
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 6, No. 4, pp. 494-514

DOI: 10.4208/aamm.2013.m278
August 2014

Explicit Multi-Symplectic Splitting Methods for

the Nonlinear Dirac Equation

Yaming Chen1, Songhe Song1,∗ and Huajun Zhu2

1 Department of Mathematics and System Science and State Key Laboratory of High
Performance Computing, National University of Defense Technology, Changsha 410073,
China
2 State Key Laboratory of Aerodynamics, China Aerodynamics Research and
Development Center, Mianyang 621000, China

Received 7 July 2013; Accepted (in revised version) 12 December 2013

Available online 28 May 2014

Abstract. In this paper, we propose two new explicit multi-symplectic splitting meth-
ods for the nonlinear Dirac (NLD) equation. Based on its multi-symplectic formu-
lation, the NLD equation is split into one linear multi-symplectic system and one
nonlinear infinite Hamiltonian system. Then multi-symplectic Fourier pseudospec-
tral method and multi-symplectic Preissmann scheme are employed to discretize the
linear subproblem, respectively. And the nonlinear subsystem is solved by a symplec-
tic scheme. Finally, a composition method is applied to obtain the final schemes for
the NLD equation. We find that the two proposed schemes preserve the total symplec-
ticity and can be solved explicitly. Numerical experiments are presented to show the
effectiveness of the proposed methods.
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1 Introduction

In this paper, we consider the (1+1)-dimensional nonlinear Dirac (NLD) equation [1]

{
Ψt =AΨx+i f (|Ψ1|2−|Ψ2|2)BΨ,

Ψ1(x,0)=φ1(x), Ψ2(x,0)=φ2(x),
(1.1)
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where Ψ=[Ψ1,Ψ2]T is a spinorial wave function, which describes a particle with the spin
−1/2. Here, Ψ1 and Ψ2 are complex functions, i=

√
−1 is the imaginary unit, f (s) is a

real function of a real variable s, A and B are matrices

A=

[
0 −1
−1 0

]
, B=

[ −1 0
0 1

]
.

Some numerical methods have been developed to solve the NLD equation (1.1), such
as spectral methods [2] and finite difference methods [3–5]. In [6], finite volume methods
with fine meshes are proposed to study the interaction dynamics of the Dirac solitary
waves. In [7–9], high-order accurate Runge-Kutta discontinuous Galerkin method is also
developed to simulate the solitary wave interaction of the NLD equation. More recently,
an integrating-factor method for the NLD equation is proposed in [10]. In this paper, we
aim to study efficient multi-symplectic methods for the NLD equation. Multi-symplectic
methods are a kind of methods which can preserve the multi-symplectic conservation
law of Hamiltonian partial differential equations (PDEs) under appropriate discretiza-
tions and perform better than tranditional methods in long time simulation [11], like the
well known symplectic methods (see for instance [12–15]). Recently, such kind of meth-
ods have been paid a lot of attentions to [16]. Some multi-symplectic methods have been
developed for the Hamiltonian PDEs, such as multi-symplectic Preissmann scheme [11,
17], multi-symplectic Runge-Kutta methods [18], multi-symplectic spectral discretiza-
tions [19], multi-symplectic Fourier pseudospectral method [20, 21], multi-symplectic
wavelet collocation method [22–25], and so on. However, most of the multi-symplectic
methods are implicit and not efficient enough in computation. In order to solve these
problems, some efforts have also been made. In [26], splitting method is firstly intro-
duced to reduce the difficulty of solving multi-symplectic methods. The effectiveness of
multi-symplectic splitting methods is shown numerically in [27–29]. Using symplectic
Runge-Kutta-Nyström methods and symplectic Runge-Kutta-type methods, Hong et al.
developed explicit multi-symplectic methods for the wave equation [31] and the Klein-
Gordon-Schrödinger equation [32], respectively.

In [33], it is shown that the NLD equation can be written into a multi-symplectic form.
And based on such a formulation, multi-symplectic Runge-Kutta (MSRK) methods for
the NLD equation are theoretically investigated. Furthermore, numerical experiments
are presented to show the effectiveness of the MSRK methods for the NLD equation
in [1]. However, the MSRK methods for the NLD equation are implicit. It is required
to use a fixed-point iteration method to solve nonlinear equations which will cost a lot
of efforts. In this paper, we develop two explicit multi-symplectic splitting methods for
the NLD equation. Firstly, the NLD equation is split into one linear subproblem and one
nonlinear subproblem. And then, the two subproblems are integrated separately. On
the one hand, the linear subproblem is written as a multi-symplectic form. Then, multi-
symplectic Fourier pseudospectral method and multi-symplectic Preissmann method are
used to discretize this linear subproblem. Moreover, it is shown that the two proposed
methods for the linear subproblem can be solved explicitly. On the other hand, the non-
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linear subsystem for the NLD equation can be written as an infinite Hamiltonian system
and solved explicitly by a symplectic scheme. Finally, the Strang splitting method is in-
troduced to obtain the final explicit schemes, which preserve the total symplecticity of the
NLD equation. In order to show the effectiveness of the proposed methods, numerical
experiments of propagation and interaction of solitary wave solutions are presented. In
addition, the preserving properties of conservation laws of charge, energy and momen-
tum are also investigated.

The rest of this paper is arranged as follows. In the rest of this section, we give the
definition of charge, energy and momentum of the NLD equation, and then consider
an important case of (1.1). The conservation laws of charge, energy and momentum
are also restated. In Section 2, multi-symplectic formulation of the NLD equation and
its corresponding conservation laws are introduced. In Section 3, two kinds of multi-
symplectic splitting methods are constructed for the NLD equation. Furthermore, it is
shown that such methods can be solved explicitly. Numerical experiments are presented
to show the effectiveness of the proposed methods in Section 4. Finally, conclusions are
made in Section 5.

In this context, the charge Q, the momentum P and the energy E of the NLD equation
(1.1) are given by [1]





Q(Ψ)(t)=
∫

R

(
|Ψ1(x,t)|2+|Ψ2(x,t)|2

)
dx,

P(Ψ)(t)=
∫

R

Im
(

Ψ1
∂

∂x
Ψ1+Ψ2

∂

∂x
Ψ2

)
dx,

E(Ψ)(t)=
∫

R

(
Im

(
Ψ1

∂

∂x
Ψ2+Ψ2

∂

∂x
Ψ1

)
+ f̃ (|Ψ1|2−|Ψ2|2)

)
dx,

(1.2)

where Im(Ψ) and Ψ denote respectively the imaginary part and the conjugate of the

complex Ψ, f̃ is defined by f̃ (s)=
∫ s

0 f (τ)dτ.
In this paper, we consider an important case of the NLD equation (1.1) as that in [1]





∂Ψ1

∂t
+

∂Ψ2

∂x
+imΨ1+2iλ(|Ψ2|2−|Ψ1|2)Ψ1=0,

∂Ψ2

∂t
+

∂Ψ1

∂x
−imΨ2+2iλ(|Ψ1|2−|Ψ2|2)Ψ2=0,

(1.3)

namely, f (s)=m−2λs in (1.1), where m and λ are real constants.
From [1], we know that the NLD equation (1.3) has the following conservation laws.

Proposition 1.1. If the solution Ψ of the NLD equation (1.3) satisfies

lim
|x|→+∞

|Ψ(x,t)|=0 and lim
|x|→+∞

|∂xΨ(x,t)|=0 uniformly for t∈R, (1.4)

then
d

dt
Q(Ψ)(t)=0,

d

dt
P(Ψ)(t)=0 and

d

dt
E(Ψ)(t)=0.
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2 Multi-symplectic formulation of the nonlinear Dirac equation

In this section, we restate some results from [1]. By letting Ψ1= p1+iq1, Ψ2 = p2+iq2, the
NLD equation (1.3) can be written as a system of real-value equations





∂p1

∂t
+

∂p2

∂x
−mq1−2λ(p2

2+q2
2−p2

1−q2
1)q1=0,

∂q1

∂t
+

∂q2

∂x
+mp1+2λ(p2

2+q2
2−p2

1−q2
1)p1=0,

∂p2

∂t
+

∂p1

∂x
+mq2+2λ(p2

2+q2
2−p2

1−q2
1)q2=0,

∂q2

∂t
+

∂q1

∂x
−mp2−2λ(p2

2+q2
2−p2

1−q2
1)p2=0.

(2.1)

Moreover, the system (2.1) can be written as a multi-symplectic Hamiltonian PDE [11]

Mzt+Kzx =∇zS(z) (2.2)

with

z=[p1,q1,p2,q2]
T, S(z)=

1

2
(λ(p2

1+q2
1−p2

2−q2
2)−m)(p2

1+q2
1−p2

2−q2
2),

M=

[
J 0
0 J

]
, K=

[
0 J
J 0

]
.

Here

J=

[
0 1
−1 0

]
.

From the multi-symplectic theories [11, 18], we know that the system (2.2) satisfies a
multi-symplectic conservation law

ωt+κx =0, (2.3)

where ω and κ are pre-symplectic forms with

ω=
1

2
dz∧Mdz, κ=

1

2
dz∧Kdz.

The system (2.2) also has a local energy conservation law

Et+Fx =0 with E(z)=S(z)− 1

2
zTKzx, F(z)=

1

2
zTKzt, (2.4)

and a momentum conservation law

It+Gx=0 with G(z)=S(z)− 1

2
zTMzt, I(z)=

1

2
zTMzx. (2.5)
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For the NLD equation (1.3), the above conservation laws are given explicitly by

ω=dp1∧dq1+dp2∧dq2, κ=dp1∧dq2+dp2∧dq1,

E(z)=S(z)− 1

2

(
p2

∂

∂x
q1−q2

∂

∂x
p1+p1

∂

∂x
q2−q1

∂

∂x
p2

)
,

F(z)=
1

2

(
p2

∂

∂x
q1−q2

∂

∂x
p1+p1

∂

∂x
q2−q1

∂

∂x
p2

)
,

G(z)=S(z)− 1

2

2

∑
i=1

(
pi

∂

∂t
qi−qi

∂

∂t
pi

)
, I(z)=

1

2

2

∑
i=1

(
pi

∂

∂x
qi−qi

∂

∂x
pi

)
.

In addition, for the NLD equation (1.3), it follows that

Im
(

Ψ1
∂

∂x
Ψ2+Ψ2

∂

∂x
Ψ1

)
+ f̃ (|Ψ1|2−|Ψ2|2)=−2E.

Hence,

E(Ψ)(t)=−2
∫

R

E(z(x,t))dx. (2.6)

Similarly, we can obtain

P(Ψ)(t)=
∫

R

Im
(

Ψ1
∂

∂x
Ψ1+Ψ2

∂

∂x
Ψ2

)
dx=2

∫

R

I(z(x,t))dx. (2.7)

3 Multi-symplectic splitting methods for the nonlinear Dirac

equation

The Hamiltonian PDE (2.2) can be split into subsystems [26]

Mzt+Kizx =∇zSi(z), i=1,2,··· ,N, (3.1)

where KT
i =−Ki, ∑

N
i=1Ki=K and ∑

N
i=1Si(z)=S(z). It is easy to know that the subsystems

(3.1) have the following multi-symplectic conservation laws

ωt+(κi)x=0, (3.2)

where ω=dz/2∧Mdz, κi =dz/2∧Kidz, i=1,2,··· ,N.

For the NLD equation (1.3), it can be decomposed into one linear subproblem

Ψt =L(Ψ)=AΨx+imBΨ (3.3)

and one nonlinear subproblem

Ψt =N (Ψ)=−2iλ(|Ψ1|2−|Ψ2|2)BΨ, (3.4)
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where Ψ, A and B are defined as that in (1.1). The above two subproblems can be written
as real-value equations, namely

L :





∂p1

∂t
+

∂p2

∂x
−mq1=0,

∂q1

∂t
+

∂q2

∂x
+mp1=0,

∂p2

∂t
+

∂p1

∂x
+mq2=0,

∂q2

∂t
+

∂q1

∂x
−mp2=0,

(3.5)

and

N :





∂p1

∂t
−2λ(p2

2+q2
2−p2

1−q2
1)q1=0,

∂q1

∂t
+2λ(p2

2+q2
2−p2

1−q2
1)p1=0,

∂p2

∂t
+2λ(p2

2+q2
2−p2

1−q2
1)q2=0,

∂q2

∂t
−2λ(p2

2+q2
2−p2

1−q2
1)p2=0.

(3.6)

It is noticed that both the linear subproblem (3.5) and the nonlinear subproblem (3.6) can
be written as a multi-symplectic form (3.1) with

L : K1=K, S1(z)=−1

2
m(p2

1+q2
1−p2

2−q2
2),

N : K2=0, S2(z)=
1

2
λ(p2

1+q2
1−p2

2−q2
2)

2.

In addition, the nonlinear subproblem (3.6) can also be written as an infinite Hamiltonian
system

zt =M−1 δ

δz
H(z), z=[p1,q1,p2,q2]

T, (3.7)

with a symplectic conservation law

d

dt

∫

Ω
ωdx=0, (3.8)

where ω=dp1∧dq1+dp2∧dq2 and the Hamiltonian function is

H(z)=
λ

2

∫

Ω
(p2

2+q2
2−p2

1−q2
1)

2dx.



500 Y. M. Chen, S. H. Song and H. J. Zhu / Adv. Appl. Math. Mech., 6 (2014), pp. 494-514

3.1 Discretizations for the linear subproblem

We assume that the NLD equation (1.3) is to be integrated in the spacial interval [xL,xR]
and let L= xR−xL be the length of the interval. A uniform grid (xk,tn) with space-step
∆x= L/N and time-step ∆t is considered in this paper, where N is the number of spacial
subintervals. The space grid points are denoted by xk=xL+(k−1)∆x and pi,k and qi,k are
the approximations to pi(xk,t) and qi(xk,t), respectively, i= 1,2, k= 1,2,··· ,N. Similarly,
pn

i,k ≈ pi(xk,tn) and qn
i,k ≈qi(xk,tn).

3.1.1 Multi-symplectic Fourier pseudospectral method for the linear subsystem

In order to apply the Fourier pseudospectral method, we assume that the boundary con-
ditions for the NLD equation (1.3) are periodic, namely Ψi(xL,t)=Ψi(xR,t), i=1,2. And
let the number of spacial subintervals N to be an even integer in this subsection. In the
Fourier pseudospectral method, the first-order partial differential operator ∂x yields the
Fourier spectral differentiation matrix D1, which is an N×N skew-symmetric matrix with
elements

(D1)k,l =

{
1

2
(−1)k+lµcot

(
µ

xk−xl

2

)
, l 6= k,

0, l= k,
for k,l=1,2,··· ,N.

Here, µ=2π/L. For more details about the Fourier pseudospectral method, see [20] and
references therein.

Using the Fourier pseudospectral method in space direction, we can obtain a semi-
discretization system for the linear subproblem (3.5)





dp1

dt
+D1p2−mq1=0,

dq1

dt
+D1q2+mp1=0,

dp2

dt
+D1p1+mq2=0,

dq2

dt
+D1q1−mp2=0,

(3.9)

where pi=[pi,1,pi,2,··· ,pi,N ]
T and qi =[qi,1,qi,2,··· ,qi,N]

T, i=1,2.
Then, the multi-symplectic Fourier pseudospectral method is obtained while implicit

midpoint scheme is implemented in time direction




pn+1
1 =pn

1−∆t
(

D1pn+1/2
2 −mqn+1/2

1

)
,

qn+1
1 =qn

1−∆t
(

D1qn+1/2
2 +mpn+1/2

1

)
,

pn+1
2 =pn

2−∆t
(

D1pn+1/2
1 +mqn+1/2

2

)
,

qn+1
2 =qn

2−∆t
(

D1qn+1/2
1 −mpn+1/2

2

)
,

(3.10)
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where pn
i =[pn

i,1,pn
i,2,··· ,pn

i,N ]
T, pn+1/2

i =(pn
i +pn+1

i )/2, etc..

Furthermore, Eq. (3.10) can be written as




pn+1
1

qn+1
1

pn+1
2

qn+1
2


=

(
2
(

I4N+
1

2
∆tJ1+

1

2
∆tmJ2

)−1
− I4N

)



pn
1

qn
1

pn
2

qn
2


, (3.11)

where J1 =




0 0 D1 0
0 0 0 D1

D1 0 0 0
0 D1 0 0


, J2 =




0 −IN 0 0
IN 0 0 0
0 0 0 IN

0 0 −IN 0


. Here, IN is the N×N

identity matrix. By direct calculation, we can obtain

(
I4N+

1

2
∆tJ1+

1

2
∆tmJ2

)−1
=




A aA −D′
1B−1 0

−aA A 0 −D′
1B−1

−B−1D′
1 0 B−1 −aB−1

0 −B−1D′
1 aB−1 B−1


, (3.12)

where a=∆tm/2, D′
1=∆tD1/2, A=(I+D′

1B−1D′
1)/(1+a2), B=(1+a2)I−D′2

1.

Because B is a symmetric and circulant matrix, we can know its inverse matrix B−1

is also a symmetric and circulant matrix [34]. Therefore, in order to obtain B−1, we just
need to know its first column. That is to say, we can obtain the matrix (I4N+∆tJ1/2+
∆tmJ2/2)−1 easily. Therefore, (3.11) is an explicit scheme.

3.1.2 Multi-symplectic Preissmann method for the linear subsystem

The multi-symplectic Fourier pseudospectral method can only be used for periodic
boundary conditions. For non-periodic boundary conditions, we have to use other multi-
symplectic methods. The multi-symplectic Preissmann scheme is one of the most popular
methods which can be used to solve problems with non-periodic boundary conditions.

From [11], we know that the multi-symplectic Preissmann scheme for the linear sub-
problem (3.5) can be written as





dtMx pn
1,k+Mtdx pn

2,k−mMtMxqn
1,k =0,

dtMxqn
1,k+Mtdxqn

2,k+mMtMx pn
1,k =0,

dtMx pn
2,k+Mtdx pn

1,k+mMtMxqn
2,k =0,

dtMxqn
2,k+Mtdxqn

1,k−mMtMx pn
2,k =0,

(3.13)

where dt pn
1,k=(pn+1

1,k −pn
1,k)/∆t, dx pn

1,k=(pn
1k+1

−pn
1,k)/∆x, Mt pn

1,k=(pn+1
1,k +pn

1,k)/2, Mx pn
1,k=

(pn
1k+1

+pn
1,k)/2, etc..
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It is noticed that (3.13) can be written as the compact form




aM −cM bD 0
cM aM 0 bD
bD 0 aM cM
0 bD −cM aM







pn+1
1

qn+1
1

pn+1
2

qn+1
2


=




aM cM −bD 0
−cM aM 0 −bD
−bD 0 aM −cM

0 −bD cM aM







pn
1

qn
1

pn
2

qn
2


, (3.14)

where a=1/(2∆t), b=1/(2∆x), c=m/4,

M=




1 1
. . .

. . .

1 1
1 1




N×N

, D=




−1 1
. . .

. . .

−1 1
1 −1




N×N

.

Furthermore, it can be derived that (3.14) is equivalent to




pn+1
1

qn+1
1

pn+1
2

qn+1
2


=(2aB−1(M⊗ I4)− I)




pn
1

qn
1

pn
2

qn
2


, (3.15)

where

B=




aM −cM bD 0
cM aM 0 bD
bD 0 aM cM
0 bD −cM aM


, B−1=(A−1⊗ I4)




aM cM −bD 0
−cM aM 0 −bD
−bD 0 aM −cM

0 −bD cM aM


.

Here, A=(a2+c2)M2−b2D2 and ⊗ is the Kronecker inner product.
In fact, since the matrix 2aB−1(M⊗ I4)− I can be expressed as




2a2 A−1M2− I 2acA−1M2 −2abA−1MD 0

−2acA−1M2 2a2 A−1M2− I 0 −2abA−1MD

−2abA−1MD 0 2a2 A−1M2− I −2acA−1M2

0 −2abA−1MD 2acA−1M2 2a2 A−1M2− I




,

we just need to obtain A−1 in order to solve the linear equation (3.15) explicitly.
In addition, it is noticed that

A=d




1 α 1
. . .

. . .
. . .

1 α 1
1 1 α
α 1 1



=dC(β)C(γ),
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where the matrix C(x) denotes




1 x
. . .

. . .

1 x
x 1


, d= a2−b2+c2, α= 2(a2+b2+c2)/d,

β=(α+
√

α2−4)/2 and γ=(α−
√

α2−4)/2. And we can derive

C−1(x)=




a0 a1 a2 ··· aN−4 aN−3 aN−2 bN−1

bN−1 a0 a1 a2 ··· aN−4 aN−3 bN−2

bN−2 bN−1 a0 a1 a2 ··· aN−4 bN−3
...

. . .
. . .

. . .
. . .

. . .
...

...
b4 ··· bN−2 bN−1 a0 a1 a2 b3

b3 b4 ··· bN−2 bN−1 a0 a1 b2

b2 b3 b4 ··· bN−2 bN−1 a0 b1

b1 b2 b3 b4 ··· bN−2 bN−1 b0




,

where ak=(−x)kξ, bk=(−x)k/η for k=0,1,2,··· ,N−1, and ξ=1+(−x)N/η, η=1−(−x)N .
Hence the inverse matrix of A can be obtained exactly. Therefore, the scheme (3.15) is
explicit.

3.2 Discretization for the nonlinear subproblem

For the nonlinear subproblem (3.6), the point-wise accuracy solution can be computed
as [35] 




Ψn+1
1,k =Ψn

1,ke−2iλ∆t(|Ψn
2,k|2−|Ψn

1,k|2),

Ψn+1
2,k =Ψn

2,ke2iλ∆t(|Ψn
2,k |2−|Ψn

1,k|2).
(3.16)

Namely 



[
pn+1

1,k

qn+1
1,k

]
=

[
cosθk sinθk

−sinθk cosθk

][
pn

1,k

qn
1,k

]
,

[
pn+1

2,k

qn+1
2,k

]
=

[
cosθk −sinθk

sinθk cosθk

][
pn

2,k

qn
2,k

]
,

(3.17)

where θk =2λ∆t(|Ψn
2,k |2−|Ψn

1,k|2).
It is easy to derive from (3.17) that dpn+1

1,k ∧dqn+1
1,k = dpn

1,k∧dqn
1,k and dpn+1

2,k ∧dqn+1
2,k =

dpn
2,k∧dqn

2,k. That is to say, the scheme (3.17) preserves the total discrete symplecticity
Σkωn

k ∆x of the nonlinear subproblem exactly, where ωn
k =dpn

1,k∧dqn
1,k+dpn

2,k∧dqn
2,k. Hence,

(3.17) is a symplectic scheme.
In this paper, we choose the second order Strang splitting method

Ψi(x,t+∆t)=exp
(∆t

2
N

)
exp(∆tL)exp

(∆t

2
N

)
Ψi(x,t), i=1,2, (3.18)
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to combine the solutions of the linear subproblem and the nonlinear subproblem to ob-
tain the final schemes for the NLD equation (1.3). If the mult-symplectic Fourier pseu-
dospectral method is used to solve the linear problem in (3.18), the method is referred
to as multi-symplectic splitting Fourier pseudospectral method (MSSFPM). On the other
hand, if multi-symplectic Preissmann scheme is used, the method is referred to as multi-
symplectic splitting Preissmann method (MSSPM). As the linear subproblem and the
nonlinear subproblem can be both integrated explicitly, we state that the MSSFPM and
the MSSPM are both explicit methods. Since multi-symplectic and symplectic methods
are employed to integrate the linear subsystem and nonlinear subsystem, respectively,
the proposed methods have a good long time stable property in each step.

Furthermore, under periodic or vanishing boundary conditions, the same total dis-
crete symplecticity Σkωn

k ∆x as the nonlinear subproblem is preserved by the multi-
symplectic methods which are used to solve the linear subproblem. So the proposed
splitting methods in this paper can preserve the total symplecticity of the NLD equation
in such boundary conditions.

4 Numerical experiments

In this section, we choose periodic boundary condition Ψ(xL,t)=Ψ(xR,t) to show the ef-
fectiveness of our proposed methods, where xL and xR are real constants. And according
to (1.2), (2.6) and (2.7), we define the errors in discrete charge, energy and momentum as

N

∑
k=1

(|Ψn
1,k|2+|Ψn

2,k|2−|Ψ0
1,k|2−|Ψ0

2,k|2)∆x, (4.1a)

−2
N

∑
k=1

(En
k −E0

k)∆x, (4.1b)

and

2
N

∑
k=1

(In
k − I0

k )∆x, (4.1c)

respectively, where En
k ≈ E(zn

k ) and In
k ≈ I(zn

k ). For the MSSFPM, we use (D1pn
i )k and

(D1qn
i )k to approximate ∂/∂xpn

i,k and ∂/∂xqn
i,k that appear in En

k and In
k , respectively, i=

1,2. For the MSSPM, we choose dx pn
i,k and dxqn

i,k as the approximations.

Example 4.1. When the constants m= 1 and λ= 1/2 in (1.3), the NLD equation has the
following theoretical solitary wave solution [1]

Ψsw(x,t)= [Ψsw
1 ,Ψsw

2 ]T=[M(x),iN(x)]Te−iΛt, (4.2)
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Figure 1: The four numerical solitary wave functions obtained by using MSSFPM with initial condition Ψsw(x,0),
Λ=0.75, [xL,xR]= [−24,24], N=160, ∆t=0.01.

where

M(x)=(2(1−Λ2))1/2(1+Λ)1/2 cosh((1−Λ2)1/2x)

1+Λcosh(2(1−Λ2)1/2x)
, (4.3a)

N(x)=(2(1−Λ2))1/2(1−Λ)1/2 sinh((1−Λ2)1/2x)

1+Λcosh(2(1−Λ2)1/2x)
, (4.3b)

and the frequency Λ is a real constant.
The numerical results for the solitary wave solution (4.2) with Λ=0.75 are showed in

Fig. 1 and Fig. 2.
From these two figures, we can see that both the MSSFPM and the MSSPM perform

well. The time interval [0,100] contains almost 12 periods, which matches with the theo-
retical solution. The corresponding errors in the charge, energy and momentum for the
two proposed methods are shown in Fig. 3.

From this figure, we can see that both of the methods preserve the charge, energy
and momentum well. Compared with the MSSPM, nevertheless, the MSSFPM performs
better in preserving the global conservation laws.

In addition, a numerical accuracy test of spatial direction is also presented in Table 1.
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Figure 2: The four numerical solitary wave functions obtained by using MSSPM with initial condition Ψsw(x,0),
Λ=0.75, [xL,xR]= [−24,24], N=160, ∆t=0.01.

For the MSSFPM, we observe that the errors decrease until N = 160. When the
MSSFPM achieves its maximum efficiency, a larger number of nodes does not improve
the accuracy of the results. This phenomenon is due to the non-periodicity of the real
problem. To further improve the result, we should use larger interval [xL,xR] to do the
simulation. For the MSSPM, we can see that the scheme is of approximately second or-
der accuracy in space direction. In such a situation, N=20 is not large enough to obtain
satisfied results due to the lower order accuracy in space direction compared with the
MSSFPM.

Example 4.2. When m=1 and λ=1/2, there is another exact solution of the NLD equation
(1.3) which represents a solitary wave traveling with velocity v [10], that solution is

Ψss =[Ψss
1 (x,t),Ψss

2 (x,t)]T, (4.4)

where

Ψss
1 (x,t)=

√
γ+1

2
Ψsw

1 (x̃, t̃)+sign(v)

√
γ−1

2
Ψsw

2 (x̃, t̃), (4.5a)

Ψss
2 (x,t)=

√
γ+1

2
Ψsw

2 (x̃, t̃)+sign(v)

√
γ−1

2
Ψsw

1 (x̃, t̃). (4.5b)
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Figure 3: Corresponding errors in the discrete charge, energy and momentum obtained by the MSSFPM and
the MSSPM.

Here, γ = 1/
√

1−v2, x̃ = γ(x−vt), t̃ = γ(t−vx), Ψsw
1 and Ψsw

2 are defined in (4.2) and
sign(v) denotes the sign of v. When v>0, the wave travels from left to right and, when
v<0, from right to left; when v=0, it does not move and we get the standing wave (4.2).
Because the MSSFPM and the MSSPM give similar numerical results, we just present the
results obtained by the MSSFPM in this subsection. In addition, the charge density of the
NLD equation (1.3) is defined by

ρQ(x,t)= |Ψ1|2+|Ψ2|2. (4.6)
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Table 1: The accuracy test of the NLD equation (1.3) with the solution (4.2) in the space direction at time
t=1, ∆t=0.0001, [xL,xR]= [−24,24].

N
MSSFPM MSSPM

L2 error L∞ error L2 error order L∞ error order
20 7.08E-02 3.02E-02
40 1.24E-02 6.16E-03 5.00E-02 - 3.35E-02 -

p1 80 1.04E-05 8.34E-06 1.07E-02 2.22 8.21E-03 2.03
160 6.62E-06 3.61E-06 2.53E-03 2.08 1.98E-03 2.05
320 6.62E-06 3.61E-06 6.37E-04 1.99 5.14E-04 1.95
20 1.16E-01 6.39E-02
40 8.41E-03 3.22E-03 1.81E-02 - 7.05E-03 -

q1 80 1.29E-05 8.10E-06 3.87E-03 2.23 2.72E-03 1.37
160 7.11E-06 3.88E-06 1.01E-03 1.94 8.49E-04 1.68
320 7.11E-06 3.88E-06 2.84E-04 1.83 2.49E-04 1.77
20 8.67E-02 2.34E-02
40 2.28E-03 6.21E-04 2.43E-02 - 1.31E-02 -

p2 80 1.22E-05 4.46E-06 5.61E-03 2.11 3.45E-03 1.92
160 1.62E-06 7.90E-07 1.39E-03 2.01 8.53E-04 2.02
320 1.62E-06 7.91E-07 3.57E-04 1.96 2.21E-04 1.95
20 7.13E-02 1.92E-02
40 1.09E-02 3.30E-03 3.34E-02 - 1.91E-02 -

q2 80 4.39E-06 2.35E-06 7.57E-03 1.39 5.35E-03 1.84
160 1.51E-06 7.36E-07 1.73E-03 2.13 1.28E-03 2.06
320 1.51E-06 7.37E-07 4.27E-04 2.02 3.28E-04 1.96

4.1 Propagation of one soliton

We use the initial value
Ψ(x,0)=Ψss(x−x0,0) (4.7)

to simulate one soliton of the NLD equation (1.3). The propagation of one soliton is
shown in Fig. 4. The corresponding global errors are also presented in this figure. From
the figure, we can see that the solitons transmits without any change with respect to
shapes and velocities; the charge, energy and momentum are preserved very well.

4.2 Collision of double solitons

The collision of two solitons of the NLD equation (1.3) is presented in Fig. 5 with initial
condition

Ψ(x,0)=Ψss
l (x−xl,0)+Ψss

r (x−xr,0). (4.8)

From this figure, we can see the interaction of these solitons is elastic when Λ = 0.5.
Fluctuations in the errors of energy and momentum are clearly observed at about t =
40 when collision happened in this case. While Λ= 0.2, the interaction of two solitons
is inelastic, oscillatory waves are generated when two solitons collided. In this case,
however, the symmetry of the solution is preserved very well.
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Figure 4: Propagation of one soliton of the NLD equation (1.3) and its corresponding errors obtained by
MSSFPM with x0 =0, [xL,xR]= [−24,24], N=200, ∆t=0.01. Left: Λ=0.5, v=−0.2, right: Λ=0.2, v=0.2.
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Figure 5: Collision of two solitons of the NLD equation (1.3) and their corresponding errors obtained by
MSSFPM with vl =−vr =0.2 and xr =−xl =10, [xL,xR]= [−24,24], N=300, ∆t=0.01. Left: Λl =Λr =0.5,
right: Λl =Λr =0.2.
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4.3 Interaction of triple solitons

The NLD equation (1.3) admits three solitons under the initial condition

Ψ(x,0)=Ψss
l (x−xl,0)+Ψss

m(x−xm,0)+Ψss
r (x−xr,0). (4.9)

The interaction of triple solitons are shown in Fig. 6. The corresponding errors of (4.1a),
(4.1b) and (4.1c) are also illustrated in this figure. We can see that the collision is almost
elastic. After collision, the amplitudes of the left wave and the right wave become larger
while the amplitude of the middle wave becomes smaller. From the corresponding er-
rors we can conclude that the charge, energy and momentum are preserved well. While
collision happened, fluctuation is observed in the error of the energy.
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Figure 6: Interaction of three solitons of the NLD equation (1.3) and their corresponding errors obtained by
MSSFPM with vl =−vr=0.2, vm=0.0, xr =−xl=20, xm=0, Λl =Λm=Λr=0.5, [xL,xR]=[−30,30], N=300,
∆t=0.01.

5 Conclusions

In this paper, we propose two multi-symplectic splitting methods to solve the nonlinear
Dirac equation. We find that these two methods can be solved explicitly and preserve



512 Y. M. Chen, S. H. Song and H. J. Zhu / Adv. Appl. Math. Mech., 6 (2014), pp. 494-514

the total symplecticity of the NLD equation under periodic or vanishing boundary con-
ditions. From the results of numerical experiments, we can see both the MSSFPM and the
MSSPM are effective. The MSSFPM, nevertheless, has better performance in preserving
the discrete charge, energy and momentum under the same spatial grids due to its high
accuracy in space direction. The numerical results also show that the proposed methods
are effective in simulating interaction of soliton solutions.
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