nonlinear coupled
system of partial differential equations: the pressure is governed by an elliptic equation
and the concentration is governed by a convection-diffusion equation (see [1–3]):

∇·u= g(x,t), u=−κ(x)
µ(c)
∇p=−r(x,c)∇p, (x,t)∈Ω×(0,T],

φ(x)
∂c
∂t

+∇·(uc−D∇c)= c̃g(x,t), (x,t)∈Ω×(0,T],
(1.1)
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where Ω is a bounded domain in Rd, (d = 1,2,3), p(x,t) denotes the pressure, u is the
Darcy velocity, c(x,t) is the relative concentration, κ(x) is the permeability of strata, µ(c)
is the viscosity of the fluid mixture, φ(x) is the porosity of the rock, g(x,t) is the external
flow rate, which is positive if fluid is being injected, the concentration c̃ in the source
term is the injected concentration cω if g(x,t)≥ 0 and is the resident concentration c if
g(x,t)<0 . Furthermore, a compatibility condition

∫
Ω pdx=0 , 0≤ t≤T must be imposed

to determine the pressure.
The pressure equation is elliptic and easily handled, but the concentration equation

is parabolic and normally convection-dominated. It is well known that the standard fi-
nite difference method and Galerkin finite element method applied to the convection-
dominated problems do not work well, and produce excessive numerical diffusion or
nonphysical oscillation. A variety of numerical techniques were introduced to obtain bet-
ter approximations, such as, Yuan etc. proposed the modified method of characteristic
finite element method (MMOC) in [4–9], and Russell proposed the Eulerian-Lagrangian
localized adjoint method (ELLAM) in [10]. Moreover, Yang proposed least-squares mixed
finite element method in [11], and Yuan, Liang and Rui etc. proposed the characteristic
finite difference schemes, the modified method of upwind with finite difference frac-
tional steps procedures, see [12–14]. Each of the above methods has its advantages and
disadvantages. Upstream-weighted method tends to introduce an excessive amount of
numerical diffusion near the sharp fronts into the solution. Streamline diffusion method
and least-squares mixed finite element method reduce the amount of diffusion but add
a user-defined amount biased in the direction of the streamline. ELLAM conserves mass
locally but it is difficult to evaluate the resulting integrals. Explicit characteristic and
Godunov schemes require a CFL time-step constraint. The MMOC-Galerkin scheme has
much smaller numerical diffusion than those of standard Galerkin methods, and can be
used with a larger time step, with corresponding improvement in efficiency and without
cost in accuracy. But it fails to keep mass balance.

In [15, 16], Liang and Fu proposed a new efficient high-order mass-conservative fi-
nite difference method for the advection-dominated transport problem. This algorithm
combines the characteristic technique with the conservative interpolation technique as
in [17, 18]. It does not only keep mass balance but also does well in the advection-
dominated diffusion problem. And then, Fu combined block-centered finite difference
method with this technique for convection domminated diffusion equations in [19]. In
this article, our main purpose is to use the similar technique as in [15, 16] to construct a
new combined numerical scheme for incompressible miscible displacement problem. In
this new algorithm, the time second-order splitting technique is used to obtain a second-
order mass-preserving characteristic finite difference (MPC-FD) method for the concen-
tration. Based on the characteristic form of the advection-diffusion equations tracking
back along the characteristic curve, the integrals over the tracking cells at the previous
time level are treated by the conservative interpolation distribution and the diffusion
terms are approximated by averaging along the characteristics. Meanwhile, the space
second-order finite difference scheme is used for the pressure and Darcy velocity.
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The outline of this article is organized as follows. In Section 2, we first give the fi-
nite difference scheme for the velocity and pressure, and formulate the MPC-FD method
for the concentration, and then we combine the finite difference method for miscible dis-
placement problem with the method of characteristics to construct the new finite differ-
ence method. In Section 3, we give some numerical experiments to confirm the conver-
gence of this method and the accuracy in time and space. Finally, we give a conclusion in
Section 4.

2 The MPC-FD method for one dimensional problem

For convenience of analysis, we consider one dimensional model problem. So we rewrite
the equation (1.1) as follows:


ux = g(x,t), x∈Ω, t∈ (0,T],
u=−k(x,c)px, x∈Ω, t∈ (0,T],

φ(x)
∂c
∂t

+
∂(uc)

∂x
− ∂

∂x

(
D(u)

∂c
∂x

)
=q(x,t), x∈Ω, t∈ (0,T],

(2.1)

where Ω=[a,b], k(x,c)=κ(x)/µ(c), q(x,t) is the given function. And the initial-boundary
conditions are:

c(x,t)|∂Ω =u(x,t)|∂Ω =0, cx(x,t)|∂Ω =0,

p(x,0)= p0(x), c(x,0)= c0(x).

Divide Ω by

a= x1/2< x3/2< . . .< xI−1/2< xI+1/2=b

and cells centers and sizes are defined by

Ωi =[xi−1/2,xi+1/2], xi =
1
2
(xi−1/2+xi+1/2),

∆xi = xi+1/2−xi−1/2, i=1,2,.. ., I.

Denote Ωh = {Ωi, i= 1,2,.. ., I}, here we consider an uniform mesh Ωh with ∆xi = h. Let
Nt be a positive integer,4t=T/Nt is a time step size, tn =n4t.
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2.1 The approximate scheme for the pressure and Darcy velocity

In this part, we consider the finite difference approximations of the pressure and the
Darcy velocity. Denote

Kn
i =

1
2
[
k(xi−1/2,Cn

i−1/2)+k(xi+1/2,Cn
i+1/2)

]
, (2.2a)

kn
i =

1
2
[
k(xi−1/2,cn

i−1/2)+k(xi+1/2,cn
i+1/2)

]
, (2.2b)

∂x(K∂xP)n
i+1/2=h−2[Kn

i+1(Pn
i+3/2−Pn

i+1/2)−Kn
i (Pn

i+1/2−Pn
i−1/2)

]
, (2.2c)

∂x(k∂xP)n
i+1/2=h−2[kn

i+1(Pn
i+3/2−Pn

i+1/2)−kn
i (Pn

i+1/2−Pn
i−1/2)

]
, (2.2d)

where ∂x, ∂x represent the space forward and backward difference quotient, respectively,
c and p are the exact solutions, C and P are approximate solutions. Then, based on (2.2)
we give the following finite difference approximation of the first and second equations
of (2.1).
Scheme I. For a given function c, seek (Pn,Un) (n=0,1,2,··· ,Nt), such that

∂x(k∂xP)n
i+1/2= g(xi+1/2,tn), 0≤ i≤ I, (2.3a)

Un
i+1/2−Un

i−1/2=
∫

Ωi

g(x,tn)dx, 0≤0≤ I−1. (2.3b)

Assume that k(x,c) is nonsingular function, such that

k(x,c)≥ k∗>0,

where k∗ is a known positive constant. Then problem (2.3) exists a unique solution.

2.2 The approximate scheme for the concentration

In this part, we consider the time second-order mass-preserving characteristic finite dif-
ference method for the concentration. Firstly we denote the characteristic direction by τ
in the each time cell [tn,tn+1] . The characteristic cure can be denoted by X(τ;x,tn+1). For
convenience of analysis, denote Xn+1

x (τ)=X(τ;x,tn+1) and Xn+1
i−1/2(τ)=X(τ;xi−1/2,tn+1).

Then the cure Xn+1
x (τ) from the point (x,tn+1) satisfies

dXn+1
x (τ)

dτ
=u(Xn+1

x (τ),τ)/φ(x), τ∈ [tn,tn+1],

Xn+1
x (tn+1)= x, when τ= tn+1.

(2.4)

Let x̄n =Xn+1(tn) be the intersection point of the characteristic with level t= tn, and let

Ωi(t)= [Xn+1
i−1/2(t),X

n+1
i+1/2(t)], Ωi(tn)= [Xn+1

i−1/2(t
n),Xn+1

i+1/2(t
n)]= [x̄n

i−1/2, x̄n
i+1/2].
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In order to obtain the second-order accuracy in time, we use a second-order Runge-Kutta
method to solve numerically x̄n

i+1/2 at t= tn from (2.4)

un+1/2(xi+1/2)=un+1/2
i+1/2 =

1
2
[un+1

i+1/2+u(xi+1/2−∆tun+1
i+1/2,tn)], (2.5a)

x̄i+1/2≈ xi+1/2−un+1/2
i+1/2 ∆t/φi+1/2, (2.5b)

where u(xi+1/2,tn+1) is denoted by un+1
i+1/2.

Applying the Leibniz rule, we have

d
dt

∫
Ωi(t)

(
φ(x)c

)
dx=φ(x)

d
dt

∫
Ωi(t)

cdx=
∫

Ωi(t)

[
φ(x)

∂c
∂t

+
∂

∂x

(
uc
)]

dx.

Then, integrating the third equation of (2.1) leads to∫ tn+1

tn

∫
Ωi(t)

[
φ(x)

∂c
∂t

+
∂

∂x

(
uc
)
− ∂

∂x

(
D(u)

∂c
∂x

)]
dxdt=

∫ tn+1

tn

∫
Ωi(t)

q(x,t)dxdt. (2.6)

Hence, using the characteristic equation (2.4), we can get∫ tn+1

tn

∫
Ωi(t)

[
φ(x)

∂c
∂t

+
∂

∂x

(
uc
)]

dxdt

=
∫

Ωi

φ(x)c(x,tn+1)dx−
∫

Ω̄i(tn)
φ(x)c(x,tn)dx. (2.7)

Next, we deal with the third term on the left-hand-side of (2.6). We have∫ tn+1

tn

∫
Ωi(t)

∂

∂x

(
D(u)

∂c
∂x

)
dxdt

=
∫ tn+1

tn

[(
D(u)

∂c
∂x

)
(Xn+1

i+1/2(t),t)−
(

D(u)
∂c
∂x

)
(Xn+1

i−1/2(t),t)
]
dt. (2.8)

By applying the Leibniz rule again, and the characteristic equation (2.4), we get the local
mass conservation finite difference formula of the concentration equation∫

Ωi

φ(x)c(x,tn+1)dx−
∫

Ω̄i(tn)
φ(x)c(x,tn)dx

−
∫ tn+1

tn

[(
D(u)

∂c
∂x

)
(Xn+1

i+1/2(t),t)−
(

D(u)
∂c
∂x

)
(Xn+1

i−1/2(t),t)
]
dt

=
∫ tn+1

tn

∫
Ωi(t)

q(x,t)dxdt. (2.9)

Denote φ(xj)Cj the cell-averaged concentration at time t on the cell Ωj =[xj−1/2,xi+1/2]

φ(xj)Cj≈
1
h

∫
Ωj

φ(x)c(x,t)dx. (2.10)
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Based on (2.10), using the unknown Cn+1
j at time t= tn+1, we approximate the first term

on the left-hand-side of (2.9) as∫
Ωi

φ(x)c(x,tn+1)dx≈h(φCn+1)i. (2.11)

In order to conserve mass balance, we define a particular parabolic interpolation distri-
bution [R(φCn)](x) to approximate φ(x)c(x,tn) in Ω

n
i by Piecewise Parabolic Method as

in [17],

[R(φCn)]j(x)=(̂φCn)j−1/2+
x−xj−1/2

h

{
(̂φCn)j+1/2− (̂φCn)j−1/2

+6
[

φCn
j −

1
2
((̂φCn)j−1/2+(̂φCn)j+1/2)

]
xj+1/2−x

h

}
, (2.12)

where (̂φCn)j−1/2 and (̂φCn)j+1/2 denote the estimated values at xj−1/2 and xj+1/2, which
will be defined later. Apparently, [R(φCn)]j(x) satisfies

[R(φCn)]j(xj−1/2)= (̂φCn)j−1/2,

[R(φCn)]j(xj+1/2)= (̂φCn)j+1/2,∫ xj+1/2

xj−1/2

[R(φCn)]j(x)dx=h(φCn)j.

(2.13)

Using this definition, we can get the approximation of the second term on the left-hand-
side of (2.9)∫

Ωi(tn)
φ(x)c(x,tn)dx≈

∫ x̄i+1/2

x̄i−1/2

[R(φCn)](x)dx

=


∫ xl+1/2

x̄l−1/2

[R(φCn)]l(x)dx+
m−1

∑
j=l+1

h(φCn)j+
∫ x̄i+1/2

xm−1/2

[R(φCn)]m(x)dx, m≥ l+1,

∫ x̄i+1/2

x̄i−1/2

[R(φCn)]l(x)dx, m= l,

,Rh,φ,Ωi(Cn), (2.14)

which is a summation upon many cells Ω
n
i covers. l and m≥ l+1 are the cell indices

associated with the segments in which x̄i+ 1
2

and x̄i−1/2 lie, in other words, x̄i+1/2 ∈Ωm

and x̄i−1/2∈Ωl .
Now, we give the definitions of (̂φCn)j−1/2 and (̂φCn)j+1/2. Using a cumulative mass

function defined by

L(x)=
∫ x

a
φC(y,t)dy,
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and taking the derivative with respect to x for L(x), we have

φ(x)C(x,t)=
dL(x)

dx
.

For the fixed point x= xj+1/2, we have

φ(xj+1/2)C(xj+1/2,t)=
dL(x)

dx

∣∣∣
xj+1/2

. (2.15)

Next, in order to obtain the space second-order approximate scheme, we use the quadratic
polynomial P2(x) to interpolate Ln(x) with three points, and the three points as follows

(Ln
j−1/2,xj−1/2); (Ln

j+1/2,xj+1/2); (Ln
j+3/2,xj+3/2).

When x= xj+k+1/2, Ln(x) satisfies

Ln(xj+k+1/2)= ∑
p≤j+k

(φC)ph, k=−1,0,1. (2.16)

Thus, for L(x), taking the derivative with respect to x , we have

dL(x)
dx

= ∑
p≤j−1

(φC)p

(
2x−xj+ 1

2
−xj+ 3

2

2h

)
−∑

p≤j
(φC)p

(
2x−xj− 1

2
−xj+ 3

2

h

)

+ ∑
p≤j+1

(φC)p

(
2x−xj− 1

2
−xj+ 1

2

2h

)
. (2.17)

When t= tn and x= xj+1/2, we have

φ̂C
n
j+1/2=

1
2
[
(φCn)j+(φCn)j+1

]
, j=1,2,.. ., I. (2.18)

And (2.8) becomes as follows∫ tn+1

tn

(
D(u)

∂c
∂x

)
(Xn+1

i+1/2(t),t)dt

≈∆t
2

[
D
(

un+1(xi+1/2)
)∂cn+1

∂x

∣∣∣
xi+1/2

+D(un(x̄i+1/2))
∂cn

∂x

∣∣∣
x̄i+1/2

]
(2.19)

and ∫ tn+1

tn

(
D(u)

∂c
∂x

)
(Xn+1

i−1/2(t),t)dt

≈∆t
2

[
D
(

un+1(xi−1/2)
)∂cn+1

∂x

∣∣∣
xi−1/2

+D(un(x̄i−1/2))
∂cn

∂x

∣∣∣
x̄i−1/2

]
. (2.20)
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Using (2.17) and making derivation with respect to x, we have

∂c
∂x

∣∣∣
x
=

d2L
dx2

∣∣∣
x
=

Ci+1−Ci

h
. (2.21)

When t= tn+1, using the quadratic polynomial P2(x) to approximate the flux ∂cn+1

∂x

∣∣
xi+1/2

that interpolates Ln+1(x) through three points (Ln+1
j+k+1/2,xj+k+1/2), k =−1,0,1, thus we

get the second order difference operator

∂cn+1

∂x

∣∣∣
xi+1/2

≈
Cn+1

i+1 −Cn+1
i

h
, δxCn+1

i+1/2. (2.22)

We know that x̄i+1/2 and x̄i−1/2 are not at the regular mesh points, thus the flux ∂cn

∂x

∣∣
x̄i+1/2

is not easy to be treated. Then through four points

(Ln
j−3/2,xj−3/2), (Ln

j−1/2,xj−1/2), (Ln
j+1/2,xj+1/2), (Ln

j+3/2,xj+3/2),

we can use cubic polynomial P3(x) to approximate the Ln(x) as above interpolation
method, thus we have

∂cn

∂x

∣∣∣
x̄i+1/2

≈[(θ̄i+1/2−1)Cn
m−1+(−2θ̄i+1/2+1)Cn

m+ θ̄i+1/2Cn
m+1]/h,δ′xCn

∣∣∣
x̄i+1/2

(2.23)

and
∂cn

∂x

∣∣∣
x̄i−1/2

≈[(θ̄i−1/2−1)Cn
m−1+(−2θ̄i−1/2+1)Cn

m+ θ̄i−1/2Cn
m+1]/h,δ′xCn

∣∣∣
x̄i−1/2

, (2.24)

where θ̄i+1/2=(x̄i+1/2−xm+1/2)/h , θ̄i−1/2=(x̄i−1/2−xm+1/2)/h .
From (2.9)-(2.24), we come up with the mass conservative characteristic finite differ-

ence scheme for the concentration equation.
Scheme II. For a given u, seek Cn+1 (n=0,1,.. .,Nt−1), such that(

hφ(xi)Cn+1
i −Rh,φ,Ω̄i(Cn)

)
−∆t

2

[(
D(un+1

i+1/2)δxCn+1
i+1/2+D(un

x̄i+1/2
)δ′xCn

∣∣∣
x̄i+1/2

)
−
(

D(un+1
i−1/2)δxCn+1

i−1/2+D(un
x̄i−1/2

)δ′xCn
∣∣∣

x̄i−1/2

)]
=
∫ tn+1

tn

∫
Ωi(t)

q(x,t)dxdt i=1,2,.. ., I, (2.25)

with the initial condition
C0

i+1/2= c0(xi+1/2), 0≤ i≤ I. (2.26)

Next, we can show the mass conservation property of Scheme II. Assume that the velocity
u : Ω×(0,T)→R satisfies

u∈C0(W1,∞(Ω)), (2.27)

then we have the following theorem.
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Theorem 2.1. Under hypothesis (2.27), Scheme II keeps mass balance.

Proof. Summing the equation (2.25) from i=1 to I leads to

I

∑
i=1

(
hφ(xi)Cn+1

i −Rh,φ,Ω̄i(Cn)

)
−

I

∑
i=1

∆t
2

[(
D(un+1

i+1/2)δxCn+1
i+1/2+D(un

x̄i+1/2
)δ′xCn

∣∣∣
x̄i+1/2

)
−
(

D(un+1
i−1/2)δxCn+1

i−1/2+D(un
x̄i−1/2

)δ′xCn
∣∣∣

x̄i−1/2

)]
=
∫ tn+1

tn

∫
Ω

q(x,t)dxdt. (2.28)

Under the hypothesis (2.27), boundary conditions, x̄1/2= a and x̄I+1/2=b, (2.14) lead to

I

∑
i=1

hφ(xi)Cn
i =

I

∑
i=1

Rh,φ,Ω̄i(Cn). (2.29)

Notice that it holds

I

∑
i=1

[(
D(un+1

i+1/2)δxCn+1
i+1/2+D(un

x̄i+1/2
)δ′xCn

∣∣∣
x̄i+1/2

)
−
(

D(un+1
i−1/2)δxCn+1

i−1/2+D(un
x̄i−1/2

)δ′xCn
∣∣∣

x̄i−1/2

)]
=
[(

D(un+1
I+1/2)δxCn+1

I+1/2+D(un
x̄I+1/2

)δ′xCn
∣∣∣

x̄I+1/2

)
−
(

D(un+1
1/2 )δxCn+1

1/2 +D(un
x̄1/2

)δ′xCn
∣∣∣

x̄1/2

)]
=0. (2.30)

From (2.28)-(2.30), we have

I

∑
i=1

hφ(xi)Cn+1
i −

I

∑
i=1

hφ(xi)Cn
i =

∫ tn+1

tn

∫
Ω

c̃g(x,t)dxdt.

Obviously, Scheme II (2.25) keeps mass balance.

2.3 The combined method for miscible displacement problem

Now, we propose the mass-preserving characteristic finite difference method for incom-
pressible miscible displacement problem. Replacing un+1

i+1/2 and un
i+1/2 by Un+1

i+1/2 and
Un

i+1/2 in (2.5), we modify the definition of x̄i+1/2 as follows

x̄i+1/2= xi+1/2−Un+1/2
i+1/2 ∆t/φi+1/2, (2.31a)

Un+1/2
i+1/2 =

1
2
[Un+1

i+1/2+Un
i+1/2−∆tgn

i+1/2Un+1
i+1/2]. (2.31b)
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Based on Scheme I and Scheme II, we construct the new characteristic finite difference
method as follows:
Scheme III. For the given initial approximate value C0, such that

C0
i+1/2= c0(xi+1/2), 0≤ i≤ I,

seek (Pn,Un), (n=0,1,··· ,Nt), such that

h−2[Kn
i+1(Pn

i+3/2−Pn
i+1/2)−Kn

i (Pn
i+1/2−Pn

i−1/2)
]
= g(xi+1/2,tn), 0≤ i≤ I, (2.32a)

Un
i+1/2−Un

i−1/2=
∫

Ωi

g(x,tn)dx, 0≤ i≤ I, (2.32b)

and Cn+1, (n=0,1,··· ,Nt−1) such that(
hφ(xi)Cn+1

i −Rh,φ,Ω̄i(Cn)

)
−∆t

2

[(
D(Un+1

i+1/2)δxCn+1
i+1/2+D(Un

x̄i+1/2
)δ′xCn

∣∣∣
x̄i+1/2

)
−
(

D(Un+1
i−1/2)δxCn+1

i−1/2+D(Un
x̄i−1/2

)δ′xCn
∣∣∣

x̄i−1/2

)]
=
∫ tn+1

tn

∫
Ωi(t)

q(x,t)dxdt, 0≤ i≤ I, (2.33)

where Rh,φ,Ω̄i(Cn) is defined by (2.14) and Un
x̄i−1/2

can be approximated by the following
formula

Un
x̄i+1/2
−Un

x̄i−1/2
=
∫

Ωi(tn)

g(x,tn)dx.

3 Numerical experiments

In this section, we will present some numerical results to observe the performance of the
time second-order mass-preserving characteristic finite difference method.

3.1 One dimensional case

Define L∞-norm and L2-norm as follows:

En
∞ =max

i
{|c(xi,tn)−Cn

i |}, (3.1a)

En
2 =
√

∑
i

∆x(c(xi,tn)−Cn
i )

2. (3.1b)

We take c satisfying the following initial-boundary conditions

c(x,0)=exp
(
− (x−x0)2

2σ2

)
, x∈Ω, (3.2a)

c(0,t)= f (t)=0, (3.2b)
∂c
∂x

(1,t)=0. (3.2c)
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Experiment I. In this experiment, we will consider the case: u satisfies the non-
homogeneous boundary condition. Set Ω=[0,1], [0,T]= [0,0.3], x0 =0.15, φ(x)=1, k=1
and σ = 0.03. For the fixed space step ∆x = 1

2000 and ∆x = 1
4000 , we give the L∞ and L2

error results with different time steps, Darcy velocity u and diffusion coefficients D, see
Tables 1-4. And then, for the fixed time increment ∆t= 1

90 and ∆t= 1
100 , we give the errors

and ratios with different space steps and diffusion coefficients D, see Tables 5-6. These
numerical results show that our method keeps second-order accuracy both in time and
space.

Table 1: Errors and ratios in time with u=1, D=10−2, x0 =0.15, σ=0.03 and ∆x= 1
2000 .

∆t 1/40 1/50 1/60 1/70 1/80

C-FD

E∞ 4.6645e-02 3.7667e-02 3.1564e-02 2.7144e-02 2.3797e-02
Ratio - 0.9580 0.9697 0.9785 0.9857

E2 1.7062e-02 1.3790e-02 1.1565e-02 9.9541e-03 8.7331e-03
Ratio - 0.9541 0.9650 0.9733 0.9800

MPC-FD

E∞ 2.5570e-04 1.6356e-04 1.1337e-04 8.3060e-05 6.3363e-05
Ratio - 2.0022 2.0102 2.0184 2.0276

E2 8.7538e-05 5.5809e-05 3.8723e-05 2.8544e-05 2.2200e-05
Ratio - 2.0046 2.0173 1.9784 1.8822

Table 2: Errors and ratios in time with u=1, D=10−2, x0 =0.15, σ=0.03 and ∆x= 1
4000 .

∆t 1/40 1/50 1/60 1/70 1/80

C-FD

E∞ 4.6871e-02 3.7899e-02 3.1797e-02 2.7380e-02 2.4034e-02
Ratio - 0.9523 0.9627 0.9703 0.9761

E2 1.7143e-02 1.3873e-02 1.1650e-02 1.0039e-02 8.8819e-03
Ratio - 0.9484 0.9580 0.9650 0.9705

MPC-FD

E∞ 2.5679e-04 1.6465e-04 1.1446e-04 8.4144e-05 6.4444e-05
Ratio - 1.9917 1.9943 1.9961 1.9975

E2 8.7908e-05 5.6158e-05 3.9129e-05 2.9026e-05 2.2543e-05
Ratio - 2.0083 1.9816 1.9376 1.8928

Table 3: Errors and ratios in time with u=1, D=0, x0 =0.15, σ=0.03 and ∆x= 1
4000 .

∆t 1/40 1/50 1/60 1/70 1/80

C-FD

E∞ 4.8537e-02 3.8971e-02 3.2541e-02 2.7923e-02 2.4444e-02
Ratio - 0.9837 0.9889 0.9930 0.9963

E2 1.7921e-02 1.4390e-02 1.2015e-02 1.0310e-02 9.0256e-03
Ratio - 0.9837 0.9889 0.9930 0.9963

MPC-FD

E∞ 1.6693e-04 8.2151e-05 5.6848e-05 3.5310e-05 2.6922e-05
Ratio - 2.1775 2.0194 2.0893 2.0312

E2 3.4812e-05 1.8792e-05 1.2514e-05 9.3200e-06 7.5149e-06
Ratio - 2.5630 2.2300 1.9116 1.6121

Experiment II. Here we will consider the case: u satisfies the homogeneous boundary
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Table 4: Errors and ratios in time with u=1, D=10−4 , x0 =0.15, σ=0.03 and ∆x= 1
4000 .

∆t 1/40 1/50 1/60 1/70 1/80

C-FD

E∞ 4.8518e-02 3.8959e-02 3.2533e-02 2.7916e-02 2.4440e-02
Ratio - 0.9834 0.9887 0.9927 0.9960

E2 1.7886e-02 1.4364e-02 1.1996e-02 1.0295e-02 9.0134e-03
Ratio - 0.9826 0.9880 0.9921 0.9955

MPC-FD

E∞ 6.4134e-05 2.9339e-05 1.6937e-05 1.2176e-05 9.0166e-06
Ratio - 3.5048 3.0232 2.1292 2.2499

E2 1.5316e-05 7.9686e-06 5.0360e-06 3.5220e-06 2.6304e-06
Ratio - 2.9282 2.5169 2.3197 2.1861

Table 5: Errors and ratios in time with u=1, D=10−4, x0 =0.15, σ=0.03 and ∆t= 1
90 .

∆x 1/100 1/200 1/300 1/400 1/500

C-FD

E∞ 4.6191e-02 3.7205e-02 3.1095e-02 2.6671e-02 2.3320e-02
Ratio - 0.9695 0.9838 0.9954 1.0054

E2 1.6900e-02 1.36246e-02 1.1396e-03 9.7831e-03 8.5605e-03
Ratio - 0.9656 0.9792 0.9902 0.9997

MPC-FD

E∞ 7.3044e-03 1.8623e-03 8.2471e-04 4.6005e-04 2.9115e-04
Ratio - 2.0455 2.0755 2.1125 2.1529

E2 1.7151e-03 2.0088e-04 1.9158e-04 2.0256e-04 2.0451e-05
Ratio - 2.0543 2.0918 2.0506 2.0770

Table 6: Errors and ratios in space with u=1, D=10−4, x0 =0.15, σ=0.03 and ∆t= 1
100 .

∆x 1/100 1/200 1/300 1/400 1/500

C-FD

E∞ 9.5352e-03 4.8617e-03 3.2220e-03 2.3953e-03 1.8976e-03
Ratio - 0.9808 1.0146 1.0307 1.0438

E2 1.8639e-03 9.2256e-04 6.0876e-04 4.5186e-04 3.5773e-04
Ratio - 1.0146 1.0253 1.0360 1.0469

MPC-FD

E∞ 7.2825e-0 1.9315e-04 8.6757e-05 4.8968e-05 3.1380e-05
Ratio - 1.9147 1.939 1.9881 1.9943

E2 1.5579e-04 3.9465e-05 1.7803e-05 1.0302e-05 6.9057e-06
Ratio - 1.9810 1.9633 1.9016 1.7925

condition. We still take Ω = [0,1], φ(x) = 1 and k = 1. And set [0,T] = [0,1], x0 = 0.45,
σ=0.10, g(x,t)=−et sin(2πx). For the fixed space steps ∆x= 1

2000 , ∆x= 1
4000 and diffusion

coefficient D = 10−4, we give the L∞ and L2 errors results with different time sizes, see
Tables 7-8. While for the fixed time increment ∆t= 1

350 and ∆t= 1
400 , we give the errors

and ratios with different space steps, see the Tables 9-10. These numerical results show
that our method still keeps second-order accuracy in time and second-order accuracy in
space.

Experiment III. In this experiment, we take Ω=[0,6], [0,T]=[0,2], x0=0.9, k=1, σ=0.08,
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Table 7: Errors and ratios in time with g(x,t)=−et sin(2πx), D=10−4, x0 =0.45, σ=0.10 and ∆x= 1
2000 .

∆t 1/30 1/40 1/50 1/60 1/70

C-FD

E∞ 3.2823e-02 2.4497e-02 1.9498e-02 1.6165e-02 1.3785e-02
Ratio - 1.0175 1.0228 1.0281 1.0334

E2 1.3821e-02 1.0314e-02 8.2092e-03 6.8060e-03 5.8037e-03
Ratio - 1.0177 1.0229 1.0282 1.0335

MPC-FD

E∞ 2.8882e-04 1.3829e-04 8.6339e-05 5.9873e-05 4.4947e-05
Ratio - 2.5598 2.1112 2.0078 1.8602

E2 1.8639e-04 9.8895e-05 6.4686e-05 4.6176e-05 3.4405e-05
Ratio - 2.2030 1.9024 1.8489 1.9088

Table 8: Errors and ratios in time with g(x,t)=−et sin(2πx), D=10−4, x0 =0.45, σ=0.10 and ∆x= 1
4000 .

∆t 1/30 1/40 1/50 1/60 1/70

C-FD

E∞ 3.3.78e-02 2.4747e-02 1.9748e-02 1.6415e-02 1.4035e-02
Ratio - 1.0086 1.0112 1.0138 1.0164

E2 1.3927e-02 1.0419e-02 8.3144-03 6.9112e-03 5.9089e-03
Ratio - 1.0087 1.0113 1.0139 1.0164

MPC-FD

E∞ 2.8433e-04 1.3538e-04 8.4173e-05 5.7913e-05 4.2858e-05
Ratio - 2.5792 2.1298 2.0510 1.9529

E2 1.8321e-04 9.6391e-05 6.2724e-05 4.4345e-05 3.2498e-05
Ratio - 2.2324 1.9256 1.9018 2.0164

Table 9: Errors and ratios in space with g(x,t)=−et sin(2πx), D=10−4, x0 =0.45, σ=0.10 and ∆t= 1
350 .

∆x 1/200 1/220 1/240 1/260 1/280

C-FD

E∞ 4.8274e-02 3.8714e-02 3.2287e-02 2.7670e-02 2.4193e-02
Ratio - 0.9891 0.9957 1.0010 1.0051

E2 1.7798e-02 1.4275e-02 1.1907e-02 1.0205e-02 8.9234e-03
Ratio - 0.9883 0.9950 1.0004 1.0051

MPC-FD

E∞ 9.1615e-06 7.7167e-06 6.5053e-06 5.5506e-06 4.7120e-06
Ratio - 1.8006 1.9626 1.9828 2.2104

E2 5.0802e-06 4.1128e-06 3.3409e-06 2.7501e-06 2.2564e-06
Ratio - 2.2165 2.3888 2.4310 2.6703

Table 10: Errors and ratios in space with g(x,t)=−et sin(2πx), D=10−4, x0 =0.45, σ=0.10 and ∆t= 1
400 .

∆x 1/200 1/220 1/240 1/260 1/280

C-FD

E∞ 3.2328e-02 2.3997e-02 1.8998e-02 1.5665e-02 1.3285e-02
Ratio - 1.0358 1.0468 1.0579 1.0693

E2 1.3611e-02 1.0104e-02 7.9987e-03 6.5955e-03 5.5932e-03
Ratio - 1.0359 1.0469 1.0580 1.0693

MPC-FD

E∞ 7.1531e-06 5.9489e-06 4.9110e-06 4.0346e-06 3.3341e-06
Ratio - 1.9342 2.2035 2.4558 2.5733

E2 3.7456e-06 2.9894e-06 2.3752e-06 1.8830e-06 1.5047e-06
Ratio - 2.3659 2.6433 2.9015 3.0258
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Table 11: Comparison of mass Errors by C-FD and MPC-FD with g(x,t)=0.1et.

T D t ∆x ∆t C-FD-QI C-FD-LI MPC-FD
2 0 0 1

120
1

20 4.4524e-2 4.4539e-2 5.9212e-17
2 10−5 0 1

120
1

20 4.4524e-2 4.4539e-2 1.4211e-15
2 10−3 0 1

120
1

20 4.4523e-2 4.4539e-2 7.4015e-16

φ(x)=1 and g(x,t)=0.1et. For the fixed space step ∆x= 1
120 and ∆t= 1

20 , and C-FD-LI, C-
FD-QI are standard characteristic finite difference methods based on linear and quadratic
interpolations as in [20]. we give the mass errors with different coefficients D in Table 11.
We can see clearly that our scheme conserves the mass perfectly.

3.2 Two dimensional case

Define L∞-norm and L2-norm as follows:

En
∞ =max

i,j
{|c(xi,yj,tn)−Cn

i,j|}, (3.3a)

En
2 =

√
∑

i
∑

j
∆x∆y(c(xi,,yj,tn)−Cn

i,j)
2. (3.3b)

We take the exact solution p and c of the miscible displacement equation, which are given
as

p(x,y,t)=−sin(πx)sin(πy), (3.4a)

c(x,y,t)=
σ2

σ2+2Dt
exp

(
− (x∗−x0)2+(y∗−y0)2

2(σ2+2Dt)

)
, (3.4b)

x∗= xcos(4t)+ysin(4t), y∗=−xsin(4t)+ycos(4t). (3.4c)

For simplicity, we select the domain Ω=[0,1]×[0,1], and suppose φ(x)=1, b(c)=d(c)=
r(c)=1, and u=(πcos(πx)sin(πy),πcos(πy)sin(πx)).
Experiment IV. In this experiment, set [0,T] = [0,π/2], x0 = 0.35, y0 = 0.35, and σ= 0.09.
Define the discrete mass Massh by

Massh =
I

∑
i=1

J

∑
j=1

Ci,j∆x∆y.

For the fixed time step ∆t= 1
500 , we give the L∞, L2 errors results and discrete mass errors

with different time step and diffusion coefficients D, see Table 12. And then, taking space
step

∆x=∆y=h=
1

400
,
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Table 12: Errors and ratios in time with D=10−5 , x0 =0.35 , y0 =0.35 ,σ=0.09 and ∆t= 1
500 .

h 1/320 1/330 1/340 1/350 1/360

C-FD

E∞ 5.6470e-03 5.52158e-03 5.3847e-03 5.2508e-03 5.1065e-03
Ratio - 0.7301 0.8408 0.8685 0.9893

E2 1.5513e-03 1.5163e-03 1.4808e-03 1.4447e-03 1.4082e-03
Ratio - 0.7408 0.79488 0.85078 0.9082
Emass 4.9748e-04 4.8235e-04 4.6810e-04 4.5466e-04 4.4197e-04

MPC-FD

E∞ 2.3705e-03 2.2417e-03 2.1056e-03 1.9687e-03 1.8251e-03
Ratio - 1.8164 2.0973 2.3192 2.6883

E2 3.6154e-05 3.3761e-05 3.1473e-05 2.9304e-05 2.7276e-05
Ratio - 2.2253 2.3510 2.4626 2.5459
Emass 1.1890e-17 1.1374e-17 1.00900e-17 1.0462e-17 1.0056e-17

Table 13: Errors and ratios in time with D=10−5, x0 =0.35, y0 =0.35, σ=0.09 and h= 1
400 .

∆t π/720 π/740 π/760 π/780 π/800

C-FD

E∞ 1.6653e-02 1.6110e-02 1.5595e-02 1.5105e-02 1.4640e-02
Ratio - 1.2108 1.2191 1.2276 1.2361

E2 5.9343e-03 5.7524e-03 5.5799e-03 5.4160e-03 5.2603e-03
Ratio - 1.1366 1.1419 1.1472 1.1524
Emass 3.9062e-04 3.9084e-04 3.9104e-04 3.9124e-04 3.9142e-04

MPC-FD

E∞ 2.6625e-03 2.5255e-03 2.4019e-03 2.2901e-03 2.1883e-03
Ratio - 1.9274 1.8824 1.8349 1.7952

E2 6.0722e-05 5.7784e-05 5.5020e-05 5.2417e-05 4.9965e-05
Ratio - 1.8096 1.8380 1.8658 1.8926
Emass 8.6501e-18 8.6523e-18 8.6544e-18 8.6564e-18 8.6582e-18

we give the errors, ratios and discrete mass errors with different time steps, see Table
13. These numerical results suggest that the mass-preserving characteristic finite differ-
ence method keeps second-order accuracy both in time and space for two dimensional
problem, and preserves mass better than C-FD method.

4 Conclusions

In this paper, combining the characteristic technique with mass-preserving interpolation,
we propose a new mass-preserving characteristic finite difference method for incom-
pressible miscible displacement problem in porous media. The new scheme not only
keeps mass balance but also is of the time second-order accuracy and the space high or-
der accuracy. To illustrate our method, we consider one dimensional model problem.
While we present some numerical results for both one and two dimensional problems to
show the convergence and the accuracy. In fact, we can easily extend this method to more
complicated multi-dimensional nonlinear coupled problems, which is our future work.
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In order to keep mass balance and high accuracy both in time and space, we have
used more complicated interpolation approximations in our method, which brings so
many troubles for theoretical analysis that we can not give the stability and error analysis
until now. In the future, we will continue to pay attention to the progress of this field and
expect to give the corresponding theoretical analysis.
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