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Abstract. In this work, we study the Cauchy problem of the spatially homogeneous
Landau equation with hard potentials in a close-to-equilibrium framework. We prove
that the solution to the Cauchy problem enjoys the analytic regularizing effect of the
time variable with an L2 initial datum for positive time. So that the smoothing ef-
fect of the Cauchy problem for the spatially homogeneous Landau equation with hard
potentials is exactly same as heat equation.
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1 Introduction

In this work, we are concerned with the following Cauchy problem of spatially homoge-
nous Landau equation {

∂tF=Q(F,F),
F|t=0=F0,

(1.1)

where F = F(t,v)≥ 0 is the density distribution function at time t≥ 0, with the velocity
variable v∈R3. The Landau bilinear collision operator is defined by

Q(G,F)(v)=
3

∑
i,j=1

∂i

(∫
R3

aij(v−v∗)[G(v∗)∂jF(v)−∂jG(v∗)F(v)]dv∗

)
,
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where
aij(v)=(δij|v|2−vivj)|v|γ, γ≥−3,

is a symmetric non-negative matrix such that aij(v)vivj=0. Here, γ is a parameter which
leads to the classification of the hard potential if γ>0, Maxwellian molecules if γ=0, soft
potential if γ∈]−3,0[ and Coulombian potential if γ=−3.

The Landau equation was introduced as a limit of the Boltzmann equation when the
collisions become grazing in [1,2]. The global existence, and uniqueness of classical solu-
tions for the spatially homogeneous Landau equation with hard potentials, regularizing
effects, and large-time behavior have been addressed by Desvillettes and Villani [3, 4].
Moreover, they proved the smoothness of the solution in C∞(]0,∞[;S(R3)). Carrap-
atoso [5] proved an exponential in-time convergence to the equilibrium. In [6], the au-
thors proved the solution is analytic of v variables for any t>0 and the Gevrey regularity
in [7, 8].

Let µ be the Maxwellian distribution

µ(v)=(2π)−
3
2 e−

|v|2
2 ,

we shall linearize the Landau equation (1.1) around µ with the fluctuation of the density
distribution function

F(t,v)=µ(v)+
√

µ(v) f (t,v),

since Q(µ,µ)=0, the Cauchy problem (1.1) for f = f (t,v) takes the form{
∂t f +L( f )=Γ( f , f ),
f |t=0= f0,

(1.2)

with F0(v)=µ+
√

µ f0(v), where

Γ(g,h)=µ
−1
2 Q(µ

1
2 g,µ

1
2 h),

L( f )=L1 f +L2 f , L1 f =−Γ(µ
1
2 , f ), L2 f =−Γ( f ,µ

1
2 ).

In the case of the Maxwellian molecules, Villani [4] has proved a linear functional in-
equality between entropy and entropy dissipation by constructive methods, from which
one deduces an exponential convergence of the solution to the Maxwellian equilibrium in
relative entropy, which in turn implies an exponential convergence in L1-distance. In [9],
Desvillettes and Villani have proved a functional inequality for entropy dissipation is
not linear, from which one obtains a polynomial in time convergence of solutions to-
wards the equilibrium in relative entropy, which implies the same type of convergence
in L1-distance. In [10], the authors studied the spatially homogeneous Landau equation
and non-cutoff Boltzmann equation in a close-to-equilibrium framework and proved the
Gelfand-Shilov smoothing effect (see also [11, 12]). Guo [13] constructed global classical
solutions for the spatially inhomogeneous Landau equation near a global Maxwellian in
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a periodic box, and the smoothness of the solutions have been studied in [14–16]. The
analytic smoothing effect of the velocity variable for the nonlinear Landau equation has
been studied in [17, 18]. The variant regularity results in a close to equilibrium setting
were considered by [19–21].

Let us give the definition of analytic function spaces A(Ω) where Ω⊂Rn is a open
domain. We say that u∈A(Ω) if u∈C∞(Ω) and there exists a constant C such that for all
multi-indices α∈Nn,

∥∂αu∥L∞(Ω)≤C|α|+1α!.

Remark that, by using the Sobolev embedding, we can replace the L∞ norm by the L2

norm, or norm in any Sobolev space in the above definition.
In this work, we consider the Cauchy problem (1.2) with γ≥0, show that the solution

of the Cauchy problem (1.2) with initial datum in L2(R3) enjoys the analytic regularizing
effect of time variable. Our main result reads as follows.

Theorem 1.1. Assume f0 ∈ L2(R3) and T>0, let f be the solution of the Cauchy problem (1.2)
with ∥ f ∥L∞([0,T];L2(R3)) small enough. Then there exists a constant C>0 such that for any k∈N,
we have

∥∂k
t f (t)∥L2(R3)≤

Ck+1

tk k!, ∀t∈]0,T]. (1.3)

Remark 1.1. In the paper [17], for f0 ∈ L2(R3) with ∥ f ∥L∞([0,T];L2(R3)) ≤ ϵ small enough,
the solution of the Cauchy problem (1.2) satisfies f (t)∈A(R3) for all 0< t≤T, i. e. there
exists a constant C>0 such that

∥t
|α|
2 ∂α

v f (t)∥L2(R3)≤C|α|+1α!, ∀α∈N3, ∀t∈]0,T],

which implies that f ∈C∞(]0,T[;A(R3)), so that we prove only the estimate (1.3) for the
smooth solution of (1.2). Combine with the results of [17], we have proved that, if f is
the solution of the nonlinear Cauchy problem (1.2) with ∥ f ∥L∞([0,T];L2(R3)) small enough,
then we have

f ∈A(]0,T[×R3),

which implies that the smoothing effect properties of Cauchy problem for the spatially
homogeneous Landau equation with hard potentials is exactly same as the semilinear
heat equation.

2 Analysis of Landau collision operator

The operators L1,L2 and Γ are defined in [13] as follow:

L1 f =−
3

∑
i,j=1

{
∂i[(aij∗µ)∂j f ]+(aij∗µ)

vi

2
vj

2
f −∂i

[
(aij∗µ)

vj

2

]
f
}

, (2.1)
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L2 f =−
3

∑
i,j=1

µ− 1
2 ∂i

{
µ

[
aij∗

(
µ

1
2 ∂j f +µ

1
2

vj

2
f
)]}

,

Γ( f ,g)=
3

∑
i,j=1

{
∂i[(aij∗(µ

1
2 f ))∂jg]−

[
aij∗

(vi

2
µ

1
2 f
)]

∂jg

−∂i[(aij∗(µ
1
2 ∂j f ))g]+

[
aij∗

(vi

2
µ

1
2 ∂j f

)]
g
}

.

Since the use of a different normalization for the Maxwellian, these representations are
different in a few places by a factor of 1/2 from that in [13]. The linear operator L is
nonnegative.

For later use, we derive some results for the linear operator L. For simplicity, with
s∈R, we define

∥ f ∥p,s =∥(1+|·|)s f ∥Lp(R3), 1≤ p≤∞,

∥ f ∥2
L2

A
=

3

∑
i,j=1

∫
R3

(
āij∂i f ∂j f + āij

1
4

vivj f 2
)

dv,

where āij = aij∗µ. From Corollary 1 in [13], there exists C1>0 such that

∥ f ∥2
L2

A
≥C1(∥Pv▽ f ∥2

2,γ/2+∥(I−Pv)▽ f ∥2
2,1+γ/2+∥ f ∥2

2,1+γ/2),

where for any vector-valued function g = (g1,g2,g3), define the projection to the vector
v∈R3 as

(Pvg)i =
3

∑
j=1

gjvj
vi

|v|2 , 1≤ i≤3.

Noticing that f =Pv▽ f +(I−Pv)▽ f , we have

∥ f ∥L2
A
≥C1(∥▽ f ∥2,γ/2+∥ f ∥2,1+γ/2). (2.2)

From representation (2.1), we can get the coercivity of the operator L1.

Lemma 2.1. Let f ∈S(R3), then there exists a constant C2>0 such that

(L1 f , f )L2 ≥∥ f ∥2
L2

A
−C2∥ f ∥2

2,γ/2.

Proof. By the representation (2.1) and integrating by parts, we have

(L1 f , f )L2 =
3

∑
i,j=1

[
((aij∗µ)∂j f ,∂i f )L2+

1
4
((aij∗µ)vivj f , f )L2

]
− 1

2

3

∑
i,j=1

(∂i[(aij∗µ)vj] f , f )L2

=∥ f ∥L2
A
− 1

2

3

∑
i,j=1

(∂i[(aij∗µ)vj] f , f )L2 .
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Using
3

∑
i=1

aij(v)vi =
3

∑
j=1

aij(v)vj =0,

it follows that

3

∑
i,j=1

∫
R3

∂i[(aij∗µ)vj] f 2dv=
3

∑
i,j=1

∫
R3

∂i

(∫
R3

aij(v−v′)v′jµ(v
′)dv′

)
f 2dv

=
3

∑
i,j=1

∫
R3

∂i[aij∗(vjµ)] f 2dv.

Expanding ∂iaij(v−v′) to get

∂iaij(v−v′)=∂iaij(v)+
3

∑
l=1

(∫ 1

0
∂l∂iaij(v−sv′)ds

)
v′l ,

then by ∫
R3

v′jµ(v
′)dv′=0,

we can deduce that

∂iaij∗(vjµ)=
3

∑
l=1

∫
R3

∫ 1

0
∂l∂iaij(v−sv′)dsv′lv

′
jµ(v

′)dv′,

and using
|∂βaij(v)|≤ c(1+|v|)γ+2−|β|, ∀β∈N3,

we can conclude that

1
2

∣∣∣∣∣ 3

∑
i,j=1

(∂i[(aij∗µ)vj] f , f )L2

∣∣∣∣∣= 1
2

∣∣∣∣∣ 3

∑
i,j=1

∫
R3

∫
R3

∂iaij(v−v′)v′jµ(v
′)dv′ f 2(v)dv

∣∣∣∣∣
≤ 1

2

3

∑
i,j=1

3

∑
l=1

∣∣∣∣∫
R3

∫
R3

v′lv
′
jµ(v

′)
∫ 1

0
∂l∂iaij(v−sv′)dsdv′ f 2(v)dv

∣∣∣∣
≤C2

∫
R3
(1+|v|)γ f 2(v)dv.

We thus complete the proof of the Lemma 2.1.

We recall the trilinear estimate, which has been addressed in [17].

Lemma 2.2. ([17]) Let F,G,H∈S(R3), then there exists a constant C3>0 such that

|⟨Γ(F,G),H⟩L2 |≤C3∥F∥L2∥G∥L2
A
∥H∥L2

A
.
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Let F =
√

µ,G = f ,H = g and F = f ,G =
√

µ,H = g in Lemma 2.2, then we have the
following estiamtes for the operators L1 and L2.

Corollary 2.1. Let f ,g∈S(R3), then there exists a constant C4>0 such that

|(L1 f ,g)L2 |≤C4∥ f ∥L2
A
∥g∥L2

A
,

|(L2 f ,g)L2 |≤C4∥ f ∥L2∥g∥L2
A
.

3 Energy estimates

We need the following interpolation inequality for g∈S(R3).

Lemma 3.1. Let g∈S(R3), then for all 0<δ<1 we have

∥g∥2
2,γ/2≤δ∥g∥2

L2
A
+Cδ∥g∥2

L2 . (3.1)

Proof. From Hölder’s inequality and inequality (2.2), it follows that

∥g∥2
2,γ/2=

∫
R3
(1+|v|)γg

2γ
γ+2 (v)g

4
γ+2 (v)dv

≤∥g∥
2γ

γ+2
2,γ/2+1∥g∥

4
γ+2

L2 ≤
(

1
C1

∥g∥L2
A

) 2γ
γ+2

∥g∥
4

γ+2

L2 ,

then by using the Young inequality

ab≤ 1
p

ap+
1
q

bq, (a,b≥0,
1
p
+

1
q
=1)

and the fact γ≥0, we get(
1

C1
∥g∥L2

A

) 2γ
γ+2

∥g∥
4

γ+2

L2 ≤ γ

γ+2
δ∥g∥2

L2
A
+

2
γ+2

C−γ
1 δ−γ/2∥g∥2

L2

≤δ∥g∥2
L2

A
+C−γ

1 δ−γ/2∥g∥2
L2 .

Let Cδ =C−γ
1 δ−γ/2, then it follows that (3.1) holds.

We study now the energy estimates of the solution of the Cauchy problem (1.2), we
have

Lemma 3.2. Assume f0 ∈ L2(R3) and T > 0, let f be the solution of the Cauchy problem (1.2)
with ∥ f ∥L∞([0,T];L2(R3)) small enough. Then there exists a constant B0>0 such that

∥ f ∥2
L∞([0,T];L2(R3))+∥ f ∥2

L2([0,T];L2
A(R

3))≤B2
0∥ f0∥2

L2(R3)≤ϵ2B2
0. (3.2)
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We will take ϵ small such that 0<ϵB0≤1.

Proof. By (1.2), we have that

1
2

d
dt

∥ f ∥2
L2+(L1 f , f )L2 =(Γ( f , f ), f )L2−(L2 f , f )L2 .

Using Lemma 2.1 and taking δ= 1
8C2

in (3.1), for all 0≤ t≤T, we can conclude

(L1 f , f )L2 ≥∥ f ∥2
L2

A
−C2∥ f ∥2

2,γ/2≥
7
8
∥ f ∥2

L2
A
−C̃2∥ f ∥2

L2 ,

and C̃2 depends on C1. Since ∥ f ∥L∞([0,T];L2(R3)) ≤ ϵ, using Lemma 2.2 and taking ϵ such
that C3ϵ≤ 1

8 , for all 0≤ t≤T, we have

(Γ( f , f ), f )L2 ≤C3∥ f ∥L2∥ f ∥2
L2

A
≤ 1

8
∥ f ∥2

L2
A
,

Corollary 2.1 and Hölder’s inequality implies

|(L2 f , f )L2 |≤C4∥ f ∥L2∥ f ∥L2
A
≤ 1

8
∥ f ∥2

L2
A
+2C2

4∥ f ∥2
L2 .

Combining the above estimates, one has

d
dt

∥ f ∥2
L2+∥ f ∥2

L2
A
≤
(
2C̃2+4C2

4
)
∥ f ∥2

L2 ,

integrating from 0 to t to get

∥ f (t)∥2
L2+

∫ t

0
∥ f (τ)∥2

L2
A
dτ≤

(
2C̃2+4C2

4
)∫ t

0
∥ f (τ)∥2

L2dτ+∥ f0∥2
L2 , (3.3)

then by Gronwall inequality, we get for 0≤ t≤T

∥ f (t)∥2
L2 ≤ [1+

(
2C̃2+4C2

4
)

Te(2C̃2+4C2
4)T]∥ f0∥2

L2 . (3.4)

Substituting (3.4) into (3.3) and taking B0≥1+
(
2C̃2+4C2

4

)
Te2(C̃2+4C2

4)T, one can obtain

∥ f (t)∥2
L2+

∫ t

0
∥ f (τ)∥2

L2
A
dτ≤

(
2C̃2+4C2

4
)

Te(2C̃2+4C2
4)T∥ f0∥2

L2 ≤B2
0ϵ2.

Lemma 3.3. Assume f0 ∈ L2(R3) and T > 0, let f be the solution of the Cauchy problem (1.2)
with ∥ f ∥L∞([0,T];L2(R3)) small enough. Then there exists a constant B1>0 such that

∥τ∂τ f ∥2
L∞([0,T];L2(R3))+∥τ∂τ f ∥2

L2([0,T];L2
A(R

3))≤ϵ2B2
1. (3.5)
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We also take ϵ small such that 0<ϵB1≤1.

Proof. Since the solution of (1.2) belongs to C∞(]0,T[;S(R3)), we have that

∂t(t∂t f )+L1(t∂t f )=∂t f −L2(t∂t f )+t∂tΓ( f , f ),

and for 0≤ t≤T

1
2
∥t∂t f ∥2

L2+
∫ t

0
(L1(τ∂τ f ),τ∂τ f )L2dτ

=
∫ t

0
τ∥∂τ f ∥2

L2dτ−
∫ t

0
(L2(τ∂τ f ),τ∂τ f )L2dτ+

∫ t

0
(τ∂τΓ( f , f ),τ∂τ f )L2dτ

=R1+R2+R3.

Firstly, using Lemma 2.1 and (3.1) with δ= 1
8C2

, for all 0≤ t≤T, we can conclude

∫ t

0
τ2(L1(∂τ f ),∂τ f )L2dτ≥∥τ∂τ f ∥2

L2([0,t];L2
A)
−C2

∫ t

0
τ2∥∂τ f ∥2

2,γ/2dτ

≥ 7
8
∥τ∂τ f ∥2

L2([0,t];L2
A)
−C̃2T

∫ t

0
τ∥∂τ f ∥2

L2dτ.

For the term R1, since f is solution of (1.2), i.e.

∂t f =Γ( f , f )−L( f ),

using Lemma 2.2 and Corollary 2.1, for all 0≤ t≤T, we have

∫ t

0
τ∥∂τ f ∥2

L2dτ=
∫ t

0
τ(Γ( f , f ),∂τ f )L2dτ−

∫ t

0
τ(L( f ),∂τ f )L2dτ

≤C3

∫ t

0
∥ f ∥L2∥ f ∥L2

A
∥τ∂τ f ∥L2

A
dτ+C4

∫ t

0

(
∥ f ∥L2+∥ f ∥L2

A

)
∥τ∂τ f ∥L2

A
dτ.

Using Cauchy-Schwarz inequality, for 0<δ<1,

∫ t

0
τ∥∂τ f ∥2

L2dτ≤δ∥τ∂τ f ∥2
L2([0,t];L2

A)
+

C2
3

2δ
∥ f ∥2

L∞([0,t];L2)

∫ t

0
∥ f ∥2

L2
A
dτ

+
C2

4
δ

(
T∥ f ∥2

L∞([0,t];L2)+
∫ t

0
∥ f ∥2

L2
A
dτ

)
.

Then, (3.2) implies, there exists Cδ >0 such that

R1=
∫ t

0
τ∥∂τ f ∥2

L2dτ≤CδB2
0ϵ2+δ∥τ∂τ f ∥2

L2([0,t];L2
A)

. (3.6)



96 C. J. Xu and Y. Xu/ J. Partial Diff. Eq., 37 (2024), pp. 88-103

For the term R2, using Corollary 2.1, for all 0≤ t≤T, we have

|R2|=
∣∣∣∣∫ t

0
τ2(L2(∂τ f ),∂τ f )L2dτ

∣∣∣∣≤C4

∫ t

0
τ2∥∂τ f ∥L2∥∂τ f ∥L2

A
dτ

≤1
8
∥τ∂τ f ∥2

L2([0,t];L2
A)
+2C2

4T
∫ t

0
τ∥∂τ f ∥2

L2dτ,

then, using (3.6) to get

|R2|≤
1
8
∥τ∂τ f ∥2

L2([0,t];L2
A)
+2C2

4T
(

CδB2
0ϵ2+δ∥τ∂τ f ∥2

L2([0,t];L2
A)

)
,

so taking 2C2
4Tδ= 1

8 , one has

|R2|≤
1
4
∥τ∂τ f ∥2

L2([0,t];L2
A)
+C̃4B2

0ϵ2.

Finally, for the term R3, Lemma 2.2 implies

|R3|=
∣∣∣∣∫ t

0
τ2∂τ(Γ( f , f ),∂τ f )L2dτ

∣∣∣∣
≤
∫ t

0
τ2 |(Γ(∂τ f , f ),∂τ f )|dτ+

∫ t

0
τ2 |(Γ( f ,∂τ f ),∂τ f )|dτ

≤C3

∫ t

0
τ2∥∂τ f ∥L2∥ f ∥L2

A
∥∂τ f ∥L2

A
dτ+C3

∫ t

0
∥ f ∥L2∥τ∂τ f ∥2

L2
A
dτ

≤1
8
∥τ∂τ f ∥2

L2([0,t];L2
A)
+2C2

3

∫ t

0
∥ f ∥2

L2
A
∥τ∂τ f ∥2

L2dτ+C3

∫ t

0
∥ f ∥L2∥τ∂τ f ∥2

L2
A
dτ

≤1
8
∥τ∂τ f ∥2

L2([0,t];L2
A)
+2C2

3∥τ∂τ f ∥2
L∞([0,t];L2)

∫ t

0
∥ f ∥2

L2
A
dτ

+C3∥ f ∥2
L∞([0,t];L2)

∫ t

0
∥τ∂τ f ∥2

L2
A
dτ.

Using (3.2) and taking ϵ>0 small such that

2C2
3 B2

0ϵ2≤ 1
4

, C3B2
0ϵ2≤ 1

8
.

We get then, for all 0≤ t≤T,∣∣∣∣∫ t

0
τ2∂τ(Γ( f , f ),∂τ f )L2dτ

∣∣∣∣≤ 1
4
∥τ∂τ f ∥2

L2([0,t];L2
A)
+

1
4
∥τ∂τ f ∥2

L∞([0,t];L2).

Combining the above estimates, taking δ= 1
8 in (3.6), one has

1
4
∥τ∂τ f ∥2

L∞([0,T];L2)+
3
8
∥τ∂τ f ∥2

L2([0,T];L2
A)
≤C5ϵ2+C̃2T

∫ T

0
τ∥∂τ f ∥2

L2dτ,

using (3.6) with C̃2Tδ≤ 1
8 and taking B1≥2

√
C5, then it follows that

∥τ∂τ f ∥2
L∞([0,T];L2)+∥τ∂τ f ∥2

L2([0,T];L2
A)
≤4C5ϵ2≤B2

1ϵ2,

with B1 depends only on C1,C2,C3,C4 and T, which end the proof of Lemma 3.3.
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4 Proof of main theorem

In this section, we shall show the analytic regularity of time variable for t> 0. We con-
struct the following estimate, from which we can deduce the inequality (1.3) directly.

Proposition 4.1. Assume f0 ∈ L2(R3) and T > 0, let f be the solution of the Cauchy problem
(1.2) with ∥ f ∥L∞([0,T];L2(R3)) small enough. Then there exists a constant B>0 such that, for any
k∈N+

∥τk∂k
τ f ∥2

L∞([0,T];L2(R3))+∥τk∂k
τ f ∥2

L2([0,T];L2
A(R

3))≤B2(k−1)((k−2)!)2. (4.1)

We have that (4.1) implies immediately (1.3), so it is enough to prove this Proposition
4.1 for Theorem 1.1. We prove this proposition by induction for the index k. For k=1, it
is enough to take, in (3.5),

0<ϵB1≤1,

and by convention (−1)!= 1, 0!= 1. Now for k≥ 2, since µ is a function with respect to
the variable v, we have

tk∂k
tL f =L(tk∂k

t f ).

Then by (1.2), one can obtain,

∂t(tk∂k
t f )+L1(tk∂k

t f )

=ktk−1∂k
t f −L2(tk∂k

t f )+Γ( f ,tk∂k
t f )+Γ(tk∂k

t f , f )+ ∑
1≤j≤k−1

Cj
k Γ(tj∂

j
t f ,tk−j∂

k−j
t f ),

where Cj
k =

k!
j!(k−j)! . Then taking the L2(R3) inner product of both sides with respect to

tk∂k
t f , we have

1
2

d
dt

∥tk∂k
t f ∥2

L2+(L1(tk∂k
t f ),tk∂k

t f )L2

=kt2k−1∥∂k
t f ∥2

L2−(L2(tk∂k
t f ),tk∂k

t f )L2

+(Γ( f ,tk∂k
t f ),tk∂k

t f )L2+(Γ(tk∂k
t f , f ),tk∂k

t f )L2

+ ∑
1≤j≤k−1

Cj
k Γ(tj∂

j
t f ,tk−j∂

k−j
t f ),tk∂k

t f )L2 .

For all 0< t≤T, integrating from 0 to t, using Lemma 2.1 and (3.1) with δ= 1
8C2

, we can
conclude ∫ t

0
τ2k(L1(∂

k
τ f ),∂k

τ f )L2dτ≥∥τk∂k
τ f ∥2

L2([0,t];L2
A)
−C2

∫ t

0
τ2k∥∂k

τ f ∥2
2,γ/2dτ

≥ 7
8
∥τk∂k

τ f ∥2
L2([0,t];L2

A)
−C̃2

∫ t

0
τ2k∥∂k

τ f ∥2
L2dτ.
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Using Corollary 2.1, for all 0≤ t≤T, we have∣∣∣∣∫ t

0
τ2k(L2(∂

k
τ f ),∂k

τ f )L2dτ

∣∣∣∣≤C4

∫ t

0
τ2k∥∂k

τ f ∥L2∥∂k
τ f ∥L2

A
dτ

≤1
8
∥τk∂k

τ f ∥2
L2([0,t];L2

A)
+2C2

4

∫ t

0
τ2k∥∂k

τ f ∥2
L2dτ.

Finally, using Lemma 2.2, we have

1
2
∥tk∂k

t f ∥2
L2+

3
4

∫ t

0
∥τk∂k

τ f ∥2
L2

A
dτ

≤k
∫ t

0
τ2k−1∥∂k

τ f ∥2
L2dτ+C̃3

∫ t

0
∥τk∂k

τ f ∥2
L2dτ

+C3 ∑
0≤j≤k

Cj
k

∫ t

0
∥τ j∂

j
τ f ∥L2∥τk−j∂

k−j
τ f ∥L2

A
∥τk∂k

τ f ∥L2
A
dτ, (4.2)

with C̃3= C̃2+2C2
4 depends only on C1,C2,C3,C4 and T.

We prove now (4.1) by induction on k. Assume that for k ≥ 2, (4.1) holds true for
1≤m≤ k−1,

∥τm∂m
τ f ∥2

L∞([0,T];L2(R3))+∥τm∂m
τ f ∥2

L2([0,T];L2
A(R

3))≤B2(m−1)((m−2)!)2. (4.3)

And we shall prove that (4.1) holds true for m= k. We estimate the terms of the RHS of
(4.2) by the following lemmas.

Lemma 4.1. Assume that (4.3) holds true for any 1≤m≤ k−1, and f satisfies (3.2), then

k
∫ t

0
τ2k−1∥∂k

τ f ∥2
L2dτ≤ 1

8
∥τk∂k

τ f ∥2
L2([0,t];L2

A)
+A1B2(k−2)((k−2)!)2, (4.4)

with A1 depends only on C1,C2,C3,C4 and T.

We have also

Lemma 4.2. Assume that (4.3) holds true for any 1≤m≤ k−1, then

C3 ∑
1≤j≤k−1

Cj
k

∫ t

0
∥τ j∂

j
τ f ∥L2∥τk−j∂

k−j
τ f ∥L2

A
∥τk∂k

τ f ∥L2
A
dτ

≤1
8
∥τk∂k

τ f ∥2
L2([0,t];L2

A)
+A2B2(k−2)((k−2)!)2, (4.5)

with A2 depends only on C1,C2,C3,C4 and T.



Smoothing Effect of the Time Variable for the Landau Equation 99

Lemma 4.3. Assume that f satisfies (3.2), then, for 0< t≤T,

C3

∫ t

0
∥τk∂k

τ f ∥L2∥ f ∥L2
A
∥τk∂k

τ f ∥L2
A
dτ

≤1
8
∥τk∂k

τ f ∥2
L2([0,t];L2

A)
+2C2

3 B2
0ϵ2 ∥τk∂k

τ f ∥2
L∞([0,t];L2), (4.6)

and ∫ t

0
∥ f ∥L2∥τk∂k

τ f ∥2
L2

A
dτ≤B0ϵ∥τk∂k

τ f ∥2
L2([0,t];L2

A)
. (4.7)

We will give the proofs of these three lemmas in the next section.

End of proof of Proposition 4.1
Choose 0<ϵ<1 small such that

C3B0ϵ≤ 1
8

, 2C2
3 B2

0ϵ2≤ 1
4

.

Since (4.3) holds true for any 1≤m≤ k−1, and f satisfies (3.2), then combine (4.2), (4.4)-
(4.7), we get, for 0< t≤T,

∥tk∂k
t f ∥2

L2+
∫ t

0
∥τk∂k

τ f ∥2
L2

A
dτ≤4(A1+A2)(Bk−2(k−2)!)2+4C̃3

∫ t

0
∥τk∂k

τ f ∥2
L2dτ,

with C̃3 depends only on C1,C2,C3,C4 and T. By using Gronwall inequality, we get for
0< t≤T,

∥tk∂k
t f ∥2

L2 ≤4e4C̃3T(A1+A2)B2(k−2)((k−2)!)2,

which deduce

∥τk∂k
τ f ∥2

L∞([0,T],L2)+∥τk∂k
τ f ∥2

L2([0,T],L2
A)

≤4(e4C̃3T 4C̃3T+1)(A1+A2)B2(k−2)((k−2)!)2.

We prove then

∥τk∂k
τ f ∥2

L∞([0,T],L2)+∥τk∂k
τ f ∥2

L2([0,T],L2
A)
≤B2(k−1)((k−2)!)2,

if we choose the constant B such that

4(e4C̃3T 4C̃3T+1)(A1+A2)≤B2,

so that the constant B depends only on C1,C2,C3,C4,T and small ϵ. We finish the proof of
Proposition 4.1.
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5 Proofs of technical lemmas

Before give the proof of Lemmas 4.1-4.3, we need the following lemma.

Lemma 5.1. For all k∈N,k≥5, we have

∑
2≤j≤k−3

k(k−1)
j(j−1)(k− j−1)(k− j−2)

≤12. (5.1)

Proof. Without loss of generality, we may assume k−1 is even, then the summation can
be rewritten as

∑
2≤j≤ k−3

2

k(k−1)
j(j−1)(k−1− j)(k−2− j)

+ ∑
k−1

2 ≤j≤k−3

k(k−1)
j(j−1)(k−1− j)(k−2− j)

.

For the first term in above, since j≤ k−3
2 , we have k− j≥ k+3

2 . Then it follows that

∑
2≤j≤ k−3

2

k(k−1)
j(j−1)(k−1− j)(k−2− j)

≤ ∑
2≤j≤ k−3

2

4
j(j−1)

≤4.

For the second term, by j≥ k−1
2 , we have

∑
k−1

2 ≤j≤k−3

k(k−1)
j(j−1)(k−1− j)(k−2− j)

≤ ∑
k−1

2 ≤j≤k−3

8
(k−1− j)(k−2− j)

≤8.

Thus (5.1) holds true.

Proof of Lemma 4.1. For k≥2, by (1.2), one has

∂k
t f =∂t(∂

k−1
t f )=−L(∂k−1

t f )+∂k−1
t Γ( f , f )

=−L(∂k−1
t f )+ ∑

0≤j≤k−1
Cj

k−1Γ(∂j
t f ,∂k−1−j

t f ).

Then we have

k
∫ t

0
τ2k−1∥∂k

τ f ∥2
L2dτ=k ∑

0≤j≤k−1
Cj

k−1

∫ t

0
τ2k−1(Γ(∂j

τ f ,∂k−1−j
τ f ),∂k

τ f )L2dτ

−k
∫ t

0
τ2k−1(L(∂k−1

τ f ),∂k
τ f )L2dτ

=:S1+S2.
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Using Lemma 2.2, we can conclude

|S1|≤C3k ∑
0≤j≤k−1

Cj
k−1

∫ t

0
∥τ j∂

j
τ f ∥L2∥τk−1−j∂

k−1−j
τ f ∥L2

A
∥τk∂k

τ f ∥L2
A
dτ

≤4C2
3k2

(
∑

0≤j≤k−1
Cj

k−1∥τ j∂
j
τ f ∥L∞([0,t];L2)∥τk−1−j∂

k−1−j
τ f ∥L2([0,t];L2

A)

)2

+
1
16

∥τk∂k
τ f ∥2

L2([0,t];L2
A)

.

From (4.3), one can obtain

∑
0≤j≤k−1

Cj
k−1∥τ j∂

j
τ f ∥L∞([0,t];L2)∥τk−1−j∂

k−1−j
τ f ∥L2([0,t];L2

A)

≤ ∑
0≤j≤k−1

Cj
k−1Bj−1(j−2)!Bk−2−j(k−3− j)!

≤Bk−3(k−3!)

(
∑

2≤j≤k−3

k(k−1)
j(j−1)(k−1− j)(k−2− j)

+6

)
. (5.2)

Substituting (5.1) into (5.2) we get

∑
0≤j≤k−1

Cj
k−1∥τ j∂

j
τ f ∥L∞([0,t];L2)∥τk−1−j∂

k−1−j
τ f ∥L2([0,t];L2

A)
≤18Bk−3(k−3)!,

from which we can conclude

|S1|≤
1
16

∥τk∂k
τ f ∥2

L2([0,t];L2
A)
+C6

(
Bk−3(k−2)!

)2
,

with C6 depends only on C1,C2,C3,C4 and T, where we use k
k−2 ≤3.

For the term S2, using Corollary 2.1 and (4.3), we have

|S2|≤C4k
∫ t

0

(
∥τk−1∂k−1

τ f ∥L2+∥τk−1∂k−1
τ f ∥L2

A

)
∥τk∂k

τ f ∥L2
A
dτ

≤4C2
4k2
(

T∥τk−1∂k−1
τ f ∥2

L∞([0,t];L2)+∥τk−1∂k−1
τ f ∥2

L2([0,t];L2
A)

)
+

1
16

∥τk∂k
τ f ∥2

L2([0,t];L2
A)

≤4C2
4k2(T+1)

(
Bk−2(k−3)!

)2
+

1
16

∥τk∂k
τ f ∥2

L2([0,t];L2
A)

≤C7

(
Bk−2(k−2)!

)2
+

1
16

∥τk∂k
τ f ∥2

L2([0,t];L2
A)

,

with C7 depends only on C1,C2,C3,C4 and T.
Taking A1 =C6+C7, so that A1 depends only on C1,C2,C3,C4 and T, then combining

S1 and S2, we get

k
∫ t

0
τ2k−1∥∂k

τ f ∥2
L2dτ≤ 1

8
∥τk∂k

τ f ∥2
L2([0,t];L2

A)
+A1

(
Bk−2(k−2)!

)2
.
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Proof of Lemma 4.2. Using Hölder’s inequality and (4.3), we have

C3 ∑
1≤j≤k−1

Cj
k

∫ t

0
∥τ j∂

j
τ f ∥L2∥τk−j∂

k−j
τ f ∥L2

A
∥τk∂k

τ f ∥L2
A
dτ

≤2C2
3

(
∑

1≤j≤k−1
Cj

k∥τ j∂
j
τ f ∥L∞([0,t];L2)∥τk−j∂

k−j
τ f ∥L2([0,t];L2

A)

)2

+
1
8
∥τk∂k

τ f ∥2
L2([0,t];L2

A)

≤2C2
3

(
Bk−2(k−2)!

)2
(

∑
2≤j≤k−3

k(k−1)
j(j−1)(k− j)(k− j−1)

+6

)2

+
1
8
∥τk∂k

τ f ∥2
L2([0,t];L2

A)

≤2C2
3

(
Bk−2(k−2)!

)2
(

∑
2≤j≤k−3

k(k−1)
j(j−1)(k− j−1)(k− j−2)

+6

)2

+
1
8
∥τk∂k

τ f ∥2
L2([0,t];L2

A)
.

Then from (5.1), we can get

C3 ∑
1≤j≤k−1

Cj
k

∫ t

0
∥τ j∂

j
τ f ∥L2∥τk−j∂

k−j
τ f ∥L2

A
∥τk∂k

τ f ∥L2
A
dτ

≤1
8
∥τk∂k

τ f ∥2
L2([0,t];L2

A)
+A2

(
Bk−2(k−2)!

)2
,

with A2 depends only on C1,C2,C3,C4 and T.

Proof of Lemma 4.3. For the inequality (4.6), using Hölder’s inequality and (3.2), one has

C3

∫ t

0
∥τk∂k

τ f ∥L2∥ f ∥L2
A
∥τk∂k

τ f ∥L2
A
dτ

≤1
8
∥τk∂k

τ f ∥2
L2([0,t];L2

A)
+2C2

3∥τk∂k
τ f ∥2

L∞([0,t];L2)

∫ t

0
∥ f ∥2

L2
A
dτ

≤1
8
∥τk∂k

τ f ∥2
L2([0,t];L2

A)
+2C2

3 B2
0ϵ2.

For the inequality (4.7), the inequality (3.2) implies

∫ t

0
∥ f ∥L2∥τk∂k

τ f ∥2
L2

A
dτ≤∥ f ∥L∞([0,T];L2)∥τk∂k

τ f ∥2
L2([0,t];L2

A)
≤B0ϵ∥τk∂k

τ f ∥2
L2([0,t];L2

A)
.
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