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Abstract. We study existence and uniqueness results for the Yamabe problem on non-
compact manifolds of negative curvature type. Our first existence and uniqueness
result concerns those such manifolds which are asymptotically locally hyperbolic. In
this context, our result requires only a partial C2 decay of the metric, namely the full
decay of the metric in C1 and the decay of the scalar curvature. In particular, no decay
of the Ricci curvature is assumed. In our second result we establish that a local volume
ratio condition, when combined with negativity of the scalar curvature at infinity, is
sufficient for existence of a solution. Our volume ratio condition appears tight. This
paper is based on the DPhil thesis of the first author.
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1 Introduction

We are interested in the Yamabe problem on non-compact manifolds: given some com-
plete non-compact Riemannian manifold (M, g) of dimension n ≥ 3, does there exist a
corresponding complete conformal metric whose scalar curvature is constant? Equiv-
alently, we would like to find a complete metric g̃ = u

4
n−2 g, where u is some strictly

positive smooth function on M solving the Yamabe equation

Sg̃ = u−
n+2
n−2
(
−cn∆gu + Sgu

)
≡ constant, cn :=

4(n− 1)
n− 2

.

Here, Sg and Sg̃ refer to the scalar curvatures of the corresponding metrics. The operator
−cn∆g + Sg is known as the conformal Laplacian.
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In the case that M is compact, the Yamabe problem has been extensively studied.
The existence of a solution was established through the combined works of Yamabe [49],
Trudinger [45], Aubin [7] and Schoen [43]. For other aspects of the Yamabe problem, see
e.g., [10, 11, 13, 15, 20, 21, 31, 32, 35–38, 48] and references therein.

Our work is focused on the Yamabe problem of “negative curvature type” on non-
compact manifolds, namely we are interested in obtaining conformal changes to constant
negative scalar curvature. Consequently, asserting that Sg̃ ≡ −n(n− 1), the equation for
the conformal change in scalar curvature yields the Yamabe equation

−cn∆gu + Sgu = −n(n− 1)u
n+2
n−2 . (Ya)

Finding a solution to the Yamabe problem thus amounts to finding a positive solution of
the equation (Ya) above for which the corresponding conformal metric is complete.

The Yamabe problem of negative curvature type on non-compact manifolds has been
studied extensively in the literature. Important progress has been made by Andersson,
Chruściel and Friedrich [1], Gover and Waldron [24], Graham [22] and Loewner and
Nirenberg [34]. For further literature, see e.g., [3–5,8,16–18,25,27–29,33,34,39,40,42,44,46]
and references therein.

In the present work we consider conditions for existence of a solution to the Yamabe
problem on a given non-compact Riemannian manifold (M, g), where g has asymptoti-
cally negative scalar curvature. We assume throughout the paper that g is complete and
satisfies a condition of the type

lim sup Sg ≤ −ε < 0 (1.1)

for some ε > 0 and where the limit is taken along any divergent sequence in the manifold.
It is known that (1.1) is insufficient to conclude that the Yamabe problem can be

solved. For example, in [5], alongside a number of existence results, Aviles and McOwen
give an example of a complete metric g on R×Tn−1 satisfying (1.1) for which the Yam-
abe problem has no solution. It is therefore of interest to understand what conditions,
in addition to (1.1), are necessary and/or sufficient for the Yamabe problem to have a
solution.

Our first result concerns asymptotically locally hyperbolic (ALH) manifolds, a well-
studied class of manifolds satisfying (1.1), in a weaker sense than considered in the exist-
ing literature (e.g., [1] and [2]). In particular, our notion of ALH requires only C1 decay in
the metric components to those of the model space and a bound on the scalar curvature
of the form

Sg ≤ −n(n− 1) + Ce−αr or (1.2a)
|Sg + n(n− 1)| ≤ Ce−αr (1.2b)

for α ∈ (0, n) and some constant C > 0, without requiring decay of the full curvature
tensor. For the precise definition, see Section 2.1. We establish:
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Theorem 1.1. Suppose (M, g) is an ALH manifold of regularity order 1 and with decay exponent
α ∈ (0, n). If the scalar curvature satisfies (1.2a) on M, then there exists a positive smooth
solution u to (Ya) on M satisfying

lim inf
r→∞

u ≥ 1

corresponding to a complete conformal metric g̃ with Sg̃ ≡ −n(n− 1).
If the scalar curvature satisfies the stronger condition (1.2b) on M, then the solution u above

is the unique solution satisfying limr→∞ u = 1, the corresponding conformal manifold (M, g̃) is
ALH of regularity order 0 and with decay exponent α, and u is maximal among all solutions to
(Ya), that is any other solution ũ satisfies ũ ≤ u.

Some comments on the conclusions of the theorem are in order. Concerning the
uniqueness, we are able to slightly relax the condition limr→∞ u = 1; see Proposition
2.4. However, this necessary condition for uniqueness cannot be dropped in its entirety:

Example 1.1. Take M = B1 to be the unit ball in Rn, δ to be the Euclidean metric and

g =
4

(1− |x|2)2 δ and g′ =
4R2

(R2 − |x|2)2 δ

to be the Poincaré metrics on B1 and BR for some R > 1. Clearly, on B1, if we write g′ =
u

4
n−2 g then u must solve the Yamabe equation for (M = B1, g) and limr(x)→∞ u(x) = 0. In

fact, u(x)e
n−2

2 r(x) tends to
(

4R
R2−1

) n−2
2

as r(x)→ ∞.

Regarding the loss in regularity order of the resulting conformal ALH metric, this
is expected due to the assumption that the scalar curvature decays only in L∞ in (1.2b).
Under stronger decay assumptions, one may appeal to elliptic regularity theory to obtain
correspondingly stronger regularity of the resulting conformal metric at infinity.

We place our result in the context of the existing literature on the Yamabe problem for
asymptotically hyperbolic manifolds. A fundamental and pioneering work of Loewner
and Nirenberg [34] showed that, on every open subset M of Rn with regular boundary,
there exists a complete and conformally flat metric g which is ALH and has constant
negative scalar curvature. Of special relevance to Theorem 1.1 is the work of Andersson,
Chruściel and Friedrich [1] which proved, roughly speaking and among other things, the
existence and uniqueness of a solution to the Yamabe problem when (M, g) is ALH and
admits a C2 conformal compactification†. We note that the existence of such a conformal
compactification mandates the full decay of all sectional curvatures to a negative constant
near infinity. Under weaker regularity assumptions on the conformal compactification,
while still maintaining the full curvature decay, a similar result has been obtained in [2].
We remark that in Theorem 1.1, we require instead an assumption on the scalar curvature
alone. It is not hard to give examples of metrics which satisfy the conditions of Theorem

†The related question of when intrinsic definitions of non-compact ALH manifolds imply the existence of a
corresponding conformal compactification of a certain regularity is addressed, for example, in [9] and [19].
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1.1 but whose Ricci curvature is not asymptotic to a constant multiple of the metric; see
Example 2.1.

In our second main result, we give a local condition which, together with (1.1), en-
sures the existence of a solution to the Yamabe problem. Our result is motivated by a
result of Aviles and McOwen in [5] which asserts that the negativity of the first eigen-
value of the conformal Laplacian on some compact domain, in combination with (1.1),
implies the existence of a solution to the Yamabe problem. We prove:

Theorem 1.2. Let (M, g) be a Riemannian manifold and suppose that there exist two open sets
Ω1 ⊂ Ω2 with C1 boundary which satisfy (taking dg to be the geodesic distance with respect to
g) that

dg(x, ∂Ω2) = R for each x ∈ ∂Ω1 for some R > 0, (1.3a)

Volg(Ω2 \Ω1)

Volg(Ω1)
≤ sinh2

(√
n(n− 2)

2
R

)
, (1.3b)

and the scalar curvature satisfies Sg ≤ −n(n − 1) on Ω2. Then, the conformal Laplacian
−cn∆g + Sg for (M, g) has a negative first eigenvalue on Ω2. Consequently, if g satisfies (1.1),
there exists a complete metric g̃ conformal to g on M of constant scalar curvature −n(n− 1).

Our Theorem 1.2 gives a new sufficient condition for existence, relating a local vol-
ume growth to the solvability of the Yamabe problem on the whole manifold. The local
condition (1.3b) is tight in the following sense:

Remark 1.1. The constant
√

n(n−2)
2 in (1.3b) is sharp with respect to the existence of a neg-

ative first eigenvalue for the conformal Laplacian. Namely, for any β >
√

n(n− 2) there
exists a manifold (M, g) and concentric annuli Ω1 ⊂ Ω2 satisfying (1.3a) with volume
ratio

Volg(Ω2 \Ω1)

Volg(Ω1)
≤ sinh2

(β

2
R
)

(1.4)

and with scalar curvature satisfying Sg ≤ −n(n− 1) on Ω2 but for which the first eigen-
value for the conformal Laplacian on Ω2 is positive. See Proposition 3.1 and the comment
following it.

While the relationship between volume comparison and the first eigenvalue for the
Laplacian −∆g has been well observed in the literature, the relation between volume
comparison and the solvability of the Yamabe problem is less understood. Although it
is sharp for the existence of a negative first eigenvalue for the conformal Laplacian, we
do not know whether our bound in (1.3b) is optimal for the solvability of the Yamabe
problem. It would be interesting to understand what the sharp volume ratio bound of
the form (1.3b) would be for existence of solutions to the Yamabe problem.

Theorem 1.2 is of a different flavour to Theorem 1.1. We first note that, for the ALH
manifolds treated in Theorem 1.1, the volume ratio in the asymptotic region behaves
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differently than (1.3b); in particular if we fix Ω1 in the asymptotic region and consider
large R, the volume ratio satisfies

Volg(Ω2 \Ω1)

Volg(Ω1)
≈ e(n−1)R � sinh2

(√
n(n− 2)

2
R

)
. (1.5)

Furthermore, we have the following remark:

Remark 1.2. Consider a manifold (M, g) of the form M = R × N, where (N, h) is a
manifold of constant negative scalar curvature and g = dr2 + e−βrh for some 0 ≤ β <√

n(n−2)
n−1 . By (3.15), a computation gives Sg = −(n − 1)(n − 2)e2βr + O(1) → −∞ as

r → ∞. Additionally, taking Ω1 = (r0, r0 + 1) × N, Ω2 = (r0 − R, r0 + 1 + R) × N for
some r0 � R � 1 we have that (1.3b) is satisfied. And lastly, by Proposition 2.5, g is
not conformal to a locally hyperbolic metric. Consequently, (M, g) provides an example
which is not covered by Theorem 1.1 and for which we may solve the Yamabe problem
on (M, g).

We briefly discuss the proofs of our results. The proof of the existence part of Theorem
1.1 makes use of the procedures in [1] and [5], where barrier functions play an important
role. Due to the weaker asymptotic conditions on the scalar curvature in (1.2a), or (1.2b),
additional work is required to construct such barrier functions. For the uniqueness part,
we treat separately the lower and upper bounds at infinity for solutions of (Ya). For the
upper bound, we adapt certain ideas from [34] using certain reference solutions. The
main difference is that we lack an explicit closed form of the reference solutions and so
the final conclusion is drawn from an asymptotic analysis of these solutions, exploiting
the conformal invariance of the equation. For the lower bound, we highlight that our
treatment is very different from approaches seen in the literature, where one typically
uses the existence of a sufficiently regular conformal compactification in order to compare
the solution to some reference solution exterior to the compactified manifold. Owing to
our lack of such a compactification, we instead perform a blow-up analysis intrinsically
to the given manifold, identifying a limiting equation from which we deduce the desired
lower bound at infinity.

To prove Theorem 1.2, we make use of a particular test function for the variational
functional corresponding to the first eigenvalue of the conformal Laplacian. This test
function is constructed by minimising the sup-norm of the integrand in the variational
functional, following the procedure in [6] and using the volume ratio condition (1.3b). It
was surprising to the authors that condition (1.3b) for the volume ratio turned out to be
sharp in the sense of Remark 1.1 above. While falling outside the scope of the present
paper, it would be interesting to understand what other geometric quantities similar in
nature to the volume ratio used here could have relevance to the behaviour of the first
eigenvalue of the conformal Laplacian and the solvability of the Yamabe problem.

The paper is structured as follows. In Section 2, we address Theorem 1.1 and our
work in the context of ALH manifolds. In Section 3, we address Theorem 1.2 and our
related study of the volume ratios of multiply warped product manifolds.
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2 The Yamabe problem for asymptotically locally hyperbolic
manifolds

In this section, we prove Theorem 1.1. We first make precise our setting in Section 2.1.
Our results are then split into two main sections; Section 2.2 addresses the existence of
a solution to the Yamabe problem and Section 2.3 focuses on an understanding of the
asymptotic behaviour of the obtained conformal factor. We then summarise how the
results of the previous two sections combine to prove Theorem 1.1 in Section 2.4. Finally,
in Section 2.5, we provide a discussion of how Theorem 1.1 can be applied to the broader
class of asymptotically warped product manifolds, in particular via a result regarding the
conformal classes of reference warped product metrics.

2.1 Definitions and notation

We will consider manifolds which may be decomposed as a union M = M0 ∪M+, where
M0 is some compact interior region, M+ is a non-compact exterior region and both parts
are disjoint apart form their common boundary. We assume further that we may express
M+ = R≥0 × N, where N is some (n− 1)–dimensional compact manifold. On the end
R≥0 × N, we denote by r a coordinate on the R≥0 fibre. Additionally, we denote the
coordinates on any local (angular) chart on N with a θa, where a = 1, · · · , n− 1, and we
use a, b, c, · · · to index angular coordinates. When referring to the full set of coordinates
on M+ we use the notation x1 = θ1, · · · , xn−1 = θn−1, xn = r and we use i, j, k, · · · to
index over all coordinates.

We define a reference locally hyperbolic metric g̊ on the exterior region M+ to be

g̊ = dr2 + f 2
k (r + r0)h̊ (2.1)

for some r0 > 0, where h̊ is a metric on N of constant scalar curvature (n− 1)(n− 2)k for
k ∈ {−1, 0, 1} and

fk(r) =


sinh(r), k = 1,
er, k = 0,
cosh(r), k = −1.

In particular, when k = 1 and N = Sn−1, g̊ is the standard hyperbolic metric.
We additionally note that the scalar curvature of a warped product metric like g̊ may

be computed via the formula

Sg̊ = −2(n− 1)
f ′′k
fk
− (n− 1)(n− 2)

(
f ′k
fk

)2

+
Sh̊
f 2
k

.

From this, one may compute that Sg̊ ≡ −n(n− 1) for each k in the above definition.
For the next definition below, we choose a finite set of preferred charts Ui covering N,

each with a preferred choice of local coordinates {θ1, · · · , θn−1}. We extend these charts
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to M+ by defining Vi = R≥0 ×Ui with coordinates {r, θ1, · · · , θn−1} and fix them from
hereon. For a function ϕ on the end R≥0 × N we use the notation ϕ = Om(e−αr) to
indicate that ϕ and all of its first m derivatives in the coordinates defined above decay
as e−αr, that is there exists a constant C > 0 such that ϕ satisfies |∂β ϕ| ≤ Ce−αr, where β
indicates any multi-index with 0 ≤ |β| ≤ m.

We adopt the following definition of ALH manifolds which, while differing slightly,
is consistent with those found in the literature (e.g., in [2, 12, 14, 47]).

Definition 2.1 (Asymptotically Locally Hyperbolic). We say a Riemannian manifold (M, g)
is asymptotically locally hyperbolic of regularity order m ∈ N and with decay exponent α > 0
if we can write M = M0 ∪ (R≥0 × N) and we can write the metric components of g on any
preferred coordinate chart as

grr = g̊rr = 1, gab = g̊ab +Om

(
e−(α−2)r

)
, gra = Om

(
e−(α−1)r

)
,

where g̊ is a reference locally hyperbolic metric of the form (2.1) for some k ∈ {−1, 0, 1}. If (N, h̊)
is the round sphere then we simply say that g is asymptotically hyperbolic.

It is clear that if (M, g) is ALH with decay exponent α then it is also ALH with decay
exponent α′ for any 0 < α′ < α. We note that if α < 1, then (M, g) is C0,α conformally
compactifiable and if α ≥ 1 then (M, g) is C1 conformally compactifiable. For terminol-
ogy, see for example [12].

In the remainder of this paper, we will make regular use of the coordinate function
r corresponding to the R≥0 fibre of the exterior region M+. We note that the particular
choice of r is not unique, in that the reference metric g̊ defined above may be expressed
in the form (2.1) for arbitrarily many choices of coordinate function r via diffeomorphism
of M+ or by an altogether different choice of splitting of M into the interior and exterior
regions M0 and M+. To avoid this complication, whenever we speak of an ALH manifold
as defined above, we implicitly assume that there is a pre-chosen r.

We provide the following computational lemma establishing the corresponding decay
of the metric inverse and Christoffel symbols which will be useful to us later.

Lemma 2.1. Suppose (M, g) is an ALH manifold of regularity order 1 and decay exponent α.
Then, in any of the preferred charts

grr = 1 +O1(e−2αr),
Γr

rr = O
(
e−αr) ,

Γa
br = Γ̊a

br +O
(
e−αr) ,

gra = O1(e−(α+1)r),

Γa
rr = O

(
e−(α+1)r

)
,

Γr
ab = Γ̊r

ab +O
(

e−(α−2)r
)

,

gab = g̊ab +O1(e−(α+2)r),

Γr
ar = O

(
e−(α−1)r

)
,

Γa
bc = Γ̊a

bc +O
(
e−αr) ,

where we use the notation Γ̊ to denote the Christoffel symbols of the reference locally hyperbolic
metric g̊ which satisfy

Γ̊r
ab = O2

(
e2r) , Γ̊a

br = O2 (1) , Γ̊a
bc = O2 (1) .
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We provide an example of an ALH manifold in the sense of Definition 2.1 which is not
covered by the existing literature for the Yamabe problem on asymptotically hyperbolic
manifolds. In particular, the class described below includes metrics, where not all of the
sectional curvatures are decaying to a negative constant at infinity.

Example 2.1. Consider the warped product manifold M3 = R≥0 ×T2, where T2 is the
2-dimensional flat torus with metric (dx1)2 + (dx2)2 and standard coordinates {xa}. We
endow M3 with the diagonal metric

g = dr2 + e2r
(

p(r)(dx1)2 + p−1(r)(dx2)2
)

.

This metric is ALH in the sense of Definition 2.1 provided, for example, p(r) = 1 +
O(e−αr) and p′(r) = O(e−αr), which we assume in this example. The metric g has Ricci
curvature

Rrr = −2− 1
2

(
p′

p

)2

, R11 = e2r p

(
−2 +

1
2

(
p′

p

)2

− p′

p
− 1

2

(
p′′

p

))
,

R22 = e2r p−1

(
−2− 1

2

(
p′

p

)2

+
p′

p
+

1
2

(
p′′

p

))
.

We see that the Ricci curvature does not necessarily decay to a constant multiple of the
metric (note the presence of the p′′ term in R11 and R22). In contrast, the metric g has
scalar curvature

Sg = −6− 1
2

(
p′

p

)2

= −6−O(e−αr). (2.2)

The example above demonstrates a class which does not satisfy the requirements (dis-
cussed in more detail in the following section) in [1] or [2] but which falls under Defini-
tion 2.1. There are certainly many such p which behave wildly in C2 and so have poor
behaviour of the Ricci curvature, for example take p(r) = 1 + e−2αr sin(eαr).

2.2 Existence of a solution for the Yamabe problem

In this section we will exhibit a sub-solution to (Ya), from which existence of a solution
follows via the arguments of Aviles and McOwen in [5].

Lemma 2.2. Let (M, g) be ALH of regularity order 1 and with decay exponent α < n and satisfy
(1.2a). For any 0 < β < min(n− 1, α), there exist constants 0 < δ < 1, close to 1, and θ > 0,
large, such that the function u− ∈ H1

loc(M) defined by

u− :=


1− C(θ, δ)e−αr on {rδ ≤ r} × N,

1− θe−βr on {rθ ≤ r ≤ rδ} × N,

0 on M0 ∪ ({r ≤ rθ} × N),
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where

rδ :=
1
β

log
(

θ

1− δ

)
, rθ :=

1
β

log (θ) and C(θ, δ) =

(
θ

1− δ

) α
β

is a sub-solution of (Ya) on M which is positive outside of some compact set.

We note here that the choice of C(θ, δ) ensures that u− is continuous and therefore
belongs to H1

loc(M). The change at rδ is used only in the case that n− 1 ≤ α < n.
We have a sub-solution of the form u− = u−(r) so we are led to consider the ordinary

differential inequality arising immediately from (Ya)

− cn
(
1 +O(e−2αr)

)
u′′− + cn

(
(n− 1)

f ′k
fk
+O(e−αr)

)
u′−

−
(
n(n− 1) +O(e−αr)

)
u− ≤ −n(n− 1)u

n+2
n−2
− . (2.3)

Proof. Fix some 0 < β < min(n− 1, α). To establish that u− is a sub-solution, we must
show that (2.3) holds on {rθ ≤ r ≤ rδ} and {rδ ≤ r} and check the following transmission
conditions at rθ and at rδ,

lim
r↗rθ

u′−(r) ≤ lim
r↘rθ

u′−(r) and lim
r↗rδ

u′−(r) ≤ lim
r↘rδ

u′−(r).

The first condition is immediate as β > 0 and the second condition holds true as β < α.
To establish (2.3) it suffices to show, for some constant C1 > 0 depending only on g,

that there exist θ and δ (possibly depending on β) such that

L−u− :=− cnu′′− − cn

(
(n− 1)

f ′k
fk
− C1e−αr

)
u′−

−
(
n(n− 1)− C1e−αr) u− + C1e−2αr|u′′−|

≤ − n(n− 1)u
n+2
n−2
− (2.4)

holds on {rθ < r < rδ} and {rδ < r}. We note here that u′− ≥ 0 for all r.
In the following, we write C to indicate a constant changing from line to line but

depending only on g. For {rθ < r < rδ}, we have that

n(n− 1)u
n+2
n−2
− ≤ n(n− 1)δ

4
n−2 u− as 0 ≤ u− ≤ δ.

We compute

L−u− + n(n− 1)u
n+2
n−2
− <cnθ

(
β2 − (n− 1)β +

1
4

n(n− 2)(1− δ
4

n−2 )

)
e−βr

+ C(e(β−α)r + θe−αr + θe−2r︸ ︷︷ ︸
A

)e−βr,
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where we used that
f ′k(r + r0)

fk(r + r0)
> 1− Ce−2r and u′− ≥ 0.

Note first that, for δ close to 1, the first term of the RHS of the above is a negative multiple
of e−βr. In addition, as β < α we have, for r ≥ rθ , that

|A(r)| ≤ A(rθ) ≤ C(θ1− α
β + θ

1− 2
β ).

Consequently, for θ sufficiently large, the first term on the RHS dominates and, for all δ
sufficiently close to 1, we have

L−u− + n(n− 1)u
n+2
n−2
− < 0 in {rθ < r < rδ}.

We choose such a θ and fix it from here on.
On {r > rδ}, note that we have δ ≤ u− ≤ 1. As∣∣∣∣x n+2

n−2 − 1− n + 2
n− 2

(x− 1)
∣∣∣∣ = ∣∣∣∣∫ 1

x
4

n + 2
(n− 2)2 t−

n−6
n−2 (x− t) dt

∣∣∣∣ < 4
n + 2

(n− 2)2 δ−
n−6
n−2 (x− 1)2

for δ < x ≤ 1. We have,

n(n− 1)u
n+2
n−2
− < n(n− 1)− cn

n
4
(n + 2)C(θ, δ)e−αr + cn

n(n + 2)
(n− 2)

δ−
n−6
n−2 C(θ, δ)2e−2αr.

Using again that f ′k(r+r0)
fk(r+r0)

> 1− Ce−2r and u′− ≥ 0, we obtain

L−u− + n(n− 1)u
n+2
n−2
− ≤cne−αrC(θ, δ)

[
α2 − (n− 1)α− n

+ C
(

δ−
n−6
n−2 C(θ, δ)e−αr + e−αr + e−2r +

1
C(θ, δ)︸ ︷︷ ︸

B

)]
. (2.5)

As α < n, α2 − (n− 1)α− n < 0. We note that B(r) is non-increasing. We have for r > rδ.

0 < B(r) < B(rδ) =

[
δ−

n−6
n−2 (1− δ) +

(
θ

1− δ

)− α
β

+

(
θ

1− δ

)− 2
β

+
1

C(θ, δ)

]
→ 0 as δ↗ 1.

It follows that for δ close to 1,

L−u− + n(n− 1)u
n+2
n−2
− < 0

as required.
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We note that if α = n, the leading term in (2.5) vanishes and so the above computation
does not work . However, it is possible to adapt the proof to include the case that α = n
by using a decay rate of re−nr for r > rδ and making the corresponding adjustments. A
similar obstacle occurs in the later construction of a corresponding super-solution and
can be treated with the same adjustment.

We now use the above sub-solution to prove the existence part of Theorem 1.1.

Proposition 2.1. Let (M, g) be ALH of regularity order 1 and with decay exponent α ∈ (0, n)
satisfying (1.2a). There exists a positive smooth solution u of (Ya) on M satisfying u ≥ 1−Ce−αr

for some C > 0. Consequently, there exists a complete conformal metric g̃ such that Sg̃ ≡
−n(n− 1) on M.

Proof. By Lemma 2.2 there exists a sub-solution u− of (Ya), which satisfies u− ≥ 1 −
Ce−αr. The sub- and super-solution argument of Aviles and McOwen in [5, Proposition
2.1] yields a smooth solution u of (Ya) satisfying u ≥ u− on M. It remains to show that u
is positive on all of M; once this is established, we will have obtained a conformal metric
g̃ = u

4
n−2 g which is complete, from the sub-solution lower bound, and has constant scalar

curvature.
As u ≥ u−, u is non-negative and positive outside of some compact set. Let B be a

large ball on which u 6≡ 0 and outside of which u > 0. On B, the scalar curvature Sg ≤ A
for some constant A > 0. Consequently, taking a sufficiently large constant C > 0 such
that u satisfies

cn∆gu− Cu ≤
[
n(n− 1)u

n+2
n−2 + Au

]
− Cu ≤ 0,

we can apply the strong maximum principle (see [23, Theorem 3.5]) to deduce that, as
u 6≡ 0 on B, u is strictly positive in B and so on all of M.

2.3 Asymptotic properties of the conformal factor

In order to complete the proof of the remaining parts of Theorem 1.1, we study the
asymptotic properties of solutions of the Yamabe equation as well as the asymptotic prop-
erties of the particular conformal factor obtained as the solution to (Ya) in the previous
sub-section.

2.3.1 An upper bound at infinity

We will first establish an a priori upper bound on solutions to the Yamabe equation for
ALH manifolds in the sense of Definition 2.1.

Proposition 2.2. Let (M, g) be ALH in the sense of Definition 2.1 and suppose that

lim inf
r(x)→∞

Sg(x) ≥ −n(n− 1). (2.6)

Then all solutions of the (Ya) on (M, g) satisfy

lim sup
r(x)→∞

u(x) ≤ 1.
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A key point for our discussion will be to compare the Laplacian of the perturbed
metric g to that of the reference metric g̊. In particular, where we use ∇ and ∇̊ to denote
the covariant derivative with respect to g and g̊ respectively, we compute directly that

∆g ϕ =g̊ij∇̊i∇̊j + (gij − g̊ij)∇̊i∇̊j ϕ + gij(Γk
ij − Γ̊k

ij)∂k ϕ

=∆g̊ ϕ + aij∇̊ij ϕ + bi∇̊i ϕ, (2.7)

where aij := gij − g̊ij and bi := gjk(Γi
jk − Γ̊i

jk) satisfy aij = O1(e−(α+2)r) and bi = O(e−αr),
using the estimates for the Christoffel symbols found in the proof of Lemma 2.1.

We will make use of the following consequence of the maximum principle:

Lemma 2.3. Let u > 0 be a bounded smooth solution to (Ya) on a bounded open set Ω ⊂ M
and ū > 0 be a smooth super–solution to (Ya) on Ω satisfying ū(x) → ∞ as x → ∂Ω. Then
necessarily u < ū on Ω.

Proof. Due to the facts that ū → ∞ as x → ∂Ω, u is bounded and both u > 0 and ū > 0,
there must exist some C > 0 such that the difference wC := Cū− u satisfies that wC ≥ 0
and achieves 0 at some point in Ω. We claim that C < 1. If C ≥ 1, then wC would satisfy,

− cn∆gwC − n(n− 1)wC

≥− n(n− 1)
(

Cū
n+2
n−2 − u

n+2
n−2

)
≥− n(n− 1)

(
(Cū)

n+2
n−2 − u

n+2
n−2

)
= c(x)wC,

where

c(x) :=


(Cū)

n+2
n−2 − u

n+2
n−2

Cū− u
for wC 6= 0,

n + 2
n− 2

(Cū(x))
4

n−2 , if wC = 0.

We could then apply the strong maximum principle to the linear differential inequality

−cn∆gwC − (n(n− 1) + c(x))wC ≥ 0,

noting that the sign of (n(n− 1) + c(x)) does not matter as the value of the minimum in
question is 0, see [23, Section 3.2]. We would then have that wC ≡ 0, a contradiction as
wC → ∞ at the boundary. We conclude that C < 1 as claimed and so u < ū in Ω.

In order to prove the upper bound in Proposition 2.2, we will study a family of ODE
solutions on annuli in the following series of lemmas.

Lemma 2.4. There exists a positive solution u1 of the equation

−cn
(
u′′1 + (n− 1)u′1

)
− n(n− 1)u1 + n(n− 1)u

n+2
n−2
1 = 0 on (−1, 1) (2.8)
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satisfying u1(r)→ ∞ as r→ ±1 and there exists a constant C > 0 depending on n such that u1
satisfies

1
C
(1− |r|)− n−2

2 ≤ u1(r) ≤ C(1− |r|)− n−2
2 , (2.9a)

u′1(r) ≤ C(1− |r|)− n
2 , (2.9b)

u′′1 (r) ≤ C(1− |r|)− n+2
2 . (2.9c)

Proof. This result is essentially due to [1]. Consider the model locally hyperbolic manifold
(R×Tn−1, gδ), where (Tn−1, h̊) is the flat Torus. Define the annulus A1 := {|r| ≤ 1} ⊂
M. We note here that any solution of (2.8) would automatically be a solution of the
Yamabe equation

−cn∆gδ
u1 − n(n− 1)u1 + n(n− 1)u

n+2
n−2
1 = 0

on the annulus in this particular model space. From [1, Theorem 1.2], we know that, on
the annulus A1, there exists a unique solution u1 of the Yamabe equation satisfying u1 →
∞ at the boundary ∂A1. Additionally, from Theorem 1.3 of [1], we know the behaviour
of u1 at the boundary satisfies (2.9).

We note that the Yamabe equation is invariant under symmetries of the Torus and so,
by uniqueness, u1 must be radial and so the Yamabe equation reduces to the ODE (2.8)
as desired.

Eq. (2.8) has the following important scaling property that we will make use of: if we
define the family {uR} by

uR(r) =
(

(e2 − 1)eR

e2+R + e2R+r − e2+r − eR

) n−2
2

u1

(
log
(

(e2R − 1)er+1

e2+R + e2R+r − e2+r − eR

))
, (2.10)

then each uR provides a solution of the ODE

−cn
(
u′′R + (n− 1)u′R

)
− n(n− 1)uR + n(n− 1)u

n+2
n−2
R = 0 on (−R, R). (2.11)

Furthermore, from the growth rate of u1 in (2.9) we have that each uR satisfies that
uR(r) → ∞ as r → ±R and, for some constant CR > 0 depending on R and n, that

1
CR

(R− |r|)− n−2
2 ≤ uR(r) ≤ CR(R− |r|)− n−2

2 , (2.12a)

u′R(r) ≤ CR(R− |r|)− n
2 , (2.12b)

u′′R(r) ≤ CR(R− |r|)− n+2
2 . (2.12c)

We now establish locally uniform convergence of this family to 1 as R→ ∞.



70 J. Hogg and L. Nguyen / Anal. Theory Appl., 40 (2024), pp. 57-91

Lemma 2.5. The family {uR}R>0 of positive solutions of Eq. (2.11) defined above is decreasing
with respect to R and satisfies uR ↘ 1 uniformly on compact sets as R→ ∞.

Proof. If R1 < R2, we may apply Lemma 2.3 on the annulus AR1(0) to see that uR2 < uR1 .
Consequently, {uR} is monotone decreasing.

Define the pointwise limit

u∞(r) := lim
R→∞

uR(r).

We now show that {uR} converges locally in C2 to u∞. To this end, a locally uniform
bound on the first derivative will suffice, as from this we immediately obtain local bound-
edness of u′′R and u′′′R (the latter after differentiating the ODE once). The Arzela-Ascoli
theorem then provides the desired convergence. To obtain such a bound on the first
derivative, note that on any compact domain [−R0, R0] and for R > R0 + ε, the fact that
{uR} is monotone decreasing implies

u′′R + (n− 1)u′R =
n(n− 2)

4

(
u

n+2
n−2
R − uR

)
is bounded in [−R0, R0] uniformly as R → ∞. Integrating the above from some point
s ∈ [−R0, R0] to r ∈ [−R0, R0] we obtain that u′R(r) − u′R(s) is bounded in [−R0, R0]
uniformly as R → ∞. Integrating the above, now in s, from −R0 to R0 we see that u′R is
bounded in [−R0, R0] uniformly as R→ ∞.

We proceed to show that u∞ is constant by using the scaling property (2.10) of the
family uR. In particular, for any R, S > 0 we can verify that

uR(r) =
(

(e2S − 1)eR

e2S+R + e2R+r − e2S+r − eR

) n−2
2

uS

(
log
(

(e2R − 1)er+S

e2S+R + e2R+r − e2S+r − eR

))
.

(2.13)
Consider the value of uR at r = 0 and write R = S + Λ. We then have

uS+Λ(0) =
(

e3S+Λ − eS+Λ

e3S+Λ + e2(S+Λ) − e2S − eS+Λ

) n−2
2

uS

(
log
(

e3S+2Λ − eS

e3S+Λ + e2(S+Λ) − e2S − eS+Λ

))
.

Taking the limit as S→ ∞ while keeping Λ fixed we then obtain that for all Λ,

u∞(0) = u∞(log
(

eΛ
)
) = u∞(Λ).

Consequently, u∞ ≡ C∞ for some constant C∞ ≥ 0.
Recall that uR converges locally in C2 to u∞ and so u∞ solves the Yamabe equation.

Consequently, as u∞ is constant, either u∞ ≡ 0 or u∞ ≡ 1.
It then suffices to show that u∞(0) > 0 to conclude the proof. We take the limit in

(2.10) as R→ ∞ at r = 0 to obtain

lim
R→∞

uR(0) = lim
R→∞

e−
n−2

2 Ru1

(
1− (e2 − 1)e−R +O(e−2R)

)
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and we note also that 1− (e2 − 1)e−R +O(e−2R) → 1. Then, from the asymptotic rates
(2.9) for u1, we conclude that

u∞(0) = lim
R→∞

uR(0) ≥ lim
R→∞

Ce−
n−2

2 R
(
(e2 − 1)e−R +O(e−2R)

)− n−2
2

=C(e2 − 1)−
n−2

2 > 0.

Consequently, we conclude that u∞ ≡ 1.

Having established the properties of the family uR above, we now prove Proposition
2.2 by showing that these functions can be used to generate super-solutions with the
desired properties on annuli in the asymptotic region.

Proof of Proposition 2.2. First, we consider the Yamabe equation for g as a perturbation
of an elliptic equation with respect to the reference metric g̊ as in (2.7). Fix R > 0 and
consider some point x∗ ∈ M+ such that r∗ := r(x∗) > R. To bound the value of u at x∗,
we define the annulus

ΩR := Ω(R, r∗) = {x ∈ M+ : |r(x)− r∗| < R}

and define a candidate super-solution to (Ya) on ΩR,

ū(x) := AuR(r(x)− r∗),

where uR is defined in (2.10) and A > 0 is some constant to be determined. In the ar-
gument below, all implicit constants in various O terms are independent of both A and
R.

We first note that

−cn∆g̊ū = −cn (∂rrū + (n− 1)qk(r)∂rū) = A
(
−cn

(
u′′R + (n− 1)u′R

)
+O(e−2r|u′R|)

)
,

where

qk(r) =


coth(r), k = 1,

1, k = 0,

tanh(r), k = −1,

and k is as in the definition of reference metrics in (2.1) and we use only that qk = 1 +
O(e−2r).

Consequently, from (2.11), we have that ū satisfies

−cn∆g̊ū− n(n− 1)ū + n(n− 1)ū
n+2
n−2 = (A

n+2
n−2 − A)u

n+2
n−2
R + AO(e−2r|u′R|)
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for the reference metric g̊ on ΩR ⊂ M+ and ū blows up as x → ∂ΩR. If follows that

− cn∆g̊ū + Sgū + n(n− 1)ū
n+2
n−2 + aij∇̊ijū + bi∇̊iū

=n(n− 1)(A
n+2
n−2 − A)u

n+2
n−2
R + A

(
aij∇̊ijuR + bi∇̊iuR + (Sg + n(n− 1))uR

)
≥n(n− 1)(A

n+2
n−2 − A)u

n+2
n−2
R − Aε(r∗)

(
|u′′R|+ |u′R|+ |uR|

)
,

where ε(r) ≥ 0 and limr→∞ ε(r) = 0; here we have used (2.6) as well as the asymptotic
local hyperbolicity.

From the asymptotic rates in (2.12), we see that there exists a constant CR > 0 de-
pending on R such that

|u′′R|+ |u′R|+ |uR| ≤ CRu
n+2
n−2
R

near the boundary. Therefore,

− cn∆g̊ū + Sgū + n(n− 1)ū
n+2
n−2 + aij∇̊ijū + bi∇̊iū

≥n(n− 1)
(

A
n+2
n−2 − A (1 + CRε(r∗))

)
u

n+2
n−2
R .

We can now choose A = 1 + C̃ε(r∗) with a sufficiently large constant C̃ independent of
x∗ so that the RHS above is positive and so ū is a strict super-solution to (Ya).

We may now apply Lemma 2.3 to conclude that u < ū on ΩR and so we have shown
that any solution to the Yamabe equation u satisfies

u(x∗) < (1 + C̃ε(r∗))uR(0).

Consequently, as x∗ was arbitrary and ε(r∗)→ 0, we have

lim sup
r(x)→∞

u(x) ≤ uR(0).

As R > 0 was arbitrary, we may now take the limit as R → ∞ to conclude, from Lemma
2.5, that lim supr(x)→∞ u(x) ≤ 1 as desired.

2.3.2 A lower bound at infinity

In this sub-section, we provide an a priori lower bound for solutions u of the Yamabe
equation for ALH manifolds in the sense of Definition 2.1.

We highlight that Example 1.1 demonstrates, in a similar way as for uniqueness of
the conformal factor, that we must impose some additional condition before attempting
to bound the conformal factor u from below. We first provide a lower bound under the
assumption that the solution is bounded away from zero at infinity in the sense of (2.15)
below. We then refine this first result by weakening the strictly positive requirement of
(2.15) to allow some degree of decay of u to zero.
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Lemma 2.6. Let (M, g) be ALH in the sense of Definition 2.1 and suppose that

lim
r(x)→∞

|Sg(x)− n(n− 1)| = 0. (2.14)

Then any solution u of (Ya) on (M, g) satisfying

lim inf
r(x)→∞

u(x) > 0 (2.15)

must satisfy limr(x)→∞ u(x) = 1.

Proof. Suppose, for the sake of contradiction that the conclusion fails. Since, by Proposi-
tion 2.2, we have that lim supr(x)→∞ u(x) ≤ 1, we must have that

δ = lim inf
r(x)→∞

u(x) ∈ (0, 1).

Let {(ri, θi)} ⊂ M+ be a sequence such that ri → ∞ and u(ri, θi) → δ. Passing to a
subsequence, we may assume that θi → θ∞ for some θ∞ ∈ N. Take a normal coordinate
chart U on N around θ∞ with coordinate functions θa : U → Rn so that h̊ab(θ∞) = δab.
Consider the region Ω := R≥0×U ⊂ M+. For each i, define a map Ψi : Ω→ R×Rn−1 =
{(r̃, θ̃) : r̃ ∈ R, θ̃ ∈ Rn−1} by

Ψi(r, θ) = (r− ri, eri(θ − θi))

and define Ṽi := Ψi(Ω). We also write ψi(θ) := eri(θ− θi). Define vi := u ◦Ψ−1
i : Ṽi → R.

We note here that Ṽ1 ⊂ Ṽ2 ⊂ · · · and ∪iṼi = R×Rn−1.
We next compute the equation corresponding to (Ya) that vi satisfies. We denote par-

tial derivatives in the coordinates (r̃, θ̃) by ∂̃, that is we write

∂

∂r̃
= ∂̃r and

∂

∂θ̃a
= ∂̃a.

On R×Rn−1 let gi = (Ψ−1
i )∗g. Noting that, by asymptotic local hyperbolicity, we may

express g in the form

g = dr2 + εradrdθa +
(

fk(r + r0)h̊ab + εab

)
dθadθb,

where
εra(r, θ) = Om(e−(α−1)r) and εab(r, θ) = Om(e−(α−2)r).

We thus have

gi =dr̃2 + e−ri εra ◦Ψ−1
i dr̃dθ̃a + e−2ri

(
f 2
k (r̃ + ri + r0)h̊ab ◦ ψ−1

i + εab ◦Ψ−1
i

)
dθ̃adθ̃b

=dr̃2 + e2(r̃+r0)h̊ab ◦ ψ−1
i dθ̃adθ̃b + e−2ri ε̂abdθ̃adθ̃b + e−αri

(
ε̃radr̃dθ̃a + ε̃abdθ̃adθ̃b

)
,
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where

ε̂ab = ε̂i
ab =

(
f 2
k (r̃ + ri + r0)− e2(ri+r̃+r0)

)
h̊ab ◦ ψ−1

i ,

ε̃ra = ε̃i
ra = e(α−1)ri εra ◦Ψ−1

i ,

ε̃ab = ε̃i
ab = e(α−2)ri εab ◦Ψ−1

i .

In particular, as i → ∞, the sequence of matrices of metric components of gi in (r̃, θ̃)
is uniformly bounded in C1 and uniformly positive definite on any compact subset of
R×Rn−1. In addition, {gi} converges in C1

loc(R×Rn−1) to

g∞ = dr̃2 + e2(r̃+r0)δabdθ̃adθ̃b.

Each vi solves the equation

−cn∆gi vi = sivi − n(n− 1)
(

v
n+2
n−2
i − vi

)
= civi, (2.16)

where si = Sgi ◦Ψ−1
i + n(n− 1) which, by (2.14), satisfies si → 0 in C0

loc as i→ ∞ and

ci = si − n(n− 1)
((

u ◦Ψ−1
i

) 4
n−2 − 1

)
.

By Proposition 2.2, u is bounded and so {ci} is uniformly bounded on any compact subset
of R×Rn−1. Consequently, fixing some R > 0, we may apply the Harnack inequality
of [23, Theorem 8.20] to the equation Livi = 0, where Li := cn∆gi + ci to conclude that, on
the ball BR(0, 0) ⊂ R×Rn−1,

sup
BR(0,0)

vi ≤ CR inf
BR(0,0)

vi ≤ CRδ, (2.17)

where the final inequality follows from the fact that vi(0, 0) → δ by construction and
C is some constant independent of i (depending only on n, R and bounds on the ellip-
ticity of Li and sup-norm of the coefficients of Li which we have shown may be chosen
independently of i). We conclude that {vi} is uniformly bounded on BR(0, 0).

After recasting (2.16) to non-divergence form and noting that g is ALH of regularity
order 1, we may now apply standard W2,p estimates (see [23, Theorem 9.11]) to conclude
that vi are locally uniformly bounded in W2,p for all p ∈ (1, ∞) and hence in C1,β for all
β ∈ (0, 1). Therefore, passing to a subsequence if necessary, we may assume that vi →
v∞ in C1

loc(R×Rn−1). Furthermore, for any point (r̃0, θ̃0) ∈ R×Rn−1 and corresponding
sequence (r̄i, θ̄i) := Ψ−1

i (r̃0, θ̃0) ∈ M+, we have that

v∞(r̃0, θ̃0) = lim
i→∞

(vi ◦Ψi)(r̄i, θ̄i) = lim
i→∞

u(r̄i, θ̄i) ≥ δ.
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We now pass to the limit as i→ ∞ in (2.16) to obtain

−cn∆g∞ v∞ = −n(n− 1)
(

v
n+2
n−2
∞ − v∞

)
on R×Rn−1, (2.18)

and so v∞ is in fact in C∞(R×Rn−1) (as v∞ > 0). By construction, we have that

v∞(0, 0) = lim
i→∞

vi(Ψ(ri, θi)) = lim
i→∞

u(ri, θi) = δ.

Since δ is a strict sub-solution of (2.18) and v∞ ≥ δ on R×Rn−1, we obtain a contradiction
to the strong comparison principle.

We are now able to prove our main result of the section, expanding the extent of
the lower bound result by allowing for the conformal factor to exhibit decay to zero at
infinity.

Proposition 2.3. Let (M, g) be an ALH manifold in the sense of Definition 2.1, which satisfies
(2.14). Suppose that u is a solution of the Yamabe problem on (M, g) and that there exist an S > 0
and r1 > r0 such that

u(r + S)
u(r)

>
n
2

e−
n−2

2 S − n− 2
2

e−
n
2 S for all r > r1, (2.19)

where u(r) := minN u(r, ·). Then limr(x)→∞ u(x) = 1.

We note that the asymptotic exponential rate of − n−2
2 is also seen in Example 1.1 and

represents a borderline rate, where a solution to (Ya) exists with such a rate of decay but
notably the corresponding conformal metric fails to be complete. Indeed, for any slower
decay, we obtain the following immediate corollary of Proposition 2.3:

Corollary 2.1. Let (M, g) be an ALH manifold in the sense of Definition 2.1, which satisfies
(2.14). There does not exist a solution u of (Ya) on M satisfying eβr(x)u(x) → 0 as r(x) → ∞
for any 0 < β < n−2

2 .

Proof of Proposition 2.3. By Lemma 2.6, it suffices to show that lim infr(x)→∞ u(x) > 0.
Suppose not, then there exists a sequence ri → ∞ such that u(ri)→ 0. It follows that

min
r(x)∈[r1,R]

u(x)→ 0 as R→ ∞.

Consequently, for R sufficiently large the minimum cannot be attained at r1. Furthermore,
the fact that u ≤ 1 (by Proposition 2.2) and lim inf u = 0 together imply, via the strong
maximum principle, that u < 1 and satisfies

−cn∆gu = −n(n− 1)
(

u
n+2
n−2 − u

)
> 0.
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The strong maximum principle again implies that the minimum of u on {r(x) ∈ [r1, R]}
is achieved only on {r(x) = R} and so u is strictly decreasing for large r.

Define αi := u(ri)
−1 → ∞ and consider wi := αivi, where vi is as in the proof of

Lemma 2.6. Note that, by (2.16), wi satisfies −cn∆gi wi = ciwi. As in the proof of Lemma
2.6, we have that wi → w∞ in C1

loc(R×Rn−1). Since αi → ∞, the limit w∞ now solves

−cn

(
∂̃rrw∞ + (n− 1)∂̃rw∞ + e−2(r̃+r0)∆n−1w∞

)
= n(n− 1)w∞ on R×Rn−1. (2.20)

Moreover, by construction, w∞(r, θ) ≥ 1 for r ≤ 0 and there exists a θ0 such that w∞(0, θ0) =
1. We will now see that the above provides a contradiction to (2.19). Indeed, consider the
radial function

w(r) =
n
2

e−
n−2

2 r − n− 2
2

e−
n
2 r,

which solves (2.20) and satisfies w(0) = 1 and w′(0) = 0. By assumption (2.19), there
exists an S > 0 such that w∞(S, θ) > w(S) for all θ ∈ N. Consequently, as w∞(0, θ) ≥
1 = w(0), the strong maximum principle and the Hopf Lemma imply that we must have
w∞ > w in the region {r(x) ∈ (0, S)} and ∂rw∞(0, θ0) > 0. The latter contradicts the fact
that w∞(r, θ) ≥ 1 for r ≤ 0 and w∞(0, θ0) = 1.

2.3.3 First derivative estimates at infinity

In this sub-section, we prove results for the first derivative decay of the conformal factor.
We begin by defining a particular super-solution on M. The following super-solution

will provide an asymptotic upper bound on our solution obtained in Proposition 2.1 and
will allow us to conclude that the conformal metric remains locally asymptotically hy-
perbolic to the same order.

Lemma 2.7. Let (M, g) be ALH of regularity order 1 and with decay exponent α ∈ (0, n) and
Sg ≥ −n(n− 1)− Ce−αr for some constant C > 0. There exist constants A > 0 and R > 0
such that the function u+ ∈ H1

loc(M) defined by

u+(r) :=

{
1 + Ae−αr on {r ≥ R} × N,

1 + Ae−αR on M0 ∪ ({r < R} × N),

is a super-solution to (Ya) on M.

Proof. We first note that the transmission condition

0 = lim
r↗R

u′+(r) ≥ lim
r↘R

u′+(r) = −αAe−αR

certainly holds. Thus, we only need to find large A and R such that

−cn∆gu+ + Sgu+ ≥ −n(n− 1)u
n+2
n−2
+
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holds in the two regions r ≤ R and r > R.
We proceed similarly as in the proof of Lemma 2.2 with the difference that, as u+ > 1,

we can estimate directly on the RHS that

−n(n− 1)u
n+2
n−2
+ ≤ −n(n− 1)

(
1 +

n + 2
n− 2

(u+ − 1)
)

.

In the following the value of C may change from line to line but always depends only on
g and we choose R larger if necessary so that R > 1. We compute for r > R, using that
f ′k
fk
(r + r0) > 1− Ce−2r and u′+ < 0,

− cn∆gu+ + Sgu+ + n(n− 1)u
n+2
n−2
+

≥− cn Ae−αr

[
α2 − (n− 1)α− n + Ce−αr + Ce−2r +

C
A︸ ︷︷ ︸

B

]
.

Thus, we must choose A and R such that B ≤ 0. As α2 − (n − 1)α − n < 0, we can
select an A0 and R such that the RHS of the above is positive for all A > A0. Fix R
from hereon. It remains to find an A > A0 such that (2.3) holds on r ≤ R which can be
verified by direct computation and noting that the scalar curvature must be bounded on
this compact interior region.

Having established the super- solution above, we use it to gain control on the solution
u obtained in the Section 2.2.

Lemma 2.8. Let (M, g) be an ALH manifold of regularity order 1 and with decay exponent
α ∈ (0, n) satisfying (1.2b). Then the smooth solution u of (Ya) on M obtained in Proposition
2.1 satisfies

|u− 1|+ |∇̊u|g̊ = O(e−αr).

Furthermore, u is maximal in the sense that any solution ũ of (Ya) satisfies ũ ≤ u.

Proof. We first prove the sup-norm decay. From Proposition 2.1, we have that u ≥ u− ≥
1− Ce−αr, where u− is the sub-solution constructed in Lemma 2.2. Additionally, Propo-
sition 2.2 gives that lim supr(x)→∞ u ≤ 1. Consequently, we have that limr(x)→∞ u(x) = 1

To obtain the rate of decay from above, we show that u ≤ u+, where u+ is the super-
solution u+ ≤ 1 + Ce−αr constructed in Lemma 2.7. For the sake of contradiction, we
suppose that inf u+

u = 1
C < 1 for some constant C > 1. As limr(x)→∞

u+(x)
u(x) = 1, the

infimum would be achieved and so we could define v := Cu+ − u, which would satisfy
v ≥ 0 and would achieve 0 at some minimum. We could then apply the same maximum
principle argument as in Lemma 2.3 to conclude that inf u+

u ≥ 1 and so u ≤ u+ as desired.
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We next prove the derivative estimates. Let (r∗, θ∗) ∈ M+ be some arbitrary point
with r∗ sufficiently large. Take a normal coordinate chart U on N around θ∗ with coordi-
nate functions θa : U → Rn so that h̊ab(θ∞) = δab. Consider the region

Ω := (r∗ − 1, r∗ + 1)×U ⊂ M+.

Define a map Ψ : Ω→ R×Rn−1 = {(r̃, θ̃) : r̃ ∈ R, θ̃ ∈ Rn−1} by

Ψ(r, θ) = (r− r∗, er∗(θ − θ∗))

and define Ṽ := Ψ(Ω). We also write ψ(θ) := er∗(θ − θ∗). Define v := u ◦Ψ−1 : Ṽ → R.
Let g∗ = (Ψ−1)∗g. As in the proof of Lemma 2.6, as r∗ → ∞, g∗ converges in C1 to

g∞ = dr̃2 + e2(r̃+r0)δab dθ̃adθ̃b.

Moreover (see Eq. (2.16)), v satisfies ∆g∗v = O (e−αr∗) , where the implicit constant in
the O term is independent of r∗. Applying W2,p estimates to the above equation, after
recasting to non-divergence form, and using Sobolev embeddings, we obtain

|∇v(0, 0)|g∞ = O(e−αr∗)

and so obtain decay in the first derivative |∇̊u|g̊ = O(e−αr).
We finally address the maximality of u. Given another solution ũ > 0 of (Ya), we

know that lim supr(x)→∞ ũ(x) ≤ 1, again from Proposition 2.2, and so we have that

lim inf
r(x)→∞

u
ũ
≥ 1 as lim

r(x)→∞
u(x) = 1.

Consequently, if inf u
ũ < 1 then the infimum must be attained and so we may apply the

maximum principle (as in the proof of u ≤ u+) to conclude that ũ ≤ u.

2.4 Uniqueness and completion of the proof of Theorem 1.1

Under assumption (1.2a), the first part of Theorem 1.1 is proved in Proposition 2.1. For
the remainder of the proof, we will assume that (1.2b) holds. By Lemma 2.8, we know
that limr→∞ u = 1, |u− 1|+ |∇̊u|g̊ = O(e−αr) and u is the maximal solution of (Ya). It

remains to prove the uniqueness of u and that the conformal metric g̃ = u
4

n−2 g is ALH of
regularity order 0 and with decay exponent α, which we now treat in turn.

The uniqueness of u is a direct corollary of the stronger result below:

Proposition 2.4. Let (M, g) be ALH of regularity order 1 and decay exponent α ∈ (0, n) satis-
fying (1.2b). Then the solution u of the Yamabe problem on (M, g) obtained in Proposition 2.1 is
the unique solution such that there exist an S > 0 and r1 > r0 such that

u(r + S)
u(r)

>
n
2

e−
n−2

2 S − n− 2
2

e−
n
2 S for all r > r1, (2.21)

where u(r) := minN ũ(r, ·).
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Proof. Let ũ be any solution of (Ya) on (M, g) satisfying (2.21). By Proposition 2.3, we
know that limr→∞ ũ = 1. Observe that in the proof of the maximality of u in Lemma
2.8 we actually proved that any solution of (Ya) which tends to 1 at infinity is maximal.
Consequently, both u and ũ are maximal and hence equal.

Lastly, we prove that the asymptotic local hyperbolicity of the obtained complete con-
formal metric of constant scalar curvature, thus completing the proof of Theorem 1.1.

Lemma 2.9. Let (M, g) be an ALH manifold of regularity order 1 and with decay exponent
α ∈ (0, n) satisfying (1.2b). Let u be the solution of (Ya) obtained in Proposition 2.1, then
u = 1 +O(e−αr) and the corresponding conformal metric is ALH of regularity order 0 and with
decay exponent α.

Proof. By Lemma 2.8, we have

|u− 1|+ |∇̊u|g̊ = O(e−αr).

Consider the new coordinate function

z := r +
∫ ∞

r

(
1− u

2
n−2

)
ds.

First note that
z− r =

∫ ∞

r

(
1− u

2
n−2

)
ds = O1(e−αr)

and the map (r, θ) 7→ (z, θ) is a diffeomorphism for large r. We will show that this
implies g̃ = u

4
n−2 g is ALH of regularity order 0 and decay exponent α with respect to the

coordinate system (z, θ).
We compute that

dz = u
2

n−2 dr−
(∫ ∞

r

4− n
n− 2

u
4−n
n−2 ∂au ds

)
dθa = u

2
n−2 dr +O(e−(α−1)r)dθa.

Recalling that g is ALH and so may be written

g = dr2 + fk(r + r0)
2h̊ + εradθadr + εabdθadθb,

where εab = O(e−(α−2)r) and εra = O(e−(α−1)r), we deduce that

g̃ = dz2 + fk(z + r0)
2h̊ + ε̃zadθadz + ε̃abdθadθb,

where ε̃za = O(e−(α−1)z) and

ε̃ab = u
4

n−2 εab +
(

u
4

n−2 fk(r + r0)
2 − fk(z + r0)

2
)

h̊ab +O(e−2(α−1)z).

Since
fk(r + r0)

2 = fk(z + r0)
2 +O1(e−(α−2)z),

the conclusion follows.
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2.5 Asymptotically warped product manifolds

To conclude this section, we briefly outline some remarks on the Yamabe Problem for
asymptotically warped product manifolds.

Recall that, in the definition of ALH manifolds, we supposed that we could decom-
pose (M, g) in two parts, M = M0 ∪ M+, where M0 is some compact manifold with
boundary, M+ = R+ × N with (N, h̊) some compact manifold of constant scalar cur-
vature Sh̊ = (n− 1)(n− 2)k for some k ∈ {−1, 0, 1} and M0 and M+ coincide on their
common boundary. We then considered those metrics g which asymptote to the locally
hyperbolic reference metrics in (2.1).

One may, instead, consider a different choice of reference metric to which g is asymp-
totic. An immediate generalisation of interest would be the following warped product
metrics

g̊ f = dz2 + f 2(z)h̊, (2.22)

where f is some positive function, usually referred to as the warping function. Metrics
g which are asymptotic to g̊ f will be informally referred to as asymptotically warped
product (AWP) metrics.

In this section, we discuss the applications of Proposition 1.1 in this broader category
of AWP metrics. This amounts to understanding whether the warped product metrics
of (2.22) are conformal to the reference locally hyperbolic metrics of (2.1). We establish
a necessary and sufficient condition on the warping function for such conformality in
Proposition 2.5. The condition we identify is an integral condition of Keller-Osserman
type (see [30, 41]). Furthermore, we also show that, if the warped product metric is not
conformally locally hyperbolic, then it is conformal to a complete metric of finite volume.

Proposition 2.5. Let f : [0, ∞) → R be a smooth, positive function. The metric g̊ f in (2.22) is
conformal to a locally hyperbolic metric (2.1) if and only if

I( f ) :=
∫ ∞

0

1
f (s)

ds < ∞. (2.23)

Moreover, if (2.23) does not hold, then g̊ f is conformal to dž2 + e−2žh̊ which is a complete metric
of finite volume on M+.

Proof. Step 1: We first suppose that I( f ) < ∞ and show that g̊ f is conformal to a locally
hyperbolic metric.

Recall the function fk in the definition of the locally hyperbolic reference metrics g̊ in
(2.1) and consider the following separable ODE for an unknown function K:

f (z)K′(z) = fk(K(z)) =


sinh(K(z) + r0), k = 1,

eK(z)+r0 , k = 0,

cosh(K(z) + r0), k = −1,

(2.24)
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with the initial condition K(z0) = 0, where z0 = 0 and r0 = 2 arctanh (exp(−I( f ))) if
k = 1, z0 = 0 and r0 = log (I( f )) if k = 0, and z0 satisfies

∫ ∞

z0

f (s)ds <
π

2
and r0 = 2 arctanh

(
tan

(
π

4
− 1

2

∫ ∞

z0

f (s)ds
))

,

if k = −1. It is straightforward to check that the explicit solution is defined for all z ≥ z0
and, furthermore, that K(z) is strictly increasing and K(∞) = ∞. Consequently, K :
[z0, ∞)→ [0, ∞) is a diffeomorphism.

Consider a coordinate system (r, θ) on M+, where θ is some coordinate system on N
and r = K(z) for z > z0. For z > z0, in view of (2.1) and (2.24), we have

g̊ f = (K′(z))−2
(

dr2 + (K′(z) f (z))2h̊
)
= (K′(z))−2 g̊

as desired.

Step 2: In order to show the sufficiency in the proposition, we first prove that I( f ) =
∞ if and only if g̊ f is conformal to a complete, finite volume metric on M+.

To see this, first suppose I( f ) = ∞ and define

Ǩ(z) = log
(

1 +
∫ z

0
( f (s))−1ds

)
,

so that
Ǩ′(z) = ( f (z))−1 e−Ǩ(z).

As I( f ) = ∞, we may define a new coordinate ž = Ǩ(z), so that

g̊ f = dz2 + f 2(z)h̊ =
(
Ǩ′(z)

)−2
(

dž2 + (Ǩ′(z) f (z))2h̊
)
=
(
Ǩ′(z)

)−2
(

dž2 + e−2žh̊
)

,

and so g̊ f is conformal to dž2 + e−2žh̊, which can readily be seen to be both complete and
of finite volume on M+.

Conversely, suppose that there exists some conformal factor u(z, θ) such that

ǧ = u
4

n−2 (z, θ)g̊ f

for some complete, finite volume metric ǧ. Consider the divergent curves γθ : [0, ∞) →
M+ defined by γθ(t) = (z(t), θ) for θ ∈ N. By completeness, we have that the length
Lǧ(γθ) = ∞ for all θ ∈ N. We compute directly the length

∞ = Lǧ(γθ) =
∫ ∞

0

√
ǧ (γ̇θ(t), γ̇θ(t))dt =

∫ ∞

0
u

2
n−2 (z, θ)dz.
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Consequently, we may write

∞ =
∫

N
Lǧ(γθ)dθ =

∫
N

∫ ∞

0
u

2
n−2 (z, θ)dzdθ

≤
(∫

N

∫ ∞

0
u

2n
n−2 (z, θ) f n−1(z)dzdθ

) 1
n
(∫

N

∫ ∞

0

1
f (z)

dzdθ

) n−1
n

=Volǧ(M+)
1
n Volh̊(N)

n−1
n I( f )

n−1
n .

Since Volǧ(M+) < ∞ we deduce that I( f ) = ∞.
Step 3: We now suppose that I( f ) = ∞ and prove that then g̊ f cannot be conformal

to a locally hyperbolic metric.
By Step 2, g̊ f (which has I( f ) = ∞) cannot be conformal to another warped product

metric g̊ f̃ with I( f̃ ) < ∞, as the former is conformal to a complete metric of finite volume,
and the latter cannot be. On the other hand, we can compute that I( fk) < ∞ for the
reference locally hyperbolic metrics in (2.1) for each k = −1, 0, 1. Then the conclusion
follows.

It should be clear that, via Proposition 2.5, one can apply Theorem 1.1 to solve the
Yamabe problem for AWP metrics with a wide range of warping functions. For further
detail, the reader is referred to [26]. The only reference warped product metrics for which
this line of argument does not apply are those which are conformal to

ǧ = dž2 + e−2žh̊.

It can be shown that ǧ admits a conformal compactification, where infinity corresponds
to a single point, which is very different to the situation for ALH metrics.

3 Volume ratio conditions for solvability of the Yamabe problem

In this section of this paper, we prove Theorem 1.2 concerning the negativity of the first
eigenvalue of the conformal Laplacian on sub-domains of non-compact manifolds of neg-
ative curvature type satisfying the volume ratio condition (1.3b). In view of the work
of [5], this leads us to an existence result for the Yamabe problem. We furthermore show
that condition (1.3b) is sharp for the negativity of the first eigenvalue (see Proposition
3.1).

3.1 An upper bound on the eigenvalue for the conformal Laplacian

As in the setting of Theorem 1.2, let (M, g) be a Riemannian manifold and suppose that
there exist two open sets Ω1 ⊂ Ω2 with C1 boundary which satisfy (1.3a) and that the
scalar curvature satisfies Sg ≤ −n(n− 1) on Ω2.
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In proving Theorem 1.2, we relate the first eigenvalue of the conformal Laplacian on
Ω2 to the following sup-norm minimisation problem:

H0 = inf

{
H(ϕ̃) := sup

0≤r≤R
F
(

ϕ̃(r), ϕ̃′(r)
)

: ϕ̃ ∈ C1([0, R]), ϕ̃(0) = 0, ϕ̃(R) = 1

}
, (3.1)

where
F(y, z) := cnz2 − n(n− 1)y2

and R is given in (1.3a). Note that H(ϕ̃) ≥ F(ϕ̃(0), ϕ̃′(0)) ≥ 0 and so H0 ≥ 0.
We recall the variational formulation of the first eigenvalue λ of the conformal Lapla-

cian with Dirichlet boundary data on the bounded domain Ω2:

λ = inf
ϕ∈H1

0 (Ω2),
‖ϕ‖L2=1

∫
Ω2

(
cn|∇g ϕ|2 + Sg ϕ2) dVg. (3.2)

Define the distance function r : Ω2 \Ω1 → [0, R] by r(x) = dg(x, ∂Ω2). Central in our
discussion will be test functions ϕ = ϕ(r) of the form

ϕ(x) =

{
1, x ∈ Ω1,

ϕ̃(r(x)), x ∈ Ω2 \Ω1,
(3.3)

where ϕ̃ : [0, R]→ R is a C1 function satisfying ϕ̃(0) = 0 and ϕ̃(R) = 1. We note that, as r
is Lipschitz, these conditions on ϕ̃ ensure that ϕ ∈ H1

0(Ω2) and so is a valid test function.
Assuming this form for ϕ, we bound the integral in (3.2) by∫

Ω2

(
cn|∇g ϕ|2 + Sg ϕ2) dVg

≤
∫

Ω2

(
cn(ϕ′)2 − n(n− 1)ϕ2) dVg

≤− n(n− 1)Volg(Ω1) +
∫

Ω2\Ω1

(
cn(ϕ̃′)2 − n(n− 1)ϕ̃2) dVg

≤− n(n− 1)Volg(Ω1) + Volg(Ω2 \Ω1) sup
0≤r≤R

(
cn(ϕ̃′(r))2 − n(n− 1)ϕ̃2(r)

)
=− n(n− 1)Volg(Ω1) + Volg(Ω2 \Ω1)H(ϕ̃), (3.4)

where we used additionally that Sg ≤ −n(n− 1) on Ω2. In particular, we have:

Lemma 3.1. Let (M, g) be a Riemannian manifold and suppose that there exist two open sets
Ω1 ⊂ Ω2 with C1 boundary which satisfy (1.3a), that the scalar curvature satisfies Sg ≤ −n(n−
1) on Ω2, and that

H0
Volg(Ω2 \Ω1)

Volg(Ω1)
< n(n− 1), (3.5)

where H0 is the infimum defined in (3.1). Then, the conformal Laplacian −cn∆g + Sg for (M, g)
has a negative first eigenvalue on Ω2.
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Proof. The lemma follows from (3.1) and (3.4).

The proof of Theorem 1.2 will use the explicit form of the solution of the minimisation
problem (3.1) which we will obtain using [6]‡.

Lemma 3.2. The minimisation problem (3.1) is uniquely solved by

H0 = n(n− 1) csch2

(√
n(n− 2)

2
R

)
, (3.6a)

ϕ̃(r) = sinh

(√
n(n− 2)

2
r

)
csch

(√
n(n− 2)

2
R

)
. (3.6b)

Proof. Let A denote the set of admissible functions for (3.1), i.e., ψ ∈ A if ψ ∈ C1([0, R]),
ψ(0) = 0 and ψ(R) = 1. Following [6], we show that if ψ ∈ A, ψ′ > 0 in (0, R) and
ψ solves the ODE F(ψ, ψ′) ≡ constant in (0, R), then ψ is the unique minimiser of (3.1).
To this end, we show that, for any function ψ2 ∈ A different from ψ, there exist points
ξ, ξ2 ∈ (0, R) such that ψ2(ξ) = ψ(ξ2) and ψ′2(ξ) > ψ′(ξ2) > 0. This will suffice to show
that ψ is the unique minimiser as

H(ψ2) ≥ F(ψ2(ξ), ψ′2(ξ)) > F(ψ(ξ2), ψ′(ξ2)) = constant = H(ψ),

where the second inequality uses the fact that ∂zF > 0 for z > 0.
As ψ′ > 0 in (0, R), we may define the inverse α(y) = ψ−1(y). Clearly α([0, 1]) =

[0, R] and α ∈ C([0, 1]) ∩ C1((0, 1)). Define

r1 = sup{r : r ∈ [0, R], ψ2(r) ≤ 0} and r2 = inf{r : r ∈ (r1, R], ψ2(r) ≥ 1}.

Then 0 ≤ ψ2 ≤ 1 in [r1, r2], 0 < ψ2 < 1 in (r1, r2) and we may define the function
g := α(ψ2) on [r1, r2], where g ∈ C([r1, r2]) ∩ C1((r1, r2)).

We claim that there exists r0 ∈ (r1, r2) such that ψ(r0) 6= ψ2(r0). Suppose not, then
ψ(r) = ψ2(r) for r ∈ [r1, r2] and so ψ(r1) = 0 and ψ(r2) = 1. By the strict monotonicity of
ψ, we then have r1 = 0 and r2 = R, which implies ψ ≡ ψ2, a contradiction.

Note that g(r1) = 0 ≤ r1, g(r0) 6= r0 and g(r2) = R ≥ r2. As g ∈ C([r1, r2]) ∩
C1((r1, r2)), we may apply the mean value theorem to either interval (r1, r0) or (r0, r2) to
deduce the existence of ξ ∈ (r1, r2) such that g′(ξ) > 1. Set ξ2 = α(ψ2(ξ)) ∈ (0, R) and
observe that g′(ξ) = ψ′2(ξ)

ψ′(ξ2)
> 1. Consequently, ψ2(ξ) = ψ(ξ2) and ψ′2(ξ) > ψ′(ξ2) > 0, as

desired.
Direct computation verifies that the function ϕ̃ from the statement of the lemma solves

F(ϕ̃, ϕ̃′) = n(n− 1) csch2

(√
n(n− 2)

2
R

)
and satisfies ϕ̃(0) = 0, ϕ̃(R) = 1 and ϕ̃′ > 0 in (0, R). The conclusion follows.

‡In fact, the work of Aronsson addressed a broader class of sup-norm minimisation problems and for
rougher admissible functions.
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We may now use the explicit minimiser above with the ideas from Lemma 3.1 to prove
the following bounds on the first eigenvalue:

Lemma 3.3. Let (M, g) be a Riemannian manifold and suppose that there exist two open sets
Ω1 ⊂ Ω2 with C1 boundary which satisfy (1.3a) and that the scalar curvature satisfies Sg ≤
−n(n− 1) on Ω2. If (1.3b) holds, then

λ < n(n− 1)
Volg(Ω2 \Ω1) csch2

(√
n(n−2)

2 R
)
−Volg(Ω1)

Volg(Ω2)
≤ 0. (3.7)

On the other hand, if (1.3b) does not hold, we have

λ < n(n− 1)
Volg(Ω2 \Ω1) csch2

(√
n(n−2)

2 R
)
−Volg(Ω1)

Volg(Ω1)
. (3.8)

Proof. Define ϕ to be the function of the form (3.3), where ϕ̃ is taken to be the minimiser
obtained in Lemma 3.2. Substituting ϕ in the integral in (3.2) and using (3.4) we obtain

λ ≤ n(n− 1)
Volg(Ω2 \Ω1) csch2

(√
n(n−2)

2 R
)
−Volg(Ω1)

‖ϕ‖L2(Ω2)
. (3.9)

If the inequality above were saturated, then ϕ (up to a harmless normalisation) would
be a minimiser of (3.2) and hence would be smooth in Ω2, contradicting the gradient
discontinuity at the boundary ∂Ω1 observed using the explicit form for ϕ̃ obtained in
Lemma 3.2 and recalling (3.3). Consequently, inequality (3.9) above is, in fact, strict.

In the case that (1.3b) holds, the numerator in (3.9) is non-positive and so, using that
‖ϕ‖L2(Ω2) < Volg(Ω2), we obtain (3.7). Likewise, if (1.3b) does not hold, the numerator is
positive and we use that ‖ϕ‖L2(Ω2) > Volg(Ω1) to obtain (3.8).

We may now prove Theorem 1.2 as an immediate consequence of the lemma above:

Proof of Theorem 1.2. Combined with assumption (1.1), the existence of a solution to the
Yamabe problem now follows from [5, Theorem C] provided that we can show that the
first eigenvalue λ of the conformal Laplacian on Ω2 is negative. This negativity is an
immediate consequence of assumption (1.3b) and estimate (3.7) from Lemma 3.3.

We conclude the section with the following corollaries of Theorem 1.2 for geodesic
balls and for annuli which will aid in our discussion regarding warped product and mul-
tiply warped product type manifolds in the next subsection. In particular, for geodesic
balls we have:
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Corollary 3.1. Let (M, g) be a Riemannian manifold and suppose there exist constants α, R > 0
and some geodesic ball B(1+α)R which satisfies

Volg(B(1+α−1)R \ Bα−1R)

Volg(Bα−1R)
≤ sinh2

(
R
√

n(n− 2)
2

)
(3.10)

and on which the scalar curvature satisfies Sg ≤ −n(n − 1). Then, the conformal Laplacian
−cn∆g + Sg for (M, g) has a negative first eigenvalue on B(1+α−1)R.

In the case of multiply warped product metrics (see (3.14)), which have a radial fibre
whose coordinate we denote by r, we fix some value r0 ∈ R and define the annular region
AR(r0) = {x ∈ M : |r(x)− r0| ≤ R}. We may then obtain as a corollary of Theorem 1.2,

Corollary 3.2. Let (M, g) be a Riemannian manifold and suppose there exist constants α, R > 0
and some annulus A(1+α)R(r0), which satisfies

Volg(A(1+α−1)R(r0) \ Aα−1R(r0))

Volg(Aα−1R(r0))
≤ sinh2

(
R
√

n(n− 2)
2

)
(3.11)

and on which the scalar curvature satisfies Sg ≤ −n(n − 1). Then, the conformal Laplacian
−cn∆g + Sg for (M, g) has a negative first eigenvalue on A(1+α−1)R(r0).

The proofs of the two corollaries follow directly from Theorem 1.2 with the appropri-
ate choices made for Ω1, Ω2 and R.

3.2 Sharpness of the eigenvalue estimate

In this section we demonstrate that the volume ratio condition (1.3b) in Theorem 1.2 is
sharp for the negativity of the first eigenvalue. In particular, we will show:

Proposition 3.1. Let β > 0. There exists a constant C > 0, such that for any large R there is
a complete, non-compact manifold (M, g) and bounded domains Ω1 ⊂ Ω2 satisfying (1.3a) with
volume ratio

Volg(Ω2 \Ω1)

Volg(Ω1)
< CeβR (3.12)

and with scalar curvature satisfying Sg ≤ −n(n− 1) on M for which the first eigenvalue for the
conformal Laplacian on Ω2 satisfies

λ >


1

(n− 1)(n− 2)
β2, if β > n− 1,

n− 1
n− 2

β2 − n(n− 1), if β ≤ n− 1.
(3.13)

In particular, if β >
√

n(n− 2), then λ is positive.



J. Hogg and L. Nguyen / Anal. Theory Appl., 40 (2024), pp. 57-91 87

Note that, for large R, (3.12) implies (1.4) with a slightly larger β. Remark 1.1 follows.
We consider the product manifolds M = R× N1 × · · · × Nm, where m ≥ 1 and each

Ni is a compact manifold of dimension ni ≥ 1 with ∑i ni = n− 1. We endow M with a
(multiply) warped metric g of the form

g = dr2 + ∑
i

p2
i (r)hi, (3.14)

where pi : R → (0, ∞) are warping functions and hi are metrics on each of the Ni. A
computation shows that (M, g) has Laplacian

∆g = ∂rr + ∑
i

ni
p′i
pi

∂r + ∑
i

1
p2

i
∆hi

and

Sg = −2 ∑
i

ni
p′′i
pi
−∑

i
ni(ni − 1)

(
p′i
pi

)2

− 2 ∑
i<j

ninj
p′i p
′
j

pi pj
+ ∑

i

Shi

p2
i

. (3.15)

A particularly convenient family of warped product metrics for our purposes will be:

Example 3.1. Let (M, g) be a multiply warped product as in (3.14) with each Ni = S1 (so
that m = n− 1) and pi = eαir for some αi ∈ R. We note that

Sg = −2

(
∑

i
αi

)2

+ 2 ∑
i<j

αiαj.

As a consequence, for any given β and constant C ≥ − n
n−1 β2, there exists a choice of αi

such that β = ∑i αi and Sg ≡ −C. In particular, if |β| ≤ n− 1, then there exists a choice
of αi with ∑i αi = β so that Sg ≡ −n(n− 1).

We now turn to a study of the volume ratios of concentric balls in the example above.

Lemma 3.4. Let (M, g) be as in Example 3.1. Then there exists a constant C depending only on
αi such that, for any R sufficiently large, one can find concentric balls B2R and BR such that

Volg(B2R \ BR)

Volg(BR)
≤ CeβR.

Proof. Fixing some large R and taking some ball BR(p0), writing p0 = (r0, x0), we have
immediately that

BR(p0) ⊂ {p : |r(p)− r0| ≤ R}.

On the other hand, defining S0 := {r0} ×Tn−1, we have that

dg(p, p0) ≤ dg(p, S0) + diam(S0) = r(p)− r0 + er0diam(Tn−1).
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Consequently, writing A0 = er0diam(Tn−1), we have that

{|r− r0| ≤ R− A0} ⊂ BR(p0) ⊂ {|r− r0| ≤ R},

from which we obtain

Volg(B2R(p0)) ≤
∫

Tn−1

∫ r0+2R

r0−2R
eβrdrdx = βVol(Tn−1)

(
eβ(r0+2R) − eβ(r0−2R)

)
and

Volg(BR(p0)) ≥
∫

Tn−1

∫ r0+(R−A0)

r0−(R−A0)
eβrdrdx = βVol(Tn−1)e−A0

(
eβ(r0+R) − eβ(r0−R+2A0)

)
,

from which we may estimate

Volg(B2R \ BR)

Volg(BR)
≤ eA0

eβ(r0+2R) − eβ(r0−2R)

eβ(r0+R) − eβ(r0−R+2A0)
− 1.

Consequently, (M, g) satisfies the following bound on the volume ratio for large balls

Volg(B2R \ BR)

Volg(BR)
≤ CeβR

(
1 +O(e−2(n−1)R)

)
− 1 (3.16)

and so, taking R large, we obtain

Volg(B2R \ BR)

Volg(BR)
≤ CeβR

for some large constant C > 0 depending only on αi.

We are now ready to prove Proposition 3.1. However, before this, we make the fol-
lowing remark:

Remark 3.1. As a consequence of Lemma 3.4, we may use Corollary 3.2 of Theorem 1.2
to prove that any manifold of the form of Example 3.1 admits a solution to the Yamabe
problem, provided that β <

√
n(n− 2).

Proof of Proposition 3.1. Let (M, g) be of the form of Example 3.1, where αi are chosen such
that ∑i αi = β and

Sg ≡

−
n

n− 1
β2, if β > n− 1,

−n(n− 1), if β ≤ n− 1.

In particular, Sg ≤ −n(n − 1). We note that, by the same argument as in the proof of
Lemma 3.4, there exists a C(α1, · · · , αn−1) > 0 such that we may choose concentric annuli
Ω2 = A2R and Ω1 = AR satisfying

Volg(A2R \ AR)

Volg(AR)
≤ C(α1, · · · , αn−1)eβR.
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As the eigenspace corresponding to the first eigenvalue λ is necessarily one dimen-
sional, we must have that the first eigenfunctions ϕ of the conformal Laplacian on A2R are
radially symmetric (i.e., ϕ = ϕ(r)) by virtue of the symmetry of the torus. Consequently,
ϕ satisfies the constant coefficient ODE

ϕ′′ + βϕ′ +
λ− Sg

cn
ϕ = 0

on Ω2 subjected to the zero Dirichlet boundary condition.
It follows that the corresponding characteristic equation must have complex, non-real

roots, which implies that

β2 −
(n− 2)(λ− Sg)

(n− 1)
< 0.

Consequently,

λ >
n− 1
n− 2

β2 − Sg

and so, recalling our choice of Sg, the proposition follows.

To conclude, we remark that one may use Theorem 1.2 to show existence of solutions
to the Yamabe problem for manifolds obtained from the warped product type metrics
discussed above via perturbations which preserve the volume ratio and scalar curvature
conditions.

In a future work, it would be interesting to explore which results similar to those
achieved for ALH manifolds could be obtained in the setting of Theorem 1.2 and to un-
derstand to what extent the upper bound on the scalar curvature could be loosened.
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[14] P. T. Chruściel and M. Herzlich, The mass of asymptotically hyperbolic Riemannian mani-
folds. Pacific J. Math., 212(2) (2003), 231–264.

[15] C.-C. Chen and C.-S. Lin, On the asymptotic symmetry of singular solutions of the scalar
curvature equations, Math. Ann., 313(2) (1999), 229–245.
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