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Abstract. In this paper, a new cracked stiffener model for the stiffener with a part-
through and open crack is proposed, considering the compatibility condition of dis-
placements between the plate and the stiffener. Based on the first-order shear defor-
mation theory, the free vibration of stiffened isotropic plates with cracked stiffeners
are investigated for the first time. The description of the crack parameters is based on
the continuous equivalent bending stiffness and equivalent depth of the cracked beam,
and it takes into consideration of shear deformation, bending-extensional coupling vi-
bration, and eccentricity between the stiffeners and the plate. The stiffened plates with
single or multiple cracked stiffeners are formulated and discussed. The Ritz method
with the modified characteristic functions is applied to demonstrate the effects of crack
parameters (crack depth and location) coupling with the position and number of the
cracked stiffeners on the vibration frequencies and modes of the stiffened plate. The
validity and accuracy of the present solutions are verified through convergence studies
and compared with the finite element results.
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1 Introduction

As an essential class of engineering structures, the stiffened plate is extensively used in
various fields such as aircraft and ship structures. The vibration of stiffened plates has
been investigated through various analytical and numerical techniques. As Mukherjee a-
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nd Mukhopadhyay [1] summarized in their review papers, two types of models were
adopted for stiffened plates in the early literature: one is the orthotropic model in which
the plate was treated as an equivalent orthotropic plate with the consideration of con-
tribution of the stiffeners; the other is the grillage approximation model in which the
stiffeners ware considered as a grid attaching to the plate. Recently, a “discrete” mod-
eling method [2] was proposed to separately create the models of the plate and its stiff-
ening beam. Afterwards, a complete model is formed to incorporate the displacements
of the plate and the stiffener through the condition for compatibility of displacement.
Many previous efforts have been devoted to the static and dynamic analysis of stiff-
ened plates based on various methods such as the Ritz method [3–5], the finite ele-
ment method [6–10], the dynamic stiffness method [11–14], the differential quadrature
method [15] and the meshless method [16, 17].

When a stiffened structure is ceaselessly subjected to large irregular load or cyclic
load, a fatigue crack maybe thus initiate. The existence of cracks would significantly
change the dynamic characteristics of the plate [18–21]. It will be a serious issue when
a crack occurs in a stiffened plate since the crack reduces the stiffness of the structure
and eventually leads to an unexpected failure of the structure. Many previous stud-
ies have investigated the influence of the crack on the vibration and stability of stiff-
ened plates. Li et al. [22–24] established an extended layerwise method and extended
finite element method (XFEM) for the laminated composite plates and stiffened plates.
The proposed method considered the multiple delaminations and transverse crack si-
multaneously. Dang and Kapania [25] analyzed the buckling of a cracked-orthogonally
stiffened panel via the Ritz method in which the locally distributed trigonometric series
as the admissible function of displacement was adopted. Milazzo and Oliveri [26] pre-
sented a PB-2 Rayleigh–Ritz variational approach to analysis the post-buckling behavior
of cracked composite plates. This study was extended to the buckling and post-buckling
of stiffened composite panels [27]. Xue et al. [28] investigated the free vibration of a
stiffened plate with a side crack. The crack is through-the-thickness and starts from an
arbitrary position on the edge of the flat plate. They found that the fundamental fre-
quency decreased mildly with the crack length increase, then dropped drastically once
the through-the-thickness crack broke the stiffener.

As an important component of the stiffened panel, the stiffener is expected to provide
enhanced stiffness and stability to the structure with the extra advantage of lightweight.
However, the effects of part-through cracks in stiffener on the vibration characteristic of
stiffened plate remain unexplored. In previous research, there have been numerous stud-
ies focused on the modeling of cracks in beam structures. Swamidas et al. [29] presented
a review on several main categories of the vibration models of the cracked beam. One of
the earlier developed models was the local stiffness reduction method which introduced
a short beam with a reduced bending stiffness to model the effect of crack [30]. Another
model was the discrete spring model, which treated the cracked beam as two segments
and connected both with a spring system at the crack location [31]. The stiffness of the
spring was related to the depth of the crack and was determined by using the concepts of
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fracture mechanics. The continuous cracked beam model has been developed to describe
the crack effects properly, using either the stress or energy approach [32–35]. In addition,
the local information of stress concentration at the crack tip, strain relief around the crack
region, and continuous stiffness variation, have been considered in these models.

The Ritz method is one of the most successful methods to investigate dynamic, static,
and buckling behavior of vibrating structures and to solve boundary value problems.
Kumar [36] presented a comprehensive literature review on the application of the Ritz
method to analyze vibration, static and buckling characteristics of beams [37–39], shells
and plates based on different theories [40,41]. Most of the mentioned Rayleigh-Ritz solu-
tions implemented the classical plate theory (CPT) [42–45]. Even though the CPT can be
successfully applied to thin plates, it neglects both shear deformation and rotary inertia
effects. The first-order shear deformation theory can eliminate the deficiency of the CPT
and provide accurate results for the vibrations analysis of moderately thick or compos-
ite laminates [46–49]. Furthermore, compared to more sophisticated higher order plate
theories, its low computational costs and simplicity make it an efficient method to solve
such problems. On the other hand, the selection of the admissible functions in the Ritz
method is essential to obtain accurate results. Pablo et al. [50] presented a literature re-
view regarding the use of several sets of admissible functions in the Ritz method and
compared the performance of the six different sets of admissible functions, namely char-
acteristic functions (CF), modified characteristic functions (MCF), orthogonal polynomi-
als (OP), non-orthogonal polynomials (NOP), product of trigonometric functions (PTF),
static beam functions (SBF). The numerical behaviors of these functions are investigated
to study the convergence of natural frequencies and corresponding mode shapes, the
computational time, and the numerical stability in the free vibration analysis of a fully
clamped rectangular plate. Pablo et al. [50] concluded that the MCF functions presented
better numerical behavior when considering all the numerical features studied.

This paper aims to investigate the free vibration of a stiffened isotropic plate consid-
ering both cracked and intact stiffeners. The strain energy and kinetic energy of the flat
plate and stiffeners are first expressed separately based on the first-order shear deforma-
tion theory, then combined through the compatibility conditions for the displacements
of plate and stiffener. The continuous cracked beam model developed by energy for-
mulations and fracture mechanics approach is extended to the cracked stiffener model
considering the coupling of bending and longitudinal vibrations. The bending, torsional,
and axial effects of the cracked and intact stiffeners on the stiffened plate are considered
in this methodology. Natural frequencies and modes of the stiffened plate are obtained
through the Ritz method with the modified characteristic functions. Parametric studies
are conducted to determine the influence of crack parameters coupling with the position
and the number of cracked stiffeners on the vibration characteristics of the stiffened plate.
The accuracy of the presented solutions is verified through a convergence test and finite
element results.
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2 Theoretical formulations

2.1 Descriptions of the stiffened plate with crack

Consider a plate which is reinforced by a stiffener with a part-through crack and a intact
stiffener at arbitrary location parallel to the x axis of coordinate (shown in Fig. 1). The
global coordinate system (x,y,z) is located in the mid-plane of the plate in Cartesian
coordinate system, while the local coordinate (x̄,ȳ, z̄) is set in the mid-plane of the intact
stiffener at the distance of ez from global coordinate. The geometry and dimension of a
cracked stiffened plate are shown in Fig. 1.

Figure 1: Geometry and dimensions of a stiffened plate with intact and cracked stiffeners.

2.2 Energy of plate

Based on the first-order shear deformation theory (FSDT), the displacements of an arbi-
trary point in the plate can be expressed as follows:

u(x,y,z,t)=u0(x,y,t)+zφx(x,y,t)
v(x,y,z,t)=v0(x,y,t)+zφy(x,y,t)
w(x,y,z,t)=w0(x,y,t)

, (2.1)

where u0 and v0 are the in-plane displacement components at the mid-plane points; w0
is the mid-plane transverse displacement; ϕx and ϕy are the rotations in the y and x
direction, respectively.

The strains associated with the displacements for the plate can be written as:
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. (2.2b)

The strain energy (Up) and the kinetic energy (Tp) of the plate based on FSDT are
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Tp =
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where Ω is in-plane surface area of the plate. The in-plane forces (Nx,Ny,Nxy), moments
(Mx,My,Mxy) and transverse force (Qx,Qy) are expressed in terms of the strain resultants
as follows:
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Qx =κGhγxz, Qy =κGhγyz, (2.4c)

where D = Eh3/12(1−υ)2 is the bending rigidity; E is the modulus of elasticity; υ is
Poisson’s ratio; κ is the shear correction factor and set to π2/12; G is the shear modulus
G=E/2(1+υ). It should be noted that there is no coupling between the bending and the
in-plane extension if there are no stiffeners on the isotropic plate.

2.3 Energy of intact and cracked stiffeners

The stiffener is modeled as a beam because the dimensions of cross-sectional are usu-
ally small in comparison to the length. us0(os,t), vs0(os,t) and ws0(os,t) are the displace-
ments of point os in x̄, ȳ and z̄ axis directions, respectively, while ϕȳ is the rotation of the
cross-section in the (ȳ, z̄) plane. Based on the compatibility condition for displacements
between the plate and the stiffener, the displacement of point os can be expressed as

u
(
x=0,y=yk,z= ey,t

)
=u0(0,yk,t)+ezφx (0,yk,t)=us0(os,t)

v
(
x=0,y=yk,z= ey,t

)
=v0(0,yk,t)+ezφy (0,yk,t)=vs0(os,t)

w
(
x=0,y=yk,z= ey,t

)
=w0(0,yk,t)=ws0(os,t)

φy (0,yk,t)=φȳ (os,t)

, (2.5)

where yk is the location of stiffener in the y direction; ez denotes the eccentricity from the
mid-plane of the plate to the centroid of the individual stiffener.
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The displacements at any point of the stiffener are expressed as

us(x̄,ȳ, z̄,t)=u0(x,yk,t)+ezφx (x,yk,t)+ z̄φx (x̄,yk,t)
vs(x̄,ȳ, z̄,t)=v0(x,yk,t)+ezφy (x,yk,t)+ z̄φy (x̄,yk,t)
ws(x̄,ȳ, z̄,t)=w0(x,yk,t)− ȳφy (x̄,yk,t)

, (2.6)

where the displacements in the local coordinate system (os x̄,ȳ, z̄) can be transformed in
the global coordinate system (oxyz) according to the relationship of x= x̄, y= ȳ−yk and
z= z̄−ez.

The strains associated with the displacements for the stiffener at arbitrary location
ȳ=yi parallel to the x axis are
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Thereafter, the strain energy (U(i)
s ) of the stiffener can be written as
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where A= b̄h̄ is the area of stiffener cross section; b̄ and h̄ are the width and thickness of
the stiffener, respectively; Es and Gs are the elastic modulus and shear modulus, respec-
tively; Ī is the second moment of area with respect to the stiffener’s center of os; J̄ is the
saint-venant torsion constant of the stiffener

Ī=
∫

Ā
z̄2dĀ, J̄=

∫
Ā

ȳ2dĀ, ez =
h̄+h

2
.

The first five terms in (2.8) are the strain energy of extensional, bending-extensional cou-
pling, bending, shear and the torsional strain energy, respectively. The variable ȳ in the
strain energy (U(i)

s ) is equal to the position of the stiffener in the plate, i.e., ȳ=yi.
The kinetic energy (T(i)

s ) of the stiffener is

T(i)
s =

ρ

2
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−h/2

∫∫
Ā

(
u̇s
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2+ẇs

2)dĀdz
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. (2.9)

Then, the strain energy and the kinetic energy of stiffener at arbitrary position of the plate
can be obtained.



J. Xue, L. Chen, Y. Sun and W. Zhang / Adv. Appl. Math. Mech., 16 (2024), pp. 253-278 259

For the intact stiffeners, the strain energy U(i)
s and the kinetic energy T(i)

s can represent
its contribution to the stiffened plate. When the structure has cracks, the stress concentra-
tion at the crack tip, strain relief around the crack region, and continuous stiffness varia-
tion will exist in the local area. The continuous cracked beam model [35], considering the
stiffness loss at the crack location and the ineffectiveness of the material around the crack
location, is extended to establish the model of the cracked stiffener. For a flexural plate
coupled with the cracked stiffener, the effects of coupling between bending and longitu-
dinal vibrations caused by the eccentricity of the stiffeners should be taken into account.
Furthermore, the cracked stiffener positioned anywhere within the plate element should
satisfy the compatibility conditions of displacements for stiffener and plate.

Based on the fracture mechanics and energy approach, the continuous equivalent
bending stiffness of the cracked beam derived by Yang et al. [35] is given as

EIc(x)=EI
{

1+EIR(d,c)
/[

1+
(

x−c
k(d)d

)2
]}−1

, (2.10)

where EI is the bending stiffness of an intact beam; d and c are the depth and location of
the crack, respectively; EIR(d,c) and k(d) are the parameters related to d and c, and have
the forms below [26]

EIR(d,c)=3π[F(d)]2d
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k(d)=3π[F(d)]2(h̄−d)3d
{[

h̄3−(h̄−d)3] h̄}−1
, (2.11b)

where F(d)=1.12−1.4(d/h̄)+7.33(d/h̄)2−13.8(d/h̄)3+14(d/h̄)4.
Before obtaining the strain energy of the stiffener with a part-through crack, it is nec-

essary to derive the extensional stiffness, bending stiffness, bending-extensional coupling
stiffness, shear stiffness, and torsional stiffness of the cracked stiffener coupled to a flex-
ural plate. Let h̄eq(x) be the equivalent height of the cracked stiffener at any location x
and has
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For the stiffness in the membrane strain, the bending strain, shear strain, and the torsional
strain of the cracked stiffener, using (2.12), the following equation is presented
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Thereafter, substituting (2.10) into the above equation, one obtains the stiffness for the
cracked stiffener as

Es Āc(x)=
Es Ā

3
√

1+EIR(d,c)/[1+( x−c
k(d)d )

2]
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In addition, the thickness h̄ of the cracked stiffener is replaced by the equivalent height
h̄eq, and the eccentricity from the mid-plane of the plate to the centroid of the individual
cracked stiffener ezc is obtained as

ezc =(h̄eq(x)+h)/2. (2.15)

The strain energy of cracked stiffener can be obtained and expressed as
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2.4 Ritz solution

The total strain energy of the stiffened plate with intact stiffeners and cracked stiffeners
is given by

Utotal =
1
2

∫
Ω

[
Eh

(1−v2)

(
∂u0

∂x
+v

∂v0

∂y

)
∂u0

∂x
+D

(
∂φx

∂x
+v

∂φy

∂y

)
∂φx

∂x

+
Eh

(1−v2)

(
∂v0

∂y
+v

∂u0

∂x

)
∂v0

∂y
+D

(
∂φy

∂y
+v

∂φx

∂x

)
∂φy

∂y
+Gh

(
∂u0

∂y
+

∂v0

∂x

)2

+
Gh3

12

(
∂φx

∂y
+

∂φy

∂x

)2

+κGh
(

∂w
∂x

+φx

)2
+κGh

(
∂w
∂y

+φy

)2
]

dΩ

+
Nt

∑
i=1

1
2

∫ a

0

[
Es Ā
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where Nt and Nc are the numbers of the intact and cracked stiffeners, respectively; yi and
yj denote the arbitrary locations of intact stiffener and cracked stiffener in the y direction
of the plate, respectively, and yi 6=yj.

Considering the free vibration of a stiffened plate with harmonic motion of angular
frequency ω, the kinetic energy becomes
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where Ik =hs
∫

A ȳ2dA.
In the Ritz method, the displacements of u0, v0, w, ϕx and ϕy can be expressed as

u0(x,y,t)=
M

∑
m=1

N

∑
n=1

A(1)
mnX(1)

m (x)Y(1)
n (y)eiωt

v0(x,y,t)=
M

∑
m=1

N

∑
n=1

A(2)
mnX(2)

m (x)Y(2)
n (y)eiωt

w(x,y,t)=
M

∑
m=1

N

∑
n=1

A(3)
mnX(3)

m (x)Y(3)
n (y)eiωt

φx(x,y,t)=
M

∑
m=1

N

∑
n=1

A(4)
mnX(4)

m (x)Y(4)
n (y)eiωt

φy(x,y,t)=
M

∑
m=1

N

∑
n=1

A(5)
mnX(5)

m (x)Y(5)
n (y)eiωt



, (2.19)

where eiωt is a time-harmonic function; A(g)
mn, (g=1,2,3,4,5) are undetermined coefficients;

X(g)
m (x) and Y(g)

n (y) are admissible functions of the displacements; Herein, M admissible
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functions in the x direction and N functions in the y direction are used, giving M×N
terms of admissible functions for each displacement.

Let M=N and A(g)
mn=q(g)

M(m−1)+n, the undetermined coefficients A(g)
mn, (g=1,2,3,4,5) in

(2.19) are assembled into vector q(g)={q(g)
1 ,q(g)

2 ,··· ,q(g)
N̄ }

T for convenience of presentation.
N̄ = M×N is the total number of terms for admissible functions of each displacement.
Similarly, the following notation is introduced

Q(g)
k =Q(g)

M(m−1)+n =X(g)
m (x)Y(g)

n (y). (2.20)

Thus, the functions of displacements in (2.19) can be expressed as

M

∑
m=1

N

∑
n=1

A(g)
mnX(g)

m (x)Y(g)
n (y)=

N̄

∑
k=1

q(g)
k Q(g)

k (x,y). (2.21)

The expression on the right side of (2.21) is more convenient for the following matrix
operations.

The Ritz method is based on the minimization of the energy functional defined by the
difference between the strain energy Utotal and the kinetic energy Ttotal

∂(Utotal−Ttotal)

∂q(g)
k

=0, g=1,2,3,4,5; k=1,··· ,N̄. (2.22)

The results in an eigenvalue problem related to natural frequencies and modes will be
obtained by (2.22). Specifically, these equations are

Kq=ω2Mq, (2.23)

where q={q(1),q(2),q(3),q(4),q(5)}; the stiffness K and mass matrices M are expressed
in Appendix.

The crucial step to obtain a correct solution in Ritz method is to select an appropriate
set of admissible functions which should be linearly independent, complete and satisfy
the geometric boundary conditions of plate. Since the description of the crack parame-
ters is based on the continuous equivalent bending stiffness and equivalent depth of the
cracked beam, the proposed method is not limited by boundary conditions of displace-
ments. Two typical boundary conditions are considered in this paper, i.e., simply sup-
ported plate with movable edges (SSSS) and clamped plate (CCCC). Thus, the boundary
conditions of the displacements are

SSSS
v0=w=φy =0 at x=0,a
u0=w=φx =0 at y=0,b

}
, (2.24a)

CCCC
u0=v0=w=φx =φy =0 at x=0,a
v0=u0=w=φx =φy =0 at y=0,b

}
. (2.24b)
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The MCF functions with good numerical stability are selected as the admissible functions
of displacements. For transverse displacement w, X(3)

m (x) in (2.19) are defined as [43]

X(3)
m (x)=C1m cos

( rmx
a

)
+C2m sin

( rmx
a

)
+C3me

−rm x
a +C4me

−rm(a−x)
a , (2.25)

where the parameters rm, C1m, C2m, C3m and C4m under the boundary condition of simply
supported or clamped at both edges (x=0,a) are given as follows

SS rm =mπ, C1m =C3m =C4m =0, C2m =
√

2, (2.26a)

CC
cos(rm)−

2e−rm

1+e−2rm
=0, C1m =1, C2m =−1+(−1)me−rm

1−(−1)mee−rm

C3m =− 1
1−(−1)mee−rm , C4m =− (−1)m

1−(−1)me−rm

, (2.26b)

where the parameters rm of the CC boundary are the solutions of the nonlinear equation

cos(rm)−
2exp−2rm

1+exp−2rm
=0.

Similarly, the functions Y(3)
n (y) can be defined for the y direction by replacing the variable

x for y, the width a for the length b, and m for n in (2.25).
For the SSSS with movable edges and CCCC with immovable edges, the admissi-

ble functions of in-plane displacements u0 and v0 in (2.19), which satisfy identically the
boundary conditions, are expanded by using the following expressions

SSSS
X(1)

m (x)Y(1)
n (y)=cos(mπx/a)sin(nπy/b)

X(2)
m (x)Y(2)

n (y)=sin(mπx/a)cos(nπy/b)

}
, (2.27a)

CCCC
X(1)

m (x)Y(1)
n (y)=sin(mπx/a)sin(nπy/b)

X(2)
m (x)Y(2)

n (y)=sin(mπx/a)sin(nπy/b)

}
. (2.27b)

According to boundary conditions in (2.24a) and (2.24b), the admissible functions of ro-
tations ϕx and ϕy of the SSSS and CCCC boundary conditions can be defined as

SSSS
X(4)

m (x)Y(4)
n (y)=cos(mπx/a)sin(nπy/b)

X(5)
m (x)Y(5)

n (y)=sin(mπx/a)cos(nπy/b)

}
, (2.28a)

CCCC
X(4)

m (x)Y(4)
n (y)=sin(mπx/a)sin(nπy/b)

X(5)
m (x)Y(5)

n (y)=sin(mπx/a)sin(nπy/b)

}
. (2.28b)

Thus, the admissible functions of the in-plane displacement, transverse displacement and
rotations under different boundary conditions can be obtained.
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3 Convergence study

The free vibration of a square plate reinforced by one stiffener is analyzed to verify the
accuracy of the proposed approach. The boundary condition of the plate is SSSS. The lo-
cation of the stiffener relative to the plate is ȳ=0.5b. The ratios of the stiffener dimensions
to the plate thickness are hs/h=4 and bs/h=1, respectively. The crack in the stiffener is
located at the location of c=0.5b with a depth of d=0.4h̄. The dimensions of the plate are
a×b×h=1×1×0.01m, and the cross-section of the stiffener is h̄×bs =0.04×0.01m. The
material properties are E=205.8GPa, ρ=7.83×103kg/m3 and υ=0.3.

The variations of normalized equivalent stiffness (extensional stiffness and bending
stiffness) and normalized equivalent eccentricity of the cracked stiffener (along its length)
are shown in Fig. 2. The stiffness ratio denotes the ratio of the stiffness of the cracked
stiffener to that of the intact stiffener.

The natural frequencies are determined by using (2.23) and are transferred to non-
dimensional quantities by multiplying with a2

√
ρh/D. In Table 1, these frequencies were

obtained by using 10, 12,13,14 and 15 MCF functions in both x and y-directions in (2.17).
From Table 1, it can be observed that the frequencies of all orders tended to converge
to the exact solutions with the increasing terms of MCF. The first three frequencies have
converged to at least 3-digit accuracy when the numbers (M) of MCF functions are larger
than 12. Since there are no such results published in the previous study, it will be verified
by comparing with the shell finite element model via commercial software ABAQUS.
The results of ABAQUS were obtained by using 88140 shell elements of type S4R. Table
1 shows that the finite element results are in good agreement with the solutions from the
present approach with less computational effort. The relative difference of frequencies in

(a) (b)

Figure 2: Variation of (a) normalized bending and extensional stiffness and (b) eccentricity of a stiffener with
a crack.
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Table 1: Convergence of non-dimensional frequency ωa2√ρh/D for an SSSS stiffened plate with a cracked
stiffener.

Order of M×N Relative
frequency 8×8 10×10 12×12 14×14 15×15 ABAQUS difference

0 2 4
1 28.75 28.7 28.67 28.64 28.62 28.42 0.70%
2 49.39 49.39 49.39 49.39 49.39 49.54 -0.30%
3 79.06 79.06 79.06 79.06 79.06 79.43 -0.47%
4 81.18 80.92 80.76 80.65 80.57 79.93 0.79%
5 97.34 97.33 97.32 97.31 97.3 97.05 0.26%

all cases is less than 0.79%, which indicates that the presented approach is accurate for
the global responses. In addition, the most significant advantage is that no requirement
of any modification should be applied to the model when the crack parameters change.
However, the finite element method requires complicated work of remeshing. These
results demonstrate the efficiency and accuracy of the present approach.

4 Modal analyses for the cracked stiffened plate

The effect of the cracks on the vibration characteristics of the stiffened plate depends
not only on the crack parameters, but also on the size, number, and distribution of the
stiffeners. In this section, the natural frequencies and corresponding modes of the stiff-
ened plate are analyzed with various settings of geometric dimensions for stiffeners and
cracks. The dimensions of the plate and the material properties for the stiffened plate are
consistent with the previous section. y(C)i and y(T)i denote the location of the i-th cracked
stiffener and intact stiffener, respectively. In the following analysis, the non-dimensional
frequency parameters of the intact stiffened plate and the frequency ratio of the cracked
stiffened plate are given. The frequency ratio denotes the ratio of the frequency of the
cracked stiffened plate to that of the intact stiffened plate.

4.1 Cracked stiffener with different cross-sections

Two cross-sections of stiffeners are considered here (Section A and Section B). The geo-
metric dimensions of Section A are h̄= 4h, bs = h, and the Section B are h̄= 5h, bs = 2h.
Table 2 presents the first five frequency ratios of the SSSS plate reinforced by one stiffener
(y(C)1 = 0.5b) with a crack of various crack depths at different crack locations (c/a= 0.5
and 0.75). The non-dimensional frequency parameters ωa2

√
ρh/D of intact stiffened

plate are also given in brackets. It can be seen that the first-order, fourth-order and five-
order natural frequencies decrease with an increasing depth of the crack. In addition, the
crack has the most significant effect on the first-order frequency, while the second-order
and third-order frequencies are insensitive to the crack and remain almost unchanged. It
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Table 2: Frequency ratios of an SSSS stiffened plate with various crack depths and locations.

Section c/b d/h̄ Order of frequency
1 2 3 4 5

A 0.5 0 1.0000 1.0000 1.0000 1.0000 1.0000
h̄/h=4 (29.57 ) (49.39) (79.06) (80.77) (97.62)
bs/h=1 0.1 0.9986 1 1 1 0.9998

0.2 0.9936 1 1 0.9996 0.9993
0.3 0.9838 1 1 0.9988 0.9984
0.4 0.9679 1 1 0.9975 0.9967
0.5 0.9412 1 0.9999 0.9946 0.9942

0.75 0.1 0.9993 1 1 0.9995 0.9999
0.2 0.997 1 1 0.9974 0.9997
0.3 0.9919 1 1 0.9932 0.9992
0.4 0.9831 1 1 0.9858 0.9984
0.5 0.9669 1 1 0.973 0.997

B 0.5 0 10000 1.0000 1.0000 1.0000 1.0000
h̄/h=5 (40.95) (50.17 ) (80.87) (89.37) (98.37)
bs/h=2 0.1 0.9977 1 0.9999 1 0.9994

0.2 0.9899 1 0.9998 0.9998 0.9975
0.3 0.9757 1 0.9994 0.9993 0.994
0.4 0.9516 0.9999 0.999 0.9985 0.9885
0.5 0.9103 0.9998 0.9982 0.9966 0.9797

0.75 0.1 0.999 1 1 0.9997 0.9998
0.2 0.9951 0.9999 1 0.9986 0.9988
0.3 0.9872 0.9998 0.9999 0.9963 0.9969
0.4 0.9731 0.9996 0.9998 0.9923 0.9938
0.5 0.9471 0.9992 0.9995 0.9847 0.9888

is also observed that the frequencies of the system with section B are more likely to be af-
fected by the crack parameters than those of the system with section A, and a crack with
depth d/h̄=0.5 in section B can lead to a reduction in the first-order frequency by more
than 8%. As the cross-section of the stiffener increases, the reinforcing effect of the stiff-
ener on the stiffened plate increases, and the effect of the crack on the natural frequencies
of the structure also becomes greater.

Table 3 shows the influence of various crack depths on the first five frequency ratios of
the CCCC plate with one cracked stiffener (y(C)1 =0.5b) at the crack locations of c/a=0.5.
Unlike the situation of the SSSS stiffened plate, the first-order natural frequency of the
CCCC stiffened plate with the sectional B remains almost unchanged due to the location
of the stiffener is in coincidence with the nodal line of the mode.

Fig. 3 demonstrates the influence of crack location on the fundamental frequency of
SSSS stiffened plates. Three crack depths (d/h̄=0.3,0.4 and 0.5) and two kinds of cross-
sections for the stiffener are taken into consideration. It should be noted that c/a=0 and
c/a= 1 mean the intact stiffened plate without crack. It is seen that the closer the crack
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(a) (b)

Figure 3: The fundamental frequency ratio of a SSSS stiffened plate with various crack depths and locations:
(a) Section A; (a) Section B.

to the center (x=0.5a or c=0.5b) of the stiffener is, the lower the fundamental frequency
will be, and the greatest reduction in the fundamental frequency occurs when the crack
location (c/a) is 0.5. As both the structural geometry and boundary conditions of this
stiffened plate are symmetrical, the curves of the fundamental frequency with various
c/a are also symmetrical to the center line (x=a/2). It is also observed that the difference
of frequency difference between different crack depths becomes larger when the location
is closer to the center.

Table 3: Frequency ratios of a CCCC stiffened plate with various crack depths.

Section c/b d/h̄ Order of frequency
1 2 3 4 5

A 0.5 0 1 1 1 1 1
(61.65) (73.65) (108.7) (117) (137.5)

h̄/h=4 0.1 0.999 1 1 1 0.9997
bs/h=1 0.2 0.9955 1 1 0.9997 0.9988

0.3 0.9892 1 0.9999 0.9992 0.997
0.4 0.979 1 0.9999 0.9982 0.9942
0.5 0.9623 1 0.9998 0.9961 0.9898

B 0.5 0 1 1 1 1 1
(74.58) (78.99) (79.06) (111) (123.6)

h̄/h=5 0.1 1 0.999 0.9999 1 0.9991
bs/h=2 0.2 1 0.9957 0.9997 0.9999 0.9961

0.3 1 0.9898 0.9994 0.9996 0.9909
0.4 0.9999 0.98 0.9988 0.999 0.9827
0.5 0.9998 0.9637 0.998 0.9979 0.97
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Figure 4: Modes of cracked SSSS stiffened plate with different stiffener sections (c=0.5b).

The vibration modes of intact and cracked SSSS stiffened plate are presented in Fig. 6.
Referring to the decrease of natural frequency for the stiffened plate with Section B in
Table 1, the first-order mode which is changed obviously by the crack is different from
the mode of the intact plate. The vibration modes of the stiffened plate under CCCC
boundary conditions are shown in Fig. 5. Compared with the modes of the CCCC stiff-
ened plate with Section A, the first two modes of the stiffened plate with Section B have
been exchanged.

4.2 Stiffener with different numbers and crack depths

Next, four cases of settings of stiffener and crack, as shown in Fig. 5, are investigated.
Case A: there are two stiffeners on the plate, one of which has a crack with varying crack
depths. Case B: the stiffened plate reinforced by two cracked stiffeners with varying
crack depths. Case C: there are three stiffeners on the plate, one of the stiffeners (y(C)3 =
3b/4) has a crack with varying crack locations. Case D: there are three stiffeners on the
plate, one of the stiffeners (y(C)2 = 2b/4) has a crack with varying crack locations. The
dimensions of the plate are a×b×h=1×1×0.01m, and the cross-section of the stiffener
is h̄×bs = 0.05×0.02m. It should be noted that the boundary conditions of the stiffened
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Figure 5: Modes of cracked CCCC stiffened plate with different stiffener sections (c=0.5b).

plate here and in the following are both SSSS.

Table 4 presents the first five frequency ratios of stiffened plate, under Case A and
B, reinforced by two stiffeners with various crack depths at location c = 0.5a. For the
stiffened plate with a cracked stiffener at y(C)2 =b/3 or y(C)1 =2b/3, the first five frequencies
(except the third-order) are decreased with the increasing of crack depth. The crack on the
stiffener has no effect on the third-order frequency due to the two stiffeners are located
on the nodal line of the third-order mode. For the stiffened plate with a crack of d=0.5a,
the first-order frequency is reduced by more than 6% compared with the intact plate. By
contrast, two cracks with d=0.5a in Case B lead to a reduction of the first-order frequency
by more than 11%. As expected, the increased number of cracks can lead to an amount
of reduction in the frequency of the plate. Fig. 8 depicts the first five-order modes of the
intact and cracked stiffened plate (Cases A and B) with crack depth d=0.5h̄. The first and
third rows of the figure demonstrate the symmetric or anti-symmetric modes of the intact
stiffened plate and Case B, respectively. For Case A, the crack in one stiffener causes the
plate to be asymmetric along the y-axis, which also changes the symmetry of the modes,
especially the first-order, fourth-order and fifth-order modes. Compared with the intact
plate, the fourth and fifth-order modes of the cracked stiffened plate under Case A and B
are exchanged because the fourth and fifth-order frequencies are very close, as shown in
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(a) (b)

(c) (d)

Figure 6: Four cases of cracked stiffened plates: (a) Case A with variable crack depths; (b) Case B with variable
crack depths; (c) Case C with variable crack locations; (d) Case D with variable crack locations.

Figure 7: First two frequency ratios versus crack location under Case C and Case D.

Table 4.
Fig. 7 presents the first two frequency ratios versus crack location under Case C and

Case D. It can be observed that the first two frequency ratios decrease with the crack
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Figure 8: Modes of the stiffened plate under Cases A and B (d/h̄=0.5).

placed closer to the center of the stiffener (c = 0.5a). Comparing the first-order and
second-order frequency ratios, it is found that the presence of a crack has a more signif-
icant effect on the fundamental (i.e., lowest) frequency than the second-order frequency.
On the other hand, the location of the cracked stiffener can also affect the effect of the
crack on the frequency. The phenomenon which the fundamental frequency of Case D
(y(C)2 =2b/4) is smaller than that of Case C (y(C)3 =b/4), indicates that the closer the crack
to the center of the plate (x = a/2, y = b/2) is, the smaller the fundamental frequency

Table 4: Frequency ratios of a CCCC stiffened plate with various crack depths.

Order of frequency
Case d/h̄ 1 2 3 4 5

A 0 1 1 1 1 1
0.1 0.9988 0.9993 1 1 1
0.2 0.9941 0.9966 1 0.9998 0.9997
0.3 0.9847 0.9916 1 0.9995 0.9993
0.4 0.9681 0.984 1 0.9991 0.9983
0.5 0.938 0.9729 0.9999 0.9984 0.9963

B 0.1 0.9976 0.9986 1 0.9999 0.9999
0.2 0.9883 0.993 1 0.9996 0.9995
0.3 0.9705 0.9825 1 0.9991 0.9985
0.4 0.9403 0.9647 0.9999 0.9983 0.9967
0.5 0.8895 0.935 0.9998 0.997 0.993
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Figure 9: Modes cracked and intact stiffened plate under Case C and Case D (c/a=0.5).

will be. Compared with the second-order frequency of Case C (y(C)3 =3b/4), that of Case
C (y(C)2 = 2b/4) is insensitive to the crack. This is because the location of the cracked
stiffener at y(C)2 =2b/4 coincides with the nodal line of second-order mode.

Fig. 9 depicts the first five-order modes of the intact and cracked stiffened plate (Case
C and Case D) with crack location c=0.5a. As shown in the figure, no noticeable change
in the modes is found due to the existence of a crack in Case D, while the crack in Case C
can destroy the symmetry of the modes (especially the first-order and fifth-order modes).

5 Conclusions

The free vibration of a cracked stiffened plate is investigated through the Ritz method
with the cracked stiffener model. The effect of crack parameters coupling with the po-
sition and number of the stiffeners on the natural frequencies and corresponding modes
are investigated. The results from this paper are summarized as follows:

• The accuracy and efficiency of the proposed methodology have been substantiated
through convergence studies of non-dimensional frequencies for simply supported
stiffened plate with cracked stiffener. The convergent solutions of vibration fre-
quencies show excellent agreement with those obtained by the commercial finite
element package ABAQUS.
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• The low-order frequency is sensitive to crack parameters and shows a significant
reduction, except for the case that the cracked stiffener is consistent with the nodal
line of the modes. For the crack location, the closer the crack is to the midpoint of
the stiffener, the lower the natural frequency. A crack with a depth of d= 0.5h̄ on
the stiffener will reduce the fundamental frequency of stiffened plate by almost 9%,
although the dimensions of the crack are much smaller than the dimensions of the
stiffened plate. These results suggest that even a small crack in the stiffener can
significantly change the vibration characteristics of the stiffened plate.

• With the increase of the cross-section and number of cracked stiffeners, the reduc-
tion of the frequency caused by the crack also becomes more remarkable. Further-
more, the presence of cracks can destroy the symmetry of the stiffened plate and
leads to an asymmetry in the modes.

Appendix

K=


Ku Kuv 0 Kuφx 0
Kuv Kv 0 0 0

0 0 Kw Kwφx Kwφy

Kφxu 0 Kφxw Kφx Kϕxφy

0 0 Kφyw Kφyφx Kφy

,

M=


Mu Kuv 0 Muφx 0
Kuv Mv 0 0 Mvφy

0 0 Mw 0 0
Mφxu 0 0 Mφx 0

0 Mφyv 0 0 Mφy

,

M=diag[MuMuMwMϕx Mϕy ],

where the components in the forgoing block matrices are

Ku
kl =

Nt

∑
i=1

∫
S

[
Es ĀQ(1)

k,x Q(1)
l,x

]
dx

∣∣∣∣∣
ȳ=yi

+
Nc

∑
j=1

∫
S

[
Es ĀcQ(1)

k,x Q(1)
l,x

]
dx

∣∣∣∣∣
ȳ=yj

+
∫∫

Ω

(
Eh

1−v2 Q(1)
k,x Q(1)

l,x +
Eh

2(1+v)
Q(1)

k,y Q(1)
l,y

)
dxdy,

Kuv
kl =Kvu

kl =
∫∫

Ω

(
Ehv

1−v2 Q(1)
k,x Q(2)

l,y +
Eh

2(1+v)
Q(1)

k,y Q(2)
l,x

)
dxdy,

Kv
kl =

∫∫
Ω

(
Eh

1−v2 Q(2)
k,y Q(2)

l,y +
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ȳ=yj

,

Muφx
kl =Mφxu

kl =
Nt

∑
i=1

∫
S

[
ĀezQ(1)

k,x Q(4)
l,x

]
dx

∣∣∣∣∣
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