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SECOND-ORDER TOTAL VARIATION AND PRIMAL-DUAL

ALGORITHM FOR CT IMAGE RECONSTRUCTION

SHOUSHENG LUO, QIAN LV, HESHAN CHEN, JINPING SONG

Abstract. In this paper, we proposed a regularization model based on second-order total variation
for CT image reconstruction, which could eliminate the ‘staircase’ caused by total variation (TV)

minimization. Moreover, some properties of second-order total variation were investigated, and
a primal-dual algorithm for the proposed model was presented. Some numerical experiments for
various projection data were conducted to demonstrate the efficiency of the proposed model and
algorithm.
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1. Introduction

Computed tomography (CT) is a noninvasive imaging technique, which plays
an important role in modern medicine and industrial detections. CT image recon-
struction methods have significant influence on the qualities of reconstructed im-
ages. These methods are mainly divided into two classes: analytical methods and
algebraic methods [20, 27]. Generally speaking, the analytical methods, filtered
back-projection for instance, are sensitive to noise, depend on the scan geometry
and fail to deal with incomplete projection data. The algebraic methods, Kaczmarz
method for example, are flexible for scan geometry and can deal with incomplete
data partially, but suffer from high computation cost. However, algebraic methods
attract increasingly attentions with the rapid development of computer technology.
In this paper, we focus on the algebraic methods.

Approximating the unknown image by a 2D digital image u ∈ Rm×n and denot-
ing the intersection length of the i-th X-ray with the j-th pixel by aij (≥ 0), we can
write the CT image reconstruction problem as to solve the following linear system
[16, 20]

(1) g = Au+ η,

where A = (aij)M×N is called the imaging matrix, g is the projection data polluted
by noise η, and u is the vector version of 2D image by lexicographic order. It is
well known that recovering u from g by conventional direct methods is unfeasible
due to the ill-posedness and large scale of A. Furthermore, neither analytical nor
algebraic methods can handle incomplete (e.g. interior-CT) and heavily noised
projection data.

Regularization techniques are important to reconstruct high quality image from
incomplete and noised projection data. They are generally to minimize the following
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energy function [21, 30, 32, 33]

(2) u∗ = argmin
u

{F (u) + λG(u)} ,

where F is called fidelity term measuring how fit Au is to the observation data g,
and G is a convex function called regularization term representing prior knowledge.
λ (> 0) is an user-defined parameter to balance the two terms.

We need to select proper regularization and fidelity terms for practical problems
on hand. For CT image reconstruction problem (1), the fidelity term is usually
chosen as l2 distance since the noise η obeys Gaussian distribution [20]. For the
regularization term, there are many selections, such as total variation (TV) method
[31, 33, 34] and l1 regularization based on wavelet or tight-frame technique [41, 42].
Although the dictionary learning based approaches were studied in the literature
[24, 39] recently, they are not popular in the field of CT image reconstruction
because of their time consuming training step and the requirement for high efficiency
in the CT image reconstruction field, and TV methods are still the most widely
used methods because of its edge-preserving properties and simplicity.

However, TV model often causes staircase effects (i.e. false edges) in smooth
regions [3, 6]. The staircases are caused by the fact that the TV minimization forces
the smooth regions (nonconstant) to be piecewise constant. Therefore, although
the performances of TV model are amazing for numerical simulations on piecewise
constant phantoms in the literature, it is not yet applied to clinical and related
practice so far since few real CT images are piecewise constant [30].

In order to overcome the spurious staircases of TV, higher-order total variations
(typically, second-order total variation) have been of particular interest and studied
thoroughly over the past two decades [2, 9, 10, 25]. High-order TV (HOTV) was
used to prove the uniqueness of interior-CT reconstruction if the region of interest
(ROI) is piecewise polynomial [40]. However, the numerical computation of HOTV
used in [40] is difficult. Therefore, we try applying second-order total variation
(called SOTV for short) to CT image reconstruction.

The SOTV was first proposed in [25] to remove additive noise. It has been
studied mainly to suppress the staircase effects of TV. The theoretical analyses in
[17, 36] show that SOTV is superior to TV in some aspects. The SOTV evolves an
observed image toward a ‘smooth’ one theoretically. The reconstructions of SOTV
are believed to be better than those of TV in smooth region. This property had
been verified by numerical experiments [10, 25] as well. In addition, SOTV can
be numerical implementation more easily than HOTV [40]. As far as we know,
although SOTV was studied thoroughly in the field of image restoration, it was
rarely used in image reconstruction. In view of the discussions above, we propose
to use the SOTV as the regularization term of (2), and our numerical experiments
show that our model can suppress the ‘staircase’ effects in smooth regions effectively.

It is well known that fast and stable algorithm is crucial for the application of
regularization model (2). Because of the non-smoothness of SOTV, a lot of algo-
rithms (for example Newton method) are unfeasible. Recently, some algorithms
have been proposed to tackle the non-smooth optimal problem, such as split Breg-
man iteration method [11, 15], primal-dual (PD) algorithm [5, 7, 43], alternative
direction method of multiplier [29] and fixed-point algorithm [23, 26]. The PD al-
gorithm, which was first proposed in [1], was investigated thoroughly [12, 18] and
applied to solve the large scale problem in imaging science recently, such as image
reconstruction [28, 38], restoration [37] and segmentation [8]. The PD algorithm is
a general frame which can cover many models in image processing. In this paper,
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we chose the PD algorithm [7] to solve the proposed model and deduce the precise
implementation formulae. For a primal problem

(3) min
x

{F (Kx) +G(x)} ,

where x ∈ RN , K is a linear operator, G and F are convex functions, the frame of
PD algorithm can be illustrated as algorithm 1 (see [7, 32] for details).

Algorithm 1 Pseudocode of PD algorithm

1: Initialization: Choose τ, σ > 0 such that τσ∥K∥22 ≤ 1, θ ∈ [0, 1], x0 = 0, y0 = 0,
x̄0 = x0, n = 0;

2: Iterations (n ≥ 1): Update xn, yn, x̄n as follows yn+1 = proxσ[F
∗](yn + σKx̄n),

xn+1 = proxτ [G](xn − τKT yn+1),
x̄n+1 = xn+1 + θ(xn+1 − xn).

In algorithm 1, ∥K∥2 is the norm of operator K. The superscript ‘∗’ and proxσ
refer to convex conjugation and the proximal mapping of any convex function. Let
H be a convex function, then

(4) H∗(z) = max
z′

{⟨z, z′⟩ −H(z′)},

(5) proxσ[H](z) = argmin
z′

{H(z′) +
∥z − z′∥22

2σ
}.

In order to apply the PD algorithm to the proposed model, we should investigate the
conjugate function of second-order total variation and the corresponding proximal
mapping (see details in Section 2.2).

The rest of this paper is organized as follows. In section 2, we present the SOTV
model, its properties and the corresponding PD algorithm. Numerical experiments
for various projection data in section 3 are presented to compare SOTV model with
TV model and adaptive framelet tensor method (ATF) proposed in [42]. Some
conclusions and comments are given in section 4.

2. The Proposed Model and Primal-Dual Algorithm

We introduce some notations for convenience. Denote

Y =

{
p | p =

(
p11, p12

p21, p22

)
, pkl ∈ Rm×n, k, l = 1, 2

}
.(6)

For p =

(
p11 p12

p21 p22

)
, q =

(
q11 q12

q21 q22

)
∈ Y , the inner-product is introduced as

⟨p, q⟩Y =

m∑
i=1

n∑
j=1

(p11ij q
11
ij + p12ij q

12
ij + p21ij q

21
ij + p22ij q

22
ij ).(7)

For u ∈ X = Rm×n or u ∈ RN (N = mn) in the context, the discrete Hessian
matrix of u is defined as

(8) ∇2u =

(
∇−

x (∇+
x u) ∇+

y (∇+
x u)

∇−
x (∇−

y u) ∇−
y (∇+

y u)

)
∈ Y,
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where (∇±
x u)ij = ±(u(i±1)j − uij), (∇±

y u)ij = ±(ui(j±1) − uij) with boundary con-
ditions u0j = u(1+m)j = ui0 = ui(1+n) = 0 for any i = 1, 2, · · · ,m, j = 1, 2 · · · , n.
The second-order TV of an image u ∈ X = Rm×n is defined as [10]

∥(|∇2u|)∥1 =

m∑
i=1

n∑
j=1

|∇2uij |,

where

|∇2uij | =
√

(∇−
x (∇+

x u))2ij + (∇+
y (∇+

x u))2ij + (∇−
x (∇−

y u))2ij + (∇−
y (∇+

y u))2ij .

2.1. The Proposed Model and the Existence of Solutions. For an image
u ∈ X = Rm×n or u ∈ RN (N = mn), the proposed SOTV-based CT image
reconstruction model is

(9) min
u∈RN

+

{1
2
∥Au− g∥22 + λ∥(|∇2u|)∥1} ,

where RN
+ = {u : u ∈ RNand u ≥ 0} with u ≥ 0 meaning that all the components

of u are nonnegative. Here the nonnegative constraint u ∈ RN
+ is needed since the

image u is nonnegative in practice.

Lemma 1. Let W1(u) = ∥Au − g∥22, where A = (aij)M×N with aij ≥ 0 (i =

1, · · · ,M, j = 1, · · · , N) and
∑M

i=1 aij > 0 (∀j), then W1 is coercive.

Proof: Firstly, by the triangle inequality

(10) ∥Au− g∥2 ≥ ∥Au∥2 − ∥g∥2.
Furthermore, we have

∥Au∥22 =
M∑
i=1

 N∑
j=1

aijuj

2

≥
M∑
i=1

N∑
j=1

(aijuj)
2
=

N∑
j=1

(
M∑
i=1

a2ij

)
u2
j ,(11)

where the inequality held by aij ≥ 0 and u ∈ RN
+ . Therefore, when ∥u∥2 → ∞,

i.e. there is at least one index t ∈ {1, 2, · · · , N} such that ut → +∞, we can

get
(∑M

i=1 a
2
it

)
u2
t → +∞ by the assumption

∑M
i=1 ait > 0. By (10) and (11), we

can obtain the conclusion.

Theorem 1. Under the assumptions of Lemma 1 and λ > 0, the solution set of
(9) is nonempty.

Proof: Let

W (u) =
1

2
∥Au− g∥22 + λ∥(|∇2u|)∥1,

clearly, W is the objective function of the proposed model (9). The nonnegative
set RN

+ is a closed and convex subset of Hilbert space RN . Therefore, it is sufficient
for the conclusion to prove that W is a weakly lower semicontinuous and coercive
function on RN

+ by Theorem 2.30 in [35]. Obviously, W is convex and hence weakly

lower semicontinuous on RN
+ . By Lemma 1 and the nonnegativity of the second

term of W , the coerciveness of W is proved. Therefore, the solution to (9) is
nonempty.

Remark 1. In fact, the CT imaging matrix A in (1) satisfies the conditions in
Lemma 1. Firstly, aij ≥ 0 (i = 1, · · · ,M, j = 1, · · · , N) since it denotes the
intersection length of i-th X-ray with j-th pixel. Secondly, for any pixel, it is
reasonable to assume that there is at least one X-ray intersects with it (otherwise
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this pixel is not in the field of view, thus it’s impossible to reconstruct it), hence

all column sums of A are positive, i.e.
∑M

i=1 aij > 0 (∀j).

Remark 2. If W1 is a strictly convex function, for example A is a column full rank
matrix, i.e. Null(A)={0}, the minimization problem (9) has an unique solution.

2.2. The Primal-Dual Algorithm for the Proposed Model. In order to de-
duce the PD algorithm for the proposed model (9) (called PD-SOTV for short), we
introduce the following notations

F (y, z) = F1(y) + F2(z),(12)

G(u) = δ+(u) =

{
0 u ≥ 0
+∞ otherwise

,(13)

K =

(
A
∇2

)
,(14)

with F1(y) =
1
2∥y − g∥22, F2(z) = λ∥(|z|)∥1. Therefore, the proposed model (9) can

be rewritten as

min
u

{F (Ku) +G(u)} ,(15)

with y = Au, z = ∇2u.

Proposition 1. (reference [32]) By definitions (4) and (5), we have

(16) F ∗
1 (p) =

1

2
∥p∥22 + ⟨p, g⟩,

the proximal mapping of F ∗
1 and G are

(17) proxσ[F
∗
1 ](y) =

y − σg

1 + σ
,

(18) proxτ [G](u) = argmin
y

{
δ+(y) +

∥u− y∥22
2τ

}
= max{0, u}.

Proposition 2. (1) The convex conjugation of F2 is

(19) F ∗
2 (q) = δBox(λ)(|q|),

where δBox(λ)(u) =

{
0 ∥u∥∞ ≤ λ
∞ otherwise

, and Box(λ) consists of vectors with no

component larger than λ.
(2) The proximal mapping of F ∗

2 is

(20) proxσ[F
∗
2 ](z) =

λz

max(λ1I , |z|)
,

where the division means componentwise division.

Proof: (1) By the definition (4), we have

F ∗
2 (q) = max

z
{⟨q, z⟩Y − λ∥(|z|)∥1} ,(21)

Let h(z) = ⟨q, z⟩Y − λ∥(|z|)∥1. Then we have

h(z) ≤
m∑
i=1

n∑
j=1

|qij ||zij | − λ
m∑
i=1

n∑
j=1

|zij |

=

m∑
i=1

n∑
j=1

(|qij | − λ)|zij |,(22)
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by Cauchy-Schwarz inequality, where the equality holds if and only if zij = tijqij (tij ≥
0, ∀i, j). There are two cases to be considered. (A) |q| ∈ Box(λ), i.e. |qij | ≤
λ (∀i, j). In this case, it is obvious that h(z) ≤ 0. (B) |q| /∈ Box(λ), i.e. there is at
least one pixel of |q| greater than λ. Let us assume |qkl| > λ (k ∈ {1, · · · ,m}, l ∈
{1, · · · , n}). Obviously, if tij = 0 (i ̸= k, j ̸= l) and tkl → +∞, then h(z) → +∞
also. Putting these two cases together, we have formula (19).

(2) By the definition (5), we have

proxσ[F
∗
2 ](z) = argmin

z′

{
δBox(λ)(|z

′
|) + ∥z − z

′∥2Y
2σ

}
(23)

=
λz

max{λ, |z|}
(24)

since |z′

ij | ≤ λ, ∀ i = 1, · · · ,m, j = 1, · · · , n. Thus we get formula (20).
Combining formula (17), (18) and (20), we get the following PD-SOTV algorithm

(algorithm 2) for the proposed SOTV model (9).

Algorithm 2 The PD-SOTV algorithm

1: L ≥ ∥(A,∇2)∥2; τ = 1/L; σ = 1/L;
2: initialize u0, p0 and q0 to zero values, ū0 = u0;
3: for n = 1 to N do
4: pn+1 = pn + σ(Aūn − g)/(1 + σ)
5: qn+1 = λ(qn + σ∇2ūn)/max(λ1I , |qn + σ∇2ūn|)
6: un+1 = max{0, un − τAT pn+1 − τdiv2(qn+1)}
7: ūn+1 = un+1 + θ(un+1 − un)
8: end for

where div2 denotes the conjugate operator of ∇2 [10].

3. Numerical Experiments

In this section, some numerical experiments are presented to test the proposed
model and algorithm. For all the experiments, the phantoms are digitalized on
a grid of 200 × 200 and the original projection data are corrupted by zero mean
Gaussian noise (G(0,σ2)). Hereafter, the data is called ‘complete’ when they are
generated at views ranging from 0◦ to 180◦ evenly and each projection containing
200 evenly spaced parallel rays. Otherwise, the projection data is ‘incomplete’. In
the simulations, the imaging matrix A in (1) is computed row by row by using a
simple geometry relationship (see [19] for details).

We will compare the reconstruction results of SOTV with those of TV and ATF
method [42] for a modified 2D Shepp-Logan phantom [40] with complete and in-
complete data (interior-CT), respectively. In addition, experiments on a ghost
phantom [13, 21] with incomplete project data are presented to illustrate the effi-
ciency of the proposed model for more challenging image reconstruction problems.
For ATF method [42], we chose B-spline as the initial framelet to construct the
adaptive tensor framelet and also used PD algorithm to solve the reconstruction
problem. The parameter λ in the algorithm is optimized by trial and error.

3.1. Modified Shepp-Logan Phantom with Complete Data. The modified
2D Shepp-Logan phantom shown in top left in Figure 1 is the combination of four
linear functions and six constant functions in the ellipses with the parameters listed
in table 1. In each ellipse, the function was first defined inside a compact support
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Table 1. Parameters of the 2D modified Shepp-Logan phantom.

k ak bk µk rk x0
k y0

k αk

1 0.92 0.69 1 0 0 0 90
2 0.874 0.6624 -0.8 0 0 -0.0184 90
3 0.35 0.15 -0.1 1 0.25 -0.05 72
4 0.45 0.2 -0.1 1 -0.28 -0.05 108
5 0.35 0.3 0.1 1 0 0.43 90
6 0.046 0.046 0.1 1 0 0.1 0
7 0.046 0.046 0.1 1 0 -0.1 0
8 0.046 0.023 0.1 1 -0.08 -0.605 0
9 0.023 0.023 0.1 1 0 -0.605 0
10 0.046 0.023 0.1 1 0.06 -0.605 90

Ωk = {(x, y) ∈ R2 : x2

a2
k
+ y2

b2k
< 1}(k = 1, 2, · · · , 10) as (y·rkbk

+ 1)µk, and then its

center was translated to (x0
k, y

0
k) and rotated by an angle αk (see [40]). Two small

parts of original phantom shown in middle row and bottom row of Figure 1 are
emphasized to compare the performances of different models on different regions,
respectively.

A lot of numerical experiments were conducted for different projection data
corrupted by Gaussian noise with variance ranging from 0.001 to 0.02. From Figure
1, we observed that both TV and ATF methods cause ‘staircase’ effect and this
effect became more obvious as the noise got more heavy, and the performances
of the proposed model were better than those of TV and ATF when the variance
ranged from 0.003 to 0.02, especially for piecewise smooth (linear) regions. Due to
the space limitations, we only presented the reconstruction results in Figure 1 by
different methods with σ2 = 0.005.

Comparing the images in the middle row of Figure 1, we can clearly observe
that TV and ATF both cause strong ‘staircase’ effect, while SOTV suppresses
‘staircase’ efficiently. However, we can also see that TV and ATF preserved while
SOTV blurred edges and details by comparing the images in the last row of Figure
1. This is because the TV method and the framelet method have some connections
(see [4] for details).

In order to evaluate different methods quantitatively, the MSEs (mean square
errors) of two regions of interest in Figure 1 were computed and presented in Table
2. We can obtain the same conclusion that the proposed model is better than TV
and ATF in piecewise linear regions, and TV and ATF are superior to SOTV in
piecewise constant regions.

Table 2. MSEs for two parts of the images in Figure 1.

TV SOTV ATF
Part 1 0.0046 0.0029 0.0039
Part 2 0.0220 0.0672 0.0241

The profiles of the 90th vertical line of different reconstruction images were
plotted in Figure 2 to illustrate the properties of different methods further. In
order to differentiate these profiles easily, a small value 0.02 was added to SOTV
profile, and subtracted 0.02 and 0.04 from TV and ATF, respectively. Then we can
clearly see that the profiles of TV and ATF models look like ‘staircase’ in the linear
part, while profile of SOTV can suppress it successfully.
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Original TV SOTV ATF

Figure 1. Top row: Reconstructions with complete data. Middle
row: Reconstructions of Part 1. Bottom row: Reconstructions of
Part 2.
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Figure 2. The 90th vertical lines of the images in Figure 1.

Original TV SOTV ATF

Figure 3. Reconstructions of ROI.
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Original TV SOTV ATF

Figure 4. Top row: Reconstructions from 142 projections. Bot-
tom row: Zoom in of ghost part.

3.2. Interior-CT of Modified Shepp-Logan. Region of interest (ROI) image
reconstruction for CT has received more and more attentions recently since it can
reduce the dose of radiation and acquaintance time [14, 22, 40]. The interior-
CT, which only radiates to a small region of interest, is one of the important
ROI problems. Interior-CT tends to be severely ill-posed, and reconstructions by
directly algorithms, such as FBP and ART, usually suffer from serious artifacts [27].
Regularization reconstruction is one of the possible techniques to handle interior-
CT problems [40].

In the simulations, the projection data only consisted of the X-ray which pass
through the disk with center (0,0.1) and radius 0.6 (denoted by Disk (0,0.1,0.6)).
The reconstructed images by SOTV, TV and ATF were presented in Figure 3.
From Figure 3, we can observe that all three methods can reconstruction ROI
approximately, but TV and ATF still suffer from ‘staircase’ effect. The MSEs of
the reconstructed ROI by SOTV, TV and ATF methods were 0.1253, 0.1306 and
0.1250, which showed the proposed model was better than TV and ATF because
this ROI is piecewise linear. In addition, we can observe that the result by ATF
method suffers from wider blurring edge.

3.3. Ghost Phantom with 142 Projection Views. In order to evaluate the
proposed model further, we applied the proposed model to a more challenging
phantom (Figure 4), which contains a ghost function that is invisible from given
22 projection directions (see [21] for details). The existence of ghosts has been
known and studied since the earliest days of CT, see section 16.4 of [19]. Here, the
projection data was generated at 142 angles, which contained 120 angles ranging
from 0◦ to 180◦ evenly and the 22 given projection directions.

From Figure 4, we can clearly see TV causes ‘staircase’ in ghost, especially in the
center and corners, while SOTV and ATF get better results. Moreover, Figure 5
shows that SOTV and ATF can preserve more details of ghost part than TV model.
In addition, the MSE of ghost part of SOTV model (0.0481) and ATF (0.0428)
both are smaller than that of TV model (0.0564). All these results demonstrate
the efficiency of our model in preserving details and supressing staircase of TV.
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Figure 5. Profiles of the 9th vertical line of the images in the
second row of Figure 4.

4. Conclusions and Future Works

The studies about reconstruction model are fewer than the algorithm studies in
the literature. In this paper, we proposed a regularization model based on SOTV
for CT image reconstruction, which was an attempt to promote the development of
regularization model. Numerical experiments showed that the proposed model, the
TV and ATF models had merits and demerits. The proposed model can suppress
the ‘staircase’ effects in smooth regions caused by TV and ATF. However, TV and
ATF are superior to the SOTV model in piecewise constant regions and allow for
discontinuities (see Figure 1 and Figure 3). Therefore, it is our future work to study
the combination of them, which maintains their merits and avoids their demerits
at the same time. Since all the experiments in this paper were carried out on the
simulated projection data, we need to verify the proposed model on practical data
in the future.
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