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Abstract. We consider an inverse problem of determining unknown coefficients for a
one-dimensional analogue of radiative transport equation. We show that some com-
bination of the unknown coefficients can be uniquely determined by giving pulse-like
inputs at the boundary and observing the corresponding outputs. Our result can be
applied for determination of absorption and scattering properties of an optically turbid
medium if the radiative transport equation is appropriate for describing the propaga-
tion of light in the medium.
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1 Introduction

We consider a one-dimensional version of the inverse problem of identifying unknown
coefficients of the one-speed, time-dependent radiative transport equation. This inverse
problem is related with the study of optical tomography (see, e.g., [1, 2] and references
therein). Optical tomography has been studied for several decades as a new modality
of medical imaging technique using low-energy light in the near-infrared region. Com-
pared with other tomographic techniques using high-energy radiation (e.g., X-ray CT),
optical tomography is considered to be less harmful to human body. In most researches
on optical tomography the propagation of near-infrared light in biological tissues is mod-
eled by the radiative transport equation, and the process of imaging is formulated as an
inverse problem of determining unknown coefficients of the equation. Although the orig-
inal problem is three-dimensional in space variables, our discussion here is limited to the
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one-dimensional case partly because the three-dimensional problem is quite difficult and
mainly because we can obtain a reconstruction formula for the unknown coefficients.

Let (0,H)={x∈R; 0<x<H} be a finite open interval in R. Let µa(x), µs(x), and q(x)
be continuous functions on the closed interval [0,H] and assume that µa(x)≥0, µs(x)≥0,
and 0≤ q(x)≤1 there. We consider the situation where the interval [0,H] is occupied by
a medium that absorbs and scatters photons, with µa, µs, and q being the distribution of
the absorption coefficient, the scattering coefficient, and the probability of backward scat-
tering, respectively. Let I1(x,t) be the density of photons moving through the medium
with speed c in the positive x direction, and I2(x,t) in the negative x direction. The time
evolution of I1 and I2 are described by the system of differential equations

1

c

∂I1

∂t
+

∂I1

∂x
=−(µa+qµs)I1+qµs I2, 0< x<H, 0< t<T, (1.1a)

1

c

∂I2

∂t
− ∂I2

∂x
=−(µa+qµs)I2+qµs I1, 0< x<H, 0< t<T, (1.1b)

where c and T are positive numbers. We always assign the initial condition

I1(x,0)= I2(x,0)=0, 0≤ x≤H. (1.2)

We assume that the speed c is a known constant, while the coefficients µa(x), µs(x),
and q(x) are unknown functions. In order to determine those unknowns, we consider an
experiment as follows. We give a pulse-like input at one end of the interval [0,H] and
observe the boundary values of the outward flow at both ends, i.e., I1(H,t) and I2(0,t).
We again follow the same process by giving the input at the other end. To be precise, we
solve (1.1) and (1.2) with the boundary condition

I1(0,t)=δ(t), I2(H,t)=0. (1.3)

Writing the solution to (1.1), (1.2), and (1.3) as I1=(I1
1 , I1

2), we observe

I1
1(H,t), I1

2(0,t), 0≤ t≤T. (1.4)

Next we solve (1.1) and (1.2) with the boundary condition

I1(0,t)=0, I2(H,t)=δ(t), (1.5)

write the solution to (1.1), (1.2), and (1.5) as I2=(I2
1 , I2

2), and then observe

I2
1(H,t), I2

2(0,t), 0≤ t≤T. (1.6)

Our main result is as follows.

Theorem 1.1. Let m and M be positive numbers with m<M. In the setting above, we consider
the admissible set A(m,M) of the unknown coefficients satisfying

µa, µs, q∈C0[0,H] and µa,µs≥0, 0≤q≤1, m≤µa+qµs ≤M on [0,H].

Then there exists a number H∗
>0, such that if 0<H<H∗, T≥2H/c, and (µa,µs,q)∈A(m,M),

the data (1.4) and (1.6) uniquely identify µa and qµs.
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We remark that the system (1.1) depends on µs and q only through the product qµs.
In other words, we cannot reconstruct µs and q separately.

We prove Theorem 1.1 by a method explained in [4, Chap. 5] that is applicable to
the inverse coefficient problems for general first-order hyperbolic systems. Hence the
present paper is in fact an application of it to a simple case: the system (1.1) is a symmetric
hyperbolic system with only two components and we actually reconstruct two functions
µa and qµs. The simplicity of the setting, however, leads to obtaining reconstruction
formulae (3.4) and (3.5) for them.

In experimental study of optical tomography, it is an important step to determine the
absorption and scattering property of a phantom made from an optically turbid material.
To our knowledge a decisive method for doing so is still unknown, and we expect that
the theorem above is applicable for that purpose.

2 Solution to the direct problem

From now on we put D := (0,H)×(0,T) = {(x,t) ∈ R
2|0 < x < H, 0 < t < T}. Here we

investigate the solution to the direct problem for the system

[

∂

∂t
+c

(

1 0
0 −1

)

∂

∂x
+c

(

µa+qµs −qµs

−qµs µa+qµs

)]

(

Ik
1

Ik
2

)

=

(

0
0

)

, (x,t)∈D, (2.1)

with initial-boundary conditions

Ik
1(x,0)= Ik

2(x,0)=0, 0≤ x≤H, (2.2a)

Ik
1(0,t)=δ(t)δ1k, Ik

2(H,t)=δ(t)δ2k, (2.2b)

for k ∈ {1,2}, where δ(t) is the Dirac delta function and δik is the Kronecker delta. We
introduce new dependent variables Īk=( Īk

1 , Īk
2) by

Īk
i (x,t) := pi(x)Ik

i (x,t), i,k∈{1,2}, (2.3)

where

p1(x)=exp
(

∫ x

0
(µa+qµs)(ξ)dξ

)

, (2.4a)

p2(x)=exp
(

−
∫ x

0
(µa+qµs)(ξ)dξ

)

=
1

p1(x)
. (2.4b)

Then the direct problem (2.1)-(2.2) is equivalent to

[

∂

∂t
+

(

c 0
0 −c

)

∂

∂x
+

(

0 a12

a21 0

)]

(

Īk
1

Īk
2

)

=

(

0
0

)

, (x,t)∈D, (2.5a)

Īk
1(x,0)= Īk

2(x,0)=0, 0≤ x≤H, (2.5b)

Īk
1(0,t)=δ1kδ(t), Īk

2(H,t)=δ2k p2(H)δ(t), (2.5c)
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where the new coefficients a12= a12(x) and a21= a21(x) are given by

a12 :=− cqµs p1

p2
=−cqµs p2

1, a21 :=− cqµs p2

p1
=−cqµs p−2

1 . (2.6)

The next lemma shows the unique existence and the structure of the solution to the direct
problem (2.5).

Lemma 2.1. If the coefficients are continuous on the closed interval [0,H], then for each k∈{1,2}
the problem (2.5) is uniquely solvable, and the solution is written in the form

Īk
1(x,t)=δ1kδ

(

t− x

c

)

+wk
1(x,t), (2.7a)

Īk
2(x,t)= p2(H)δ2kδ

(

t− H−x

c

)

+wk
2(x,t), (2.7b)

where w1=(w1
1,w1

2) is the unique solution to the system of integral equations

w1
1(x,t)+

∫ t

t1(x,t)
a12(ξ)w

1
2(ξ,τ)

∣

∣

∣

ξ=cτ+x−ct
dτ=0, (2.8a)

w1
2(x,t)+

∫ t

t2(x,t)
a21(ξ)w

1
1(ξ,τ)

∣

∣

∣

ξ=−cτ+x+ct
dτ=−F1

2 (x,t), (2.8b)

and w2=(w2
1,w2

2) is the unique solution to

w2
1(x,t)+

∫ t

t1(x,t)
a12(ξ)w

2
2(ξ,τ)

∣

∣

∣

ξ=cτ+x−ct
dτ=−F2

1 (x,t), (2.9a)

w2
2(x,t)+

∫ t

t2(x,t)
a21(ξ)w

2
1(ξ,τ)

∣

∣

∣

ξ=−cτ+x+ct
dτ=0, (2.9b)

with the following notation:

t1(x,t) :=max
{

0,t− x

c

}

, t2(x,t) :=max
{

0,t− H−x

c

}

,

F1
2 (x,t) :=

1

2
a21

( x+ct

2

)

×
{

1, (|ct−H|≤H−x),
0, (|ct−H|>H−x),

F2
1 (x,t) :=

p2(H)

2
a12

( x−ct+H

2

)

×
{

1, (|ct−H|≤ x),
0, (|ct−H|> x).

On the closure D = [0,H]×[0,T] of D, the function w1
i (resp. w2

i ) is bounded and piecewise
continuous with jump discontinuity along the lines of discontinuity of the function F1

2 (resp. F2
1 ).
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Proof. We only give an outline. Inserting the expression (2.7) into (2.5) yields the follow-
ing system for wk =(wk

1,wk
2):

( ∂

∂t
+c

∂

∂x

)

wk
1+a12wk

2+a12 p2(H)δ2kδ
(

t− H−x

c

)

=0, (2.10a)

( ∂

∂t
−c

∂

∂x

)

wk
2+a21wk

1+a21δ1kδ
(

t− x

c

)

=0, (2.10b)

wk
1(x,0)=wk

2(x,0)=0, (2.10c)

wk
1(0,t)=0, wk

2(H,t)=0. (2.10d)

For k= 1 we obtain the system (2.8) by integrating the Eqs. (2.10a) and (2.10b) from
the boundary ∂D to the point (x,t) with the help of (2.10c) and (2.10d). By putting

U(x,t) :=
∫ t

t1(x,t)
a12(ξ)F1

2 (ξ,τ)
∣

∣

∣

ξ=cτ+x−ct
dτ,

V(x,t) :=
∫ t

t2(x,t)
a21(ξ)U(ξ,τ)

∣

∣

∣

ξ=−cτ+x+ct
dτ,

z1 :=w1
1−U, z2 :=w1

2+F1
2 ,

the system (2.8) is equivalent to

z1(x,t)+
∫ t

t1(x,t)
a12(ξ)z2(ξ,τ)

∣

∣

∣

ξ=cτ+x−ct
dτ=0, (2.11a)

z2(x,t)+
∫ t

t2(x,t)
a21(ξ)z1(ξ,τ)

∣

∣

∣

ξ=−cτ+x+ct
dτ=−V(x,t). (2.11b)

The function U(x,t) is defined by integrating a12(ξ)F1
2 (ξ,τ) up to the point (x,t) along

the line L :ξ−cτ=x−ct, and the integrand is bounded and discontinuous along the lines
ξ−cτ=0 (parallel to L) and ξ+cτ=2H (transversal). Therefore U(x,t) is discontinuous
only along the line x−ct = 0. Analogous reasoning shows that the function V(x,t) is
continuous on D. Then the system (2.11) can be seen as a linear equation

(IZ+A)

(

z1

z2

)

=

(

0
−V

)

in the Banach space Z :=C0(D)×C0(D) with the maximum norm, where IZ is the identity
on Z and the operator A denotes the integral terms of (2.11). The spectral radius of A is
seen to be zero in a way similar to the linear Volterra integral operator on a compact
interval with continuous kernel (see, e.g., [3, Chap. 3]). Hence the operator IZ+A has a
bounded inverse and the Eq. (2.11) is uniquely solvable in Z.

Similarly, for k=2 we obtain the system (2.9) and its unique solvability.
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3 Outline of a proof of Theorem 1.1

We begin by a remark on the functions wk
i and by setting of a function space. We see from

(2.8) and (2.9) that

w1
i (x,t)=0 for ct< x,

w2
i (x,t)=0 for x<H−ct.

To prove Theorem 1.1 we aim at reconstructing the functions wk
i , a12, and a21 from the

data (1.4) and (1.6) as a point (w1
1,w1

2,w2
1,w2

2,a12,a21) in the space

Y :=C0(E1)×C0(E1)×C0(E2)×C0(E2)×C0[0,H]×C0[0,H],

where E1 and E2 are the closed triangles in the (x,t)-plane with vertices

E1 : (0,0), (0,2H/c), (H,H/c);

E2 : (H,0), (H,2H/c), (0,H/c).

An outline of the proof is as follows.

Step 1: We put the observed data as

h1
1(t) := I1

1 (H,t), h1
2(t) := I1

2 (0,t), h2
1(t) := I2

1 (H,t), h2
2(t) := I2

2 (0,t).

Using (2.3) and (2.7), we find the following relations:

Ī2
2(0,t)= I2

2 (0,t)=h2
2(t),

w1
2(0,t)= Ī1

2 (0,t)= I1
2 (0,t)=h1

2(t),

w2
1(H,t)= Ī2

1 (H,t)= p1(H)I2
1(H,t)= p1(H)h2

1(t).

Putting x=0 in Eq. (2.7b) with k=2, we have

h2
2(t)= p2(H)δ(t−H/c)+w2

2(0,t).

Since w2
2(0,t) is a bounded function, we can identify the number p2(H) as the coefficient

of the singular part δ(t−H/c) of h2
2(t).

Step 2: In Eq. (2.8b), we substitute x= 0 and then take the limit as t ↑2x/c (from below)
for each value of x∈ [0,H]. Thus we obtain

a21(x)=−2

[

h1
2

(2x

c

)

+
∫ 2x/c

x/c
a21(ξ)w

1
1(ξ,τ)

∣

∣

∣

ξ=−cτ+2x
dτ

]

, 0≤ x≤H. (3.1)
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Similarly we substitute x=H in (2.9a), take the limit t↑2(H−x)/c, and thus

a12(x)=
−2

p2(H)

[

p1(H)h2
1

(2(H−x)

c

)

+
∫ 2(H−x)/c

(H−x)/c
a12(ξ)w

2
2(ξ,τ)

∣

∣

∣

ξ=cτ−H+2x
dτ

]

, 0≤ x≤H. (3.2)

Step 3: We rewrite Eqs. (2.8), (2.9), (3.1), and (3.2) into an equivalent ones for new un-
knowns

y=(y1,y2,y3,y4,y5,y6) :=
(

p2(H)w1
1, p2(H)w1

2, w2
1, w2

2, a21, a12

)

∈Y,

namely,

y1(x,t)=−
∫ t

t1(x,t)
y5(ξ)y2(ξ,τ)

∣

∣

∣

ξ=cτ+x−ct
dτ, (x,t)∈E1, (3.3a)

y2(x,t)=−
∫ t

t2(x,t)
y6(ξ)y1(ξ,τ)

∣

∣

∣

ξ=−cτ+x+ct
dτ−p2(H)F1

2 (x,t), (x,t)∈E1, (3.3b)

y3(x,t)=−
∫ t

t1(x,t)
y5(ξ)y4(ξ,τ)

∣

∣

∣

ξ=cτ+x−ct
dτ−F2

1 (x,t), (x,t)∈E2, (3.3c)

y4(x,t)=−
∫ t

t2(x,t)
y6(ξ)y3(ξ,τ)

∣

∣

∣

ξ=−cτ+x+ct
dτ, (x,t)∈E2, (3.3d)

y5(x)=y0
5(x)− 2

p2(H)

∫ 2x/c

x/c
y5(ξ)y1(ξ,τ)

∣

∣

∣

ξ=−cτ+2x
dτ, x∈ [0,H], (3.3e)

y6(x)=y0
6(x)− 2

p2(H)

∫ 2(H−x)/c

(H−x)/c
y6(ξ)y4(ξ,τ)

∣

∣

∣

ξ=cτ−H+2x
dτ, x∈ [0,H], (3.3f)

where

y0
5(x) :=−2h1

2

(2x

c

)

, y0
6(x) :=

−2

p2(H)2
h2

1

(2(H−x)

c

)

.

We have used p1(H)p2(H)=1 and the fact that p2(H) has been known in Step 1. We also
remark the following facts:

(1) Each of the mappings

C0[0,H]∋y5 7→ p2(H)F1
2 ∈C0(E1), C0[0,H]∋y6 7→F2

1 ∈C0(E2)

is a bounded operator with norm ≤ p2(H)/2.

(2) p2(H)<1.

(3) The functions h1
2 and h2

1 are continuous and bounded in modulus by a number that
depends only on the admissible set A(m,M).
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Eqs. (3.3) define a fixed point equation in the Banach space Y. By using the facts (1)-(3)
above, it can be concluded that the right-hand sides of (3.3) together define a nonlinear
contraction mapping in a closed neighborhood of the point (0,0,0,0,y0

5,y0
6) if H is so small

that 0<H<H∗, where the number H∗ depends only on the admissible set A(m,M). Thus
we find a unique solution to (3.3) by the contraction mapping principle; in particular a12

and a21 are identified. Consequently, the functions

cqµs=
√

a12a21, p1 = 4

√

a12

a21
,

are identified by (2.6). Hence we obtain

qµs=
1

c

√
a12a21 (3.4)

and

µa=
1

4

d

dx
(loga12−loga21)−

1

c

√
a12a21 (3.5)

from (2.4a).
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