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MONOTONICITY/SYMMETRICITY PRESERVING RATIONAL

QUADRATIC FRACTAL INTERPOLATION SURFACES

ARYA KUMAR BEDABRATA CHAND AND NALLAPU VIJENDER

Abstract. This paper presents the theory of C1-rational quadratic fractal interpolation surfaces
(FISs) over a rectangular grid. First we approximate the original function along the grid lines of
interpolation domain by using the univariate C1-rational quadratic fractal interpolation functions
(fractal boundary curves). Then we construct the rational quadratic FIS as a blending combination
with the x-direction and y-direction fractal boundary curves. The developed rational quadratic
FISs are monotonic whenever the corresponding fractal boundary curves are monotonic. We derive
the optimal range for the scaling parameters in both positive and negative directions such that
the rational quadratic fractal boundary curves are monotonic in nature. The relation between
x-direction and y-direction scaling matrices is deduced for symmetric rational quadratic FISs for
symmetric surface data. The presence of scaling parameters in the fractal boundary curves helps
us to get a wide variety of monotonic/symmetric rational quadratic FISs without altering the given
surface data. Numerical examples are provided to demonstrate the comprehensive performance
of the rational quadratic FIS in fitting a monotonic/symmetric surface data. The convergence
analysis of the monotonic rational quadratic FIS to the original function is reported.

Key words. Fractals, Fractal Interpolation Functions, Rational Quadratic Fractal Interpolation
Surfaces, Convergence, Monotonicity, Symmetricity.

1. Introduction

The field of fractals [21] is introduced as an interdisciplinary area between
branches of mathematics and physics, and later applied successfully in different
areas of science and engineering. Fractals provide a powerful and effective tool to
approximate projections of physical objects such as coastlines, profiles of moun-
tains, plants as well as experimental data that have non-integer dimension. To
provide an alternative tool for traditional interpolants, Barnsley [3] introduced the
concept of fractal interpolation functions (FIFs) via iterated function system (IFS).
A FIF contains a set of free variables called the scaling parameters. The variation
of scaling parameters helps us to generate a wide variety of smooth or non-smooth
FIFs for the same interpolation data. Restricting the scaling parameters with re-
spect to the horizontal scaling parameters, Barnsley and Harrington [4] developed a
method to construct a differentiable FIF that interpolates the prescribed data if the
values of derivatives of an original function are known at the initial end-point of the
interval. The fractal polynomial splines with general type of boundary conditions
are studied recently by (i) constructive approach in [9, 14] (ii) α-fractal functions
in [11, 22].

The study of fractal surfaces are useful in scientific applications such as image
processing [23], geology [15], chemistry [24], etc. Geronimo and Hardin [18] de-
veloped the fractal interpolation surface on flexible domains. Simultaneously, by
using barycentric co-ordinates, Zhao [26] gave two algorithms that generalize the
earlier construction described in [18]. Xie and Sun [25] constructed a bivariate FIS
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on rectangular grids with arbitrary contraction factors and without any restriction
on boundary data. Dalla [16] extemporized this construction by using collinear
boundary points, and demonstrated that the attractor is a continuous FIS. Sub-
sequent developments in this direction are carried out by Bouboulis and Dalla [6],
Chand and Navascués [10], Feng et al. [17], Chand [12]. However, the constructions
mentioned above may not produce the monotonic/symmetric fractal surfaces even
if the given surface data is monotonic/symmetric.

Although the field of interpolation has been cultivated for centuries, the demand
for more effective tools is very much active due to the modeling problems in com-
plexity, and the manufacturing requirements in the early stage of surface design.
Spline representation to visualize a scientific data is of great significance in com-
puter graphics, geometric modeling, and numerical analysis. Although splines are
smooth, they may not fulfill the user’s qualitative requirements. For instance, the
given data may be generated from a monotone/symmetric surface but the resulting
interpolant may not satisfy these properties, and induce artificial or exaggerated
hills and valleys in the interpolating surface. For the case of surface generation,
several non-fractal methods have been proposed by a number of authors which
preserves properties such as positivity, monotonicity and/or convexity of the data.
Beatson and Ziegler [5] presented a monotonicity preserving surface interpolant
over a triangular grid. This surface is uniquely determined by the functional values
and first order partial derivatives at the vertices of the triangular grid. Asatu-
ryan and Unswoth [1] developed a monotonicity preserving biquadratic splines over
rectangular grids. In their approach, a modification at x-location of one edge of
a sub-rectangle gives a variation throughout the grid for all sub-rectangle edges
located at the original x-values, and hence the scheme is global. By developing
the necessary and sufficient conditions on the first and mixed partial derivatives
at grids, Carlson and Fritsch [7] produced a monotonic surface interpolant over
rectangular grid. Kouibia and Pasadas [20] presented an approximation problem of
parametric curves and surfaces from the Lagrange or Hermite data set. However,
the shape preserving interpolation technique for the surface generation problem via
fractal technique is not yet initiated. This paper specifically concentrates on the
visualization of the monotonic/symmetric surface data arranged on a rectangular
grid in the form of rational quadratic FISs.

In order to show the deficiency of the classical blending C1- cubic spline sur-
face scheme, consider a monotonically increasing and symmetric surface data as
in Table 1. For simplicity of presentation, we have used triplet (., ., .), where the
first component indicates function value and second, third components represent
the first order partial derivatives with respect to x-direction and y-direction, all are
evaluated at the typical point (xi, yj). It can be easily seen that although surface
data in Table 1 is increasing, the classical surface in Fig. 1 is not increasing.

Table 1. Monotonically increasing symmetric surface data.

↓ x/y → 1 2 3 4
1 (1,1,1) (2,4,2) (3,9,3) (4,16,4)
2 (2, 2,4) (4, 8, 8) (6, 18, 12) (8,32,16)
3 (3, 3, 9 ) (6, 12, 18) (9, 27, 27) (12, 48, 36)
4 (4, 4, 16 ) (8, 16, 32 ) (12, 36, 48 ) (16, 64, 64 )

Not only this blending surface scheme, but also several classical and fractal sur-
face interpolation schemes do not preserve the monotonicity attached with given
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Figure 1. C1-Blending cubic spline surface.

surface data. Thus we need the surface interpolants that retain the monotonicity
feature attached with surface data and that is the objective of this paper. Since
rational splines are suitable for shape preserving interpolants, we have used the
rational quadratic FIF in the construction of monotonicity/symmetricity preserv-
ing fractal surfaces. Our rational quadratic FIS is monotonicity preserving in the
sense that if the data set exhibits monotonicity along all grid lines parallel to the
axes, then the resulting rational quadratic FIS exhibits monotonicity along all lines
parallel to these grid lines as well.
Important features of the proposed rational quadratic FIS are as follows:

• Our interpolant is developed in such a way that no additional knots are
required to preserve the monotonicity whereas interpolant [2] needs addi-
tional knots to preserve the shape of data.

• Generated rational quadratic FISs are unique for given surface data and
set of scaling parameters.

• The scaling parameters provide freedom to an user to alter the shape of
monotonic/symmetric surfaces.

In Section 2, we present the basics of IFS theory and the existence of Cr-rational
FIF. In Section 3, we construct the rational quadratic fractal boundary curves
in x-direction and y-direction without any restriction on the scaling parameters
(except differentiability condition), then we form a C1-rational quadratic FIS as a
combination of these fractal boundary curves and blending functions. In Section
4, simple constraints are derived on the scaling parameters so that the fractal
boundary curves and resultant rational quadratic FISs are monotonic/symmetric
when the given data is monotonic/symmetric, and these theoretical results are
verified through numerical experiments in Section 5. The convergence result of the
rational quadratic FIS to the original function is studied in Section 6.

2. Fractal Interpolation Functions

We review the basics of IFS theory in Section 2.1. The existence of Cr-rational
FIF is studied in Section 2.2.

2.1. Basics of FIF Theory. Let (X, d) be a complete metric space and H(X)
the class of all non-empty compact subsets of X . The setH(X) is a complete metric
space with respect to the Hausdorff metric h [3]. Take (m−1) number of contraction
maps wi : X → X, i = 1, 2, . . . ,m−1. Then I ≡ {X ;wi, i = 1, 2, . . . ,m−1} is called
an iterated function system. If wi, i = 1, 2, . . . ,m− 1, are contractions, these maps
induce a set valued function W : H(X) → H(X),W (E) = ∪m−1

i=1 wi(E), which is a
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contraction onH(X) with a contraction factor s = max{|si|; i = 1, 2, . . . ,m−1}, |si|
being the contraction factor of wi. By the Banach Fixed Point theorem, there exists
a unique set A ∈ H(X) which is invariant with respect to W , that is, A = W (A).
The set A ∈ H(X) is called the attractor of the IFS I. If I is defined suitably, then
A represents the graph of a FIF based on the following results:

Let x1 < x2 < · · · < xm−1 < xm(m > 2) be a partition of the closed interval
I = [x1, xm], and f1, f2, . . . , fm be a collection of real numbers. Let Li, i = 1, 2, . . . ,
m− 1, be a set of homeomorphism mappings from I to Ii = [xi, xi+1] satisfying

(1) Li(x1) = xi, Li(xm) = xi+1.

Let Fi(x, f) be a function from I ×K to K (K is suitable compact sub-set of R),
which is continuous in x-direction and contractive in f -direction (with contractive
factor |αi| ≤ κ < 1) such that

(2) Fi(x1, f1) = fi, Fi(xm, fm) = fi+1, i = 1, 2, . . . ,m− 1.

Defining a mapping wi : I × K → Ii ×K as wi(x, f) = (Li(x), Fi(x, f)), (x, f) ∈
I ×K, i = 1, 2, . . . ,m− 1.

Proposition 2.1. [3] For the given IFS
{

I × K;wi, i = 1, 2, . . . ,m − 1
}

, there

exists a unique compact set A ⊂ R
2 such that W (A) = A. In addition, there is a

unique continuous function g∗ which satisfies g∗(xi) = fi, i = 1, 2, . . . ,m, and A
is the graph of g∗ on I. The above function φ is called a FIF associated with the
IFS

{

I ×K;wi, i = 1, 2, . . . ,m− 1
}

.

Now, we recall the functional equation of g∗ needed for this work. Let G = {g :
I → R | g is continuous, g(x1) = f1 and g(xm) = fm}. We define a metric on G

by ρ(f, g) = max
{

|f(x) − g(x)| : x ∈ I
}

for f, g ∈ G. Then (G, ρ) is a complete

metric space. Define the Read-Bajraktarević operator T on (G, ρ) by

(3) Tg(x) = Fi(L
−1
i (x), g ◦ L−1

i (x)), x ∈ Ii.

Using the properties of Li and (1)-(2), Tg is continuous on the interval Ii ; i =
1, 2, . . . ,m−1, and at each of the points x2, . . . , xm−1. Also it is easy to see that T is
a contraction map on the complete metric space (G, ρ), i.e., ρ(Tf, T g) ≤ |α|∞ρ(f, g),
where |α|∞ = max{|αi| : i = 1, 2, . . . ,m − 1} < 1. Therefore, by the Banach fixed
point theorem, T possesses a unique fixed point (say) g∗ on G, i.e., (Tg∗)(x) =
g∗(x) ∀ x ∈ I. According to (3), the FIF satisfies the functional equation: g∗(x) =
Fi(L

−1
i (x), g∗ ◦ L−1

i (x)), x ∈ Ii. In the existing constructions of FIFs, Li(x) and

Fi(x, f) in the IFS are defined as wi(x, f) =

[

Li(x)
Fi(x, f)

]

=

[

aix+ bi
αif + qi(x)

]

, where

ai =
xi+1−xi

xm−x1
, bi =

xmxi−x1xi+1

xm−x1
, |αi| ≤ κ < 1 and qi, i = 1, 2, . . . ,m− 1, are suitable

continuous real valued functions defined on I such that (2) are satisfied. In the
construction of the fractal boundary curves, we assume qi(i = 1, 2, . . . ,m − 1) is
a rational quadratic function, whose numerator and denominator are quadratic
polynomials. The existence of the spline polynomial FIFs is given in [4]. Now we
extend this result to rational FIF in the following.

2.2. Existence of Cr- Rational FIF.

Theorem 2.1. Let {(xi, fi, di) : i = 1, 2, . . . ,m} be given data set, where di is

the slope at xi, and d
(k)
i (i = 1, 2, . . . ,m, k = 2, . . . , r) is the kth derivative value at

xi. Consider the IFS I∗ ≡ {I×K;wi(x, f) = (Li(x), Fi(x, f)), i = 1, 2, . . . ,m−1},
where Li(x) = aix + bi satisfies (1), Fi(x, f) = αif + qi(x), qi(x) is a rational
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function on I having 2r + 2 arbitrary constants, and |αi| < ari , i = 1, 2, . . . ,m− 1.

Let F k
i (x, f) =

αif+q
(k)
i

(x)

ak
i

, where q
(k)
i (x) represents kth derivative of qi(x) with

respect to x. Denote fi = d
(0)
i , di = d

(1)
i , i = 1, 2, . . . ,m. If for k = 0, 1, . . . , r,

F k
i (x1, d

(k)
1 ) = d

(k)
i , F k

i (xm, d
(k)
m ) = d

(k)
i+1, i = 1, 2, . . . ,m− 1,(4)

then the attractor of the IFS I∗ is the graph of a Cr-rational FIF.

Proof. Suppose Fr = {g ∈ Cr(I) | g(x1) = f1 and g(xm) = fm}. Now (Fr, dr) is
a complete metric space, where dr is the metric on Fr induced by the Cr-norm on
Cr(I). Define the Read-Bajraktarević operator U on Fr as

Ug(x) = αig(L
−1
i (x)) + qi(L

−1
i (x)), x ∈ Ii, i = 1, 2, . . . ,m− 1.(5)

Since ai =
xi+1−xi

xm−x1
< 1, the conditions |αi| < ari , i = 1, 2, . . . ,m− 1, and (4) gives

that U is a contractive operator on (Fr, dr). The fixed point ψ of U is a fractal
function that satisfies the functional equation:

ψ(Li(x)) = αiψ(x) + qi(x), x ∈ I, i = 1, 2, . . . ,m− 1.(6)

Since ψ ∈ Cr(I), ψ(k) satisfies for k = 0, 1, . . . , r,

aki ψ
(k)(Li(x)) = αiψ

(k)(x) + q
(k)
i (x), x ∈ I, i = 1, 2, . . . ,m− 1,(7)

Using (4) in (7), we get the following system of equations for i = 1, 2, . . . ,m− 1:

(8) aki d
(k)
i = αid

(k)
1 + q

(k)
i (x1), aki d

(k)
i+1 = αid

(k)
m + q

(k)
i (xm) ∀ k = 0, 1, . . . , r.

When all the 2r + 2 arbitrary constants in qi(x) are determined from (8), ψ(x)
exists. By using the similar arguments as in [3], it is easy to conclude that IFS I∗

has a unique attractor, and it is the graph of the rational FIF ψ ∈ Cr(I). �

3. Rational Quadratic Fractal Interpolation Surfaces

In Section 3.1, we construct the fractal boundary curves by using Theorem 2.1.
Then using these fractal boundary curves, the C1-rational quadratic FIS is con-
structed in Section 3.2.

3.1. Construction of C1-Fractal Boundary Curves. Let x1 < x2 < · · · <
xm−1 < xm, y1 < y2 < · · · < yn−1 < yn, be a partition of D = I × J, I = [x1, xm],
J = [y1, yn]. Set Ii = [xi, xi+1], Jj = [yj, yj+1], andDi,j = Ii×Jj , i = 1, 2, . . . ,m−1,
j = 1, 2, . . . , n − 1. Consider the interpolation data as {(xi, yj , zi,j , z

x
i,j , z

y
i,j) : i =

1, 2, . . . ,m, j = 1, 2, . . . , n} on the rectangularD, where zxi,j , z
y
i,j respectively are the

first order partial derivatives of the original function with respect to the variables
x, y at (xi, yj). Note that for j = 1, 2, . . . , n, Tj = {(xi, zi,j , z

x
i,j) : i = 1, 2, . . . ,m}

is the interpolation data along the jth grid line parallel to the x-axis. Similarly, for
i = 1, 2, . . . ,m, T ∗

i = {(yj , zi,j, z
y
i,j) : j = 1, 2, . . . , n} is the interpolation data along

the ith grid line parallel to the y-axis.
Based on Theorem 2.1, consider the following fractal boundary curve Bj along the
grid line I × yj for fixed j ∈ {1, 2, . . . , n}:

(9) Bj(x) =

{

αi,jBj(L
−1
i (x)) +

Xi,jθ
2+Yi,jθ(1−θ)+Zi,j(1−θ)2

△i,jθ
2+Wi,jθ(1−θ)+△i,j(1−θ)2

, if △i,j 6= 0,

zi,j , if △i,j = 0,
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where θ =
L

−1
i

(x)−x1

xm−x1
, x ∈ Ii, △i,j =

zi+1,j−zi,j
xi+1−xi

, |αi,j | < ai < 1, i = 1, 2, . . . ,m −

1, j = 1, 2, . . . , n. Wi,j , Xi,j , Yi,j , Zi,j are arbitrary constants that are evaluated
respectively using the Hermite interpolation conditions:

Bj(xi) = zi,j , Bj(xi+1) = zi+1,j , B
′
j(xi) = zxi,j , B

′
j(xi+1) = zxi+1,j .

Taking x = xi in (9), we have

Bj(xi) = αi,jBj(x1) +
Zi,j

△i,j

⇒ Zi,j = △i,j(zi,j − αi,jz1,j).

Similarly for x = xi+1 in (9), we obtain Xi,j = △i,j(zi+1,j − αi,jzm,j). Using
B′

j(xi) = zxi,j , B
′
j(xi+1) = zxi+1,j in (9), we have the coupled equations:

(10)

{

△i,jYi,j − Zi,jWi,j −△2
i,j(xm − x1)(aiz

x
i,j − αi,jz

x
1,j) = 0,

Xi,jWi,j −△i,jYi,j −△2
i,j(xm − x1)(aiz

x
i+1,j − αi,jz

x
m,j) = 0.

Since αi,j can be chosen as |αi,j | < ai < 1, assume that zi+1,j − zi,j − αi,j(zm,j −
z1,j) 6= 0. The solution of the system (10) gives that

Wi,j = βi,j{ai(z
x
i,j + zxi+1,j)− αi,j(z

x
1,j + zxm,j)},

Yi,j =βi,j{(zi,jz
x
i+1,j + zi+1,jz

x
i,j)ai − αi,j(zi+1,jz

x
1,j + zi,jz

x
m,j + zm,jz

x
i,jai

+ z1,jz
x
i+1,jai) + α2

i,j(zm,jz
x
1,j + z1,jz

x
m,j},

where βi,j =
△i,j(xm − x1)

zi+1,j − zi,j − αi,j(zm,j − z1,j)
. By substituting the values ofWi,j , Xi,j ,

Yi,j , Zi,j in (9), we get the fractal boundary curve Bj interpolating the data set Tj
for j = 1, 2, . . . , n, as

(11) Bj(x) =

{

αi,jBj(L
−1
i (x)) +

pi,j(θ)
qi,j(θ)

, if △i,j 6= 0,

zi,j , if △i,j = 0,

pi,j(θ) =(zi+1,j − αi,jzm,j)△i,jθ
2 + βi,j{(zi,jz

x
i+1,j + zi+1,jz

x
i,j)ai − αi,j [zi+1,jz

x
1,j

+ zi,jz
x
m,j + ai(zm,jz

x
i,j + z1,jz

x
i+1,j)] + α2

i,j(zm,jz
x
1,j + z1,jz

x
m,j)}θ(1− θ)

+ (zi,j − αi,jz1,j)△i,j(1− θ)2,

qi,j(θ) =△i,jθ
2 + βi,j{ai(z

x
i,j + zxi+1,j)− αi,j(z

x
1,j + zxm,j)}θ(1− θ) +△i,j(1 − θ)2.

Thus we have exactly n different fractal boundary curves in x-direction such that
their graphs are attractors of the IFSs for j = 1, 2, . . . , n,

(12) Ij ≡
{

I ×Kx,j : wi,j(x, z) = (Li(x), Fi,j(x, z)), i = 1, 2, . . . ,m− 1
}

,

where Fi,j(x, z) =







αi,jz +
pi,j(θ)

qi,j(θ)
, if △i,j 6= 0,

zi,j , if △i,j = 0,

pi,j , qi,j are given in (11), and Kx,j are suitable compact subsets of R. The
scaling parameters αi,j , i = 1, 2, . . . ,m − 1, j = 1, 2, . . . , n, involved in the IFSs
Ij , j = 1, 2, . . . , n, are arranged in the matrix form as α = [αi,j ](m−1)×n.
Using similar arguments as above, we obtain the fractal boundary curve B∗

i inter-
polating the data set T ∗

i for i = 1, 2, . . . ,m, as

(13) B∗
i (y) =

{

α∗
i,jB

∗
i (L

∗−1
j (y)) +

p∗

i,j(φ)

q∗
i,j

(φ) , if △∗
i,j 6= 0,

zi,j, if △∗
i,j = 0,
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p∗i,j(φ) =(zi,j+1 − α∗
i,jzi,n)△

∗
i,jφ

2 + β∗
i,j{(zi,jz

y
i,j+1 + zi,j+1z

y
i,j)cj − α∗

i,j [zi,j+1z
y
i,1

+ zi,jz
y
i,n + cj(zi,nz

y
i,j + zi,1z

y
i,j+1)] + α∗2

i,j(zi,nz
y
i,1 + zi,1z

y
i,n)}φ(1 − φ)

+ (zi,j − α∗
i,jzi,1)△

∗
i,j(1− φ)2,

q∗i,j(φ) =△∗
i,jφ

2 + β∗
i,j{cj(z

y
i,j + zyi,j+1)− α∗

i,j(z
y
i,1 + zyi,n)}φ(1 − φ) +△∗

i,j(1− φ)2,

△∗
i,j =

zi,j+1−zi,j
yj+1−yj

, β∗
i,j =

△∗
i,j(yn − y1)

zi,j+1 − zi,j − α∗
i,j(zi,n − zi,1)

, φ =
L

∗−1
j

(y)−y1

yn−y1
, y ∈ Jj ,

h∗j = yj+1 − yj , α
∗
i,j is the scaling parameter in y-direction satisfying |α∗

i,j | <

cj , L
∗
j(y) = cjy + dj : J → Jj is a linear homeomorphism such that L∗

j(y1) =
yj, L

∗
j (yn) = yj+1, j = 1, 2, . . . , n− 1.

From (13), it is seen that exactly m different y-direction fractal boundary curves
are possible such that their graphs are attractors of the IFSs for i = 1, 2, . . . ,m,

I∗
i ≡

{

J ×Ky,i : w
∗
i,j(y, z

∗) = (L∗
j (y), F

∗
i,j(y, z

∗)), j = 1, 2, . . . , n− 1
}

,(14)

where F ∗
i,j(y, z

∗) =

{

α∗
i,jz

∗ +
p∗

i,j(φ)

q∗
i,j

(φ) , if △∗
i,j 6= 0,

zi,j , if △∗
i,j = 0,

p∗i,j , q
∗
i,j are given in (13), and Ky,i are suitable compact subsets of R. The scaling

parameters α∗
i,j , i = 1, 2, . . . ,m, j = 1, 2, . . . , n − 1, involved in the IFSs I∗

i , i =
1, 2, . . . ,m, are arranged in the matrix form as α∗ = [α∗

i,j ]m×(n−1).

3.2. Formation of C1-Rational Quadratic Fractal Interpolation Surface.
The boundary of sub-rectangle Di,j is taken as the union of four straight lines
Ii × yj, Ii × yj+1, xi × Jj , and xi+1 × Jj . Now we construct a fractal function
Ψ : D → R so that Ψ and its first order partial derivatives coincide with fractal
boundary curves and the derivatives of fractal boundary curves along the grid lines
of the rectangular domain respectively. In other words,

(15)







Ψ |I×yj
= Bj , j = 1, 2, . . . , n, Ψ |xi×J= B∗

i , i = 1, 2, . . . ,m,

∂Ψ

∂x
|I×yj

= B
(1)
j , j = 1, 2, . . . , n,

∂Ψ

∂y
|xi×J= B∗

i
(1), i = 1, 2, . . . ,m.

Now the fractal boundary curves (11) and (13) are used to define fractal function
Ψ over each sub-rectangular domain Di,j , i = 1, 2, . . . , m− 1, j = 1, 2, . . . , n− 1, as

(16)











Ψ(x, y) =by,0(φ)Bj(x) + by,1(φ)Bj+1(x) + ax,0(θ)B
∗
i (y)

+ ax,1(θ)B
∗
i+1(y)− ax,0(θ)by,0(φ)zi,j − ax,0(θ)by,1(φ)zi,j+1

− ax,1(θ)by,0(φ)zi+1,j − ax,1(θ)by,1(φ)zi+1,j+1,

The functions ax,0, ax,1, by,0, and by,1 are differentiable functions on [0, 1]. By ap-
plying (15) in (16), we get the following conditions on the functions ax,0, ax,1, by,0,
and by,1:

(17)























ax,0(0) = 1, ax,1(0) = 0, ax,0(1) = 0, ax,1(1) = 1,

a
(1)
x,0(0) = 0, a

(1)
x,1(0) = 0, a

(1)
x,0(1) = 0, a

(1)
x,1(1) = 0,

by,0(0) = 1, by,1(0) = 0, by,0(1) = 0, by,1(1) = 1,

b
(1)
y,0(0) = 0, b

(1)
y,1(0) = 0, b

(1)
y,0(1) = 0, b

(1)
y,1(1) = 0.

For simplicity, we take each function ax,0(θ), ax,1(θ), by,0(φ), and by,1(φ) as cubic
polynomial containing four arbitrary constants. After evaluation of arbitrary con-
stants in the polynomials using conditions in (17), the functions ax,0, ax,1, by,0, and
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by,1 take the following form:

ax,0(θ) = (1− θ)2(1 + 2θ), ax,1(θ) = θ2(3− 2θ),

by,0(φ) = (1 − φ)2(1 + 2φ), by,1(φ) = φ2(3− 2φ).

We refer the functions ax,0, ax,1, by,0, and by,1 as blending functions. Since we have
used only rational quadratic FIFs in the construction of Ψ, we refer to it as rational
quadratic FIS. Since the FIS Ψ is sum of continuous functions, it is continuous inside
Di,j , i = 1, 2, . . . ,m − 1, j = 1, 2, . . . , n − 1. Next, using (16), the fractal surface
Ψ can be defined over the sub-rectangle Di,j+1 as blending of affine FIFs Bj+1(x),
Bj+2(x), x ∈ Ii, B

∗
i (y), B

∗
i+1(y), y ∈ Jj+1. Furthermore, Ψ is continuous over

Di,j+1. Now using (17), it is verified that

lim
(x,y)→(x,yj+1)

(x,y)∈Di,j+1

Ψ(x, y) = Bj+1(x) = lim
(x,y)→(x,yj+1)

(x,y)∈Di,j

Ψ(x, y).

Hence Ψ is continuous on the domains Di,j ∩ Di,j+1, i = 1, 2, . . . ,m − 1, j =
1, 2, . . . , n− 2. Similarly we can show that Ψ is continuous on the domains Di,j ∩
Di+1,j , i = 1, 2, . . . ,m − 2, j = 1, 2, . . . , n − 1. From the above discussion, we
conclude that the fractal surface Ψ is continuous over the interpolation domain D.

In the similar way, we can observe that ∂Ψ(x,y)
∂x

and ∂Ψ(x,y)
∂y

are continuous in the

domain D. Since the both first order partial derivatives of the rational quadratic
FIS Ψ are continuous, Ψ(1) exists, and is continuous over the domain D. Thus the
rational quadratic FIS Ψ ∈ C1(D).

Remark 3.1. If α = [0](m−1)×n and α∗ = [0]m×(n−1), then we get the classical
rational quadratic surface interpolant as

S(x, y) =by,0(φ)Sj(x) + by,1(φ)Sj+1(x) + ax,0(θ)S
∗
i (y) + ax,1(θ)S

∗
i+1(y)

− ax,0(θ) · by,0(φ)zi,j − ax,0(θ)by,1(φ)zi,j+1

− ax,1(θ)by,0(φ)zi+1,j − ax,1(θ)by,1(φ)zi+1,j+1,

(18)

where Sj , j = 1, 2, . . . , n and S∗
i , i = 1, 2, . . . ,m are the classical rational quadratic

interpolants [19] obtained by taking α = [0](m−1)×n and α∗ = [0]m×(n−1) in Bj , j =
1, 2, . . . , n and B∗

i , i = 1, 2, . . . ,m respectively.

4. Monotonic/Symmetric Fractal Surface Interpolation

The theory of monotonic rational quadratic FIS is given in Section 4.1. Sym-
metricity preserving surface interpolation via rational quadratic FIS is discussed in
Section 4.2.

4.1. Theory of Monotonic FIS. For the given interpolation surface data, the
shape of the interpolation surface is fixed in the classical methods due to the unique-
ness of the interpolant. But the presence of the scaling parameters in the IFSs
Ij , j = 1, 2, . . . , n, and I∗

i , i = 1, 2, . . . ,m, gives a flexibility in the choice of frac-
tal boundary curves by changing the corresponding scaling parameters. Thus, the
shape of the rational quadratic FIS (cf. (16)) can be modified by changing the asso-
ciated fractal boundary curves appropriately. However, for the scaling parameters
αi,j ∈ (−ai, ai), i = 1, 2, . . . ,m − 1, and α∗

i,j ∈ (−cj , cj), j = 1, 2, . . . , n − 1, the

C1-fractal boundary curves Bj and B∗
i need not be monotonic even if data sets Tj

and T ∗
i are monotonic respectively. In this section, we deduce the optimal range for

the IFS parameters such that the fractal boundary curves Bj , j = 1, 2, . . . , n, and
B∗, i = 1, 2, . . . ,m, are C1- smooth and monotonic on I and J respectively. Using
these monotonic fractal boundary curves with the blending functions, we construct
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the monotonic rational quadratic FISs over the rectangle D. The following theo-
rem addresses the desired range for the scaling parameters for a monotonic rational
quadratic FIS for given monotonic surface data.

Theorem 4.1. Let {(xi, yj , zi,j , z
x
i,j, z

y
i,j) : i = 1, 2, . . . ,m, j = 1, 2, . . . , n} be a

monotonic data set, i.e., monotonic in x-direction : zi,j ≤ zi+1,j(zi,j ≥ zi+1,j), i =
1, 2, . . . ,m − 1, j = 1, 2, . . . , n, monotonic in y-direction : zi,j ≤ zi,j+1(zi,j ≥
zi,j+1), i = 1, 2, . . . ,m, j = 1, 2, . . . , n−1, with necessary conditions: zxi,j ≥ 0 (zxi,j ≤

0), zyi,j ≥ 0 (zyi,j ≤ 0), i = 1, 2, . . . ,m, j = 1, 2, . . . , n. If (i) the scaling parameters
αi,j , i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , n, are chosen as

(19) αi,j ∈ (λ∗x,i,j , λx,i,j), where

λx,i,j = min
{ai(z

x
i+1,j − kx,1,j)

zxm,j − kx,1,j
,
ai(z

x
i,j − kx,1,j)

zx1,j − kx,1,j
,
ai(kx,2,j − zxi+1,j)

kx,2,j − zxm,j

,
ai(kx,2,j − zxi,j)

kx,2,j − zx1,j
,

hi(△i,j − kx,1,j)

zm,j − z1,j − kx,1,j
,

hi(kx,2,j −△i,j)

kx,2,j − (zm,j − z1,j)
, ai

}

,

λ∗x,i,j = max
{−ai(z

x
i+1,j − kx,1,j)

kx,2,j − zxm,j

,
−ai(z

x
i,j − kx,1,j)

kx,2,j − zx1,j
,
−ai(kx,2,j − zxi+1,j)

zxm,j − kx,1,j
,

−ai(kx,2,j − zxi,j)

zx1,j − kx,1,j
,

−hi(△i,j − kx,1,j)

kx,2,j − (zm,j − z1,j)
,
−hi(kx,2,j −△i,j)

zm,j − z1,j − kx,1,j
,−ai

}

,

0 ≤ kx,1,j <min{zx1,j, z
x
i+1,j , zm,j − z1,j ,△i,j ; i = 1, 2, . . . ,m− 1},

kx,2,j > max{zx1,j, z
x
i+1,j , zm,j − z1,j,△i,j ; i = 1, 2, . . . ,m− 1},

(ii) the scaling parameters α∗
i,j , i = 1, 2, . . . ,m, j = 1, 2, . . . , n− 1, are selected as

(20) α∗
i,j ∈ (λ∗y,i,j , λy,i,j), where

λy,i,j = min
{cj(z

y
i,j+1 − ky,1,i)

zyi,n − ky,1,i
,
cj(z

y
i,j − ky,1,i)

zyi,1 − ky,1,i
,
cj(ky,2,i − zyi,j+1)

ky,2,i − zyi,n
,
cj(ky,2,i − zyi,j)

ky,2,i − zyi,1
,

h∗j (△
∗
i,j − ky,1,i)

zi,n − zi,1 − ky,1,i
,
h∗j (ky,2,i −△∗

i,j)

ky,2,i − (zi,n − zi,1)
, cj},

λ∗y,i,j = max
{−cj(z

y
i,j+1 − ky,1,i)

ky,2,i − zyi,n
,
−cj(z

y
i,j − ky,1,i)

ky,2,i − zyi,1
,
−cj(ky,2,i − zyi,j+1)

zyi,n − ky,1,i
,

−cj(ky,2,i − zyi,j)

zyi,1 − ky,1,i
,
−h∗j(△

∗
i,j − ky,1,i)

ky,2,i − (zi,n − zi,1)
,
−h∗j(ky,2,i −△∗

i,j)

zi,n − zi,1 − ky,1,i
,−cj},

0 ≤ ky,1,i <min{zyi,1, z
y
i,j+1, zi,n − zi,1,△

∗
i,j ; j = 1, 2, . . . , n− 1},

ky,2,i > max{zyi,1, z
y
i,j+1, zi,n − zi,1,△

∗
i,j ; j = 1, 2, . . . , n− 1},

then the fractal boundary curves described in (11) and (13) are monotonic over
I and J respectively, and consequently the rational quadratic FIS Ψ (cf. 16) is
monotonic over the domain D.

Proof. Without loss of generality, assume that the given surface data is monotoni-
cally increasing. For j = 1, 2, . . . , n, the fractal boundary curve Bj is monotonically
increasing over I if B′

j(x) ≥ 0 for all x ∈ I. After some algebraic manipulation, we

observe that the graph of B′
j(x), x ∈ I is the attractor of the IFS

(21) Id
j ≡

{

I ×Kd
x,j;w

d
i,j(x, z

d) = (Li(x), F
d
i,j(x, z

d)), i = 1, 2, . . . ,m− 1
}

,
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where

F d
i,j(x, z

d) =
αi,j

ai
zd +

Ω1,i,j(x)

aiΩ2,i,j(x)
,

Ω1,i,j(x) = Ti,j,1θ
4 + Ti,j,2θ

3(1− θ) + Ti,j,3θ
2(1− θ)2

+ Ti,j,4θ(1 − θ)3 + Ti,j,5(1 − θ)4,

Ti,j,1 = aiz
x
i+1,j − αi,jz

x
m,j,

Ti,j,2 = 2ai(τi,j△i,j − zxi,j)− 2αi,j[
τi,j(zm,j − z1,j)

xm − x1
− zx1,j],

Ti,j,3 = ai
(

(τ2i,j + 3)△i,j − τi,j(z
x
i,j + zxi+1,j)

)

− αi,j

[ (τ2i,j + 3)(zm,j − z1,j)

xm − x1
− τi,j(z

x
1,j + zxm,j)

]

,

Ti,j,4 = 2ai(τi,j△i,j − zxi+1,j)− 2αi,j

[τi,j(zm,j − z1,j)

xm − x1
− zxm,j

]

,

Ti,j,5 = aiz
x
i,j − αi,jz

x
1,j, τi,j = 1 +

hi(z
x
i,j + zxi+1,j)− αi,j(xm − x1)(z

x
1,j + zxm,j)

zi+1,j − zi,j − αi,j(zm,j − z1,j)
,

Ω2,i,j(x) = 1 + (τi,j − 3)2θ2(1− θ)2 + 2(τi,j − 3)θ(1− θ),

andKd
x,j is a suitable compact subset of R. Since the graph of B′

j(x) is the attractor

of the IFS Id
j , it is easy to verify that B′

j(x) ≥ 0 for all x ∈ I, if

F d
i,j(x, z

d) ∈ [kx,1,j , kx,2,j] ∀(x, z
d) ∈ I × [kx,1,j , kx,2,j], i = 1, 2, . . . ,m− 1.

Next we derive the optimal range for the scaling parameters αi,j , i = 1, 2, . . . ,
m− 1, j = 1, 2, . . . , n, such that the range of F d

i,j is contained in [kx,1,j , kx,2,j].

Case-I For differentiability of Bj(x), we have 0 ≤ αi,j < ai, i = 1, 2, . . . , m − 1,
j = 1, 2, . . . , n. Assume that kx,1,j ≤ zd ≤ kx,2,j, j = 1, 2, . . . , n. From these
inequalities, we have

kx,1,jαi,j

ai
≤
zdαi,j

ai
≤
αi,jkx,2,j

ai
, and hence

kx,1,jαi,j

ai
+

Ω1,i,j(x)

aiΩ2,i,j(x)
≤
zdαi,j

ai
+

Ω1,i,j(x)

aiΩ2,i,j(x)
≤
αi,jkx,2,j

ai
+

Ω1,i,j(x)

aiΩ2,i,j(x)
.(22)

From (22), it is easy to see that F d
i,j(x, z

d) ∈ [kx,1,j , kx,2,j] for every (x, zd) ∈

I × [kx,1,j , kx,2,j], i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , n, if

• Π1,i,j(x) :=
kx,1,j [αi,j−ai]

ai
+

Ω1,i,j(x)
aiΩ2,i,j(x)

≥ 0,

• Π2,i,j(x) :=
kx,2,j [αi,j−ai]

ai
+

Ω1,i,j(x)
aiΩ2,i,j(x)

≤ 0.

After some simplification, Π1,i,j(x) is re-written as

(23) Π1,i,j(x) =
Γ1,i,j(x)

Ω2,i,j(x)
, where
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Γ1,i,j(x) = T ∗
i,j,1θ

4 + T ∗
i,j,2θ

3(1− θ) + T ∗
i,j,3θ

2(1− θ)2

+ T ∗
i,j,4θ(1 − θ)3 + T ∗

i,j,5(1− θ)4,

T ∗
i,j,1 = zxi+1,j − kx,1,j −

αi,j

hi
(xm − x1)(z

x
m,j − kx,1,j),

T ∗
i,j,2 = 2

[

τ∗i,j(△i,j − kx,1,j)− (zxi,j − kx,1,j)
]

−
2αi,j

hi

[

τ∗i,j(zm,j − z1,j − kx,1,j)− (zx1,j − kx,1,j)(xm − x1)
]

,

T ∗
i,j,3 = (τ∗2i,j + 3)(△i,j − kx,1,j)− τ∗i,j

[

zxi,j − kx,1,j + zxi+1,j − kx,1,j
]

−
αi,j

hi

[

(τ∗2i,j + 3)
(

zm,j − z1,j − kx,1,j)

− τ∗i,j(xm − x1)
[

zx1,j − kx,1,j + zxm,j − kx,1,j
]

]

,

T ∗
i,j,4 = 2

[

τ∗i,j(△i,j − kx,1,j)− (zxi+1,j − kx,1,j)
]

−
2αi,j

hi

[

τ∗i,j(zm,j − z1,j − kx,1,j)− (zxm,j − kx,1,j)(xm − x1)
]

,

T ∗
i,j,5 = zxi,j − kx,1,j −

αi,j

hi
(xm − x1)(z

x
1,j − kx,1,j),

τ∗i,j = 1 +
hi
[

zxi,j − kx,1,j + zxi+1,j − kx,1,j
]

hi(△i,j − kx,1,j)− αi,j

[

zm,j − z1,j − kx,1,j
]

−
αi,j(xm − x1)

[

zx1,j − kx,1,j + zxm,j − kx,1,j
]

hi(△i,j − kx,1,j)− αi,j

[

zm,j − z1,j − kx,1,j
] .

Since Ω2,i,j(x) > 0 for all x ∈ I, Π1,i,j(x) ≥ 0 if and only if Γ1,i,j(x) ≥ 0 for all
x ∈ I. From (23), Γ1,i,j(x) ≥ 0 if T ∗

i,j,l ≥ 0, l = 1, 2, . . . , 5. Again from (23), we
observe that T ∗

i,j,1 ≥ 0 and T ∗
i,j,5 ≥ 0 if

(24) αi,j ≤ min
{ai(z

x
i+1,j − kx,1,j)

zxm,j − kx,1,j
,
ai(z

x
i,j − kx,1,j)

zx1,j − kx,1,j

}

.

Expressing τ∗i,j in terms of T ∗
i,j,1 and T ∗

i,j,5, we have

(25) τ
∗
i,j = 1 +

hi(T
∗
i,j,1 + T ∗

i,j,5)

hi(△i,j − kx,1,j)− αi,j

[

zm,j − z1,j − kx,1,j
] .

We can observe that (24) implies T ∗
i,j,1 + T ∗

i,j,5 ≥ 0. Therefore, including (24),
τ∗i,j ≥ 0 whenever

(26) αi,j <
hi(△i,j − kx,1,j)

zm,j − z1,j − kx,1,j
.

Now from (24)-(26), it is easy to notice that

τ∗i,j ≥
hiT

∗
i,j,5

hi(△i,j − kx,1,j)− αi,j(zm,j − z1,j − kx,1,j)

⇒ τ∗i,j [△i,j − kx,1,j −
αi,j

hi
(zm,j − z1,j − kx,1,j)] ≥ T ∗

i,j,5

⇒ T ∗
i,j,2 ≥ 0.

Similarly using (24)-(26), we conclude that T ∗
i,j,4 ≥ 0. Again from (24)-(26), we

have the following inequality:

τ
∗
i,j ≥

hi(T
∗
i,j,1 + T ∗

i,j,5)

hi(△i,j − kx,1,j)− αi,j

[

zm,j − z1,j − kx,1,j
] .
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⇒ τ
∗2
i,j

(

△i,j − kx,1,j −
αi,j

hi

[

zm,j − z1,j − kx,1,j
]

)

≥ τ
∗
i,j(T

∗
i,j,1 + T

∗
i,j,5).(27)

The inequality (26) is re-written as

(28) 3
αi,j

hi
(zm,j − z1,j − kx,1,j) < 3(△i,j − kx,1,j),

and from (23), we have

T ∗
i,j,3 =τ∗2i,j

[

△i,j − kx,1,j −
αi,j

hi
(zm,j − z1,j − kx,1,j)]− τ∗i,j(T

∗
i,j,1 + T ∗

i,j,5)

+ 3
(

△i,j − kx,1,j −
αi,j

hi

[

zm,j − z1,j − kx,1,j]
)

.
(29)

Now using (27)-(28), it is easy to verify from (29) that T ∗
i,j,3 ≥ 0.

Thus, Π1,i,j(x) ≥ 0 ∀ x ∈ I, i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , n, if

αi,j ∈
[

0, min{
ai(z

x
i+1,j − kx,1,j)

zxm,j − kx,1,j
,
ai(z

x
i,j − kx,1,j)

zx1,j − kx,1,j
,
hi(△i,j − kx,1,j)

zm,j − z1,j − kx,1,j
, ai}

)

.

Proceeding in the similar way as above, we have found that Π2,i,j(x) ≤ 0∀x ∈
I, i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , n, if

αi,j ∈
[

0, min{
ai(kx,2,j − zxi+1,j)

kx,2,j − zxm,j

,
ai(kx,2,j − zxi,j)

kx,2,j − zx1,j
},

hi(kx,2,j −△i,j)

kx,2,j − (zm,j − z1,j)
, ai}

)

.

Combining the above restrictions on αi,j , the fractal boundary curve Bj(x) is mono-
tonically increasing over I for j = 1, 2, . . . , n if

αi,j ∈ [0, λx,i,j), i = 1, 2, . . . ,m− 1.

Case-II For differentiability of Bj , we have −ai < αi,j ≤ 0, i = 1, 2, . . . ,m− 1, j =
1, 2, . . . , n. As per our assumptions, kx,1,j ≤ zd ≤ kx,2,j, j = 1, 2, . . . , n. Combining

these inequalities, we obtain
kx,2,jαi,j

ai
≤

zdαi,j

ai
≤

kx,1,jαi,j

ai
, j = 1, 2, . . . , n. Hence,

we can write

kx,2,jαi,j

ai
+

Ω1,i,j(x)

aiΩ2,i,j(x)
≤
zdαi,j

ai
+

Ω1,i,j(x)

aiΩ2,i,j(x)
≤
αi,jkx,1,j

ai
+

Ω1,i,j(x)

aiΩ2,i,j(x)
,(30)

for i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , n. From (30), it is easy to see that F d
i,j(x, z

d) ∈

[kx,1,j, kx,2,j] ∀(x, zd) ∈ I × [kx,1,j , kx,2,j], i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , n, if

• Π∗
1,i,j(x) :=

kx,2,jαi,j−aikx,1,j

ai
+

Ω1,i,j(x)
aiΩ2,i,j(x)

≥ 0,

• Π∗
2,i,j(x) :=

kx,1,jαi,j−aikx,2,j

ai
+

Ω1,i,j(x)
aiΩ2,i,j(x)

≤ 0.

Applying similar argument as in Π1,i,j(x) ≥ 0 ∀x ∈ I, we have found that Π∗
1,i,j(x) ≥

0 ∀x ∈ I, i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , n, if

αi,j ∈
(

max{
−ai(z

x
i+1,j − kx,1,j)

kx,2,j − zxm,j

,
−ai(z

x
i,j − kx,1,j)

kx,2,j − zx1,j
,

−hi(△i,j − kx,1,j)

kx,2,j − (zm,j − z1,j)
,−ai}, 0

]

.

Similarly, we have found that Π∗
2,i,j(x) ≤ 0 ∀x ∈ I, i = 1, 2, . . . ,m− 1, j = 1, 2, . . . ,

n, if

αi,j ∈
(

max{
−ai(kx,2,j − zxi+1,j)

zxm,j − kx,1,j
,
−ai(kx,2,j − zxi,j)

zx1,j − kx,1,j
,
−hi(kx,2,j −△i,j)

zm,j − z1,j − kx,1,j
,−ai}, 0

]

.

Combining the restrictions on αi,j in this case, the fractal boundary curve Bj is
monotonically increasing over I for j = 1, 2, . . . , n, if

αi,j ∈ (λ∗x,i,j , 0], i = 1, 2, . . . ,m− 1.



MONOTONICITY/SYMMETRICITY PRESERVING RATIONAL QUADRATIC FISS 157

From Case-I and Case-II, the fractal boundary curve Bj is monotonically increas-
ing over I if the scaling parameters are chosen according to (19). Similarly, the
above result is extended to the fractal boundary curve B∗

i . Hence B
∗
i is mono-

tonically increasing over J if the scaling parameters α∗
i,j , j = 1, 2, . . . , n − 1, are

selected with respect to (20). Since all the fractal boundary curves (11) and (13) are
monotonically increasing for the scaling parameters chosen according to (19) and
(20) respectively, as per the observation by Casciola and Romani [8], the rational
quadratic fractal interpolation surface Ψ (16) is monotonically increasing over the
domain D. For a monotonically decreasing surface data set, the above procedure
yields the same optimal range restrictions on the scaling parameters to obtain the
monotonically decreasing rational quadratic FISs. It completes the proof. �

Remark 4.1. For given monotonic surface data, if △i,j 6= 0, i = 1, 2, . . . ,m −
1, j = 1, 2, . . . , n, △∗

i,j 6= 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n − 1, and the scaling
matrices α and α∗ are chosen with respect to (19) and (20) respectively, then it is
easy to observe that sgn(qi,j(θ)) = sgn(△i,j) and sgn(q∗i,j(φ)) = sgn(△∗

i,j). Thus,
qi,j(θ) 6= 0 for θ ∈ [0, 1] and q∗i,j(φ) 6= 0 for φ ∈ [0, 1]. So, our construction of
quadratic FIS is valid for any monotonic rectangular surface data.

4.2. Symmetric Rational Quadratic FIS. The following theorem addresses
the condition on the scaling parameters for the symmetricity preserving rational
quadratic FISs for the given symmetric data.

Theorem 4.2. Let {(xi, yj , zi,j , z
x
i,j, z

y
i,j) : i, j = 1, 2, . . . ,m} be a symmetric data

set, i.e., xl = yl, l = 1, 2, . . . ,m, zi,j = zj,i, z
x
i,j = zyj,i, i, j = 1, 2, . . . ,m, if the

matrices of the scaling parameters α and α∗ satisfy the relation α = α∗T , then the
C1-rational quadratic FIS Ψ is symmetric about the plane y = x.

Proof. For the above symmetric surface data, the x-direction and y-direction home-
omorphisms are same in the IFSs (12) and (14). This implies that

(31) ax,0(θ) = by,0(φ), ax,1(θ) = by,1(φ).

Again for given symmetric surface data, we have Tl = T ∗
l , l = 1, 2, . . . ,m. Using

this observation in IFSs (12) and (14), for l = 1, 2, . . . ,m, we observe that

(32) Bl(x) = B∗
l (y) whenever α = α∗T .

Now using (31) and (32), we have

Ψ(x, y) =by,0(φ)Bj(x) + by,1(φ)Bj+1(x) + ax,0(θ)B
∗
i (y) + ax,1(θ)B

∗
i+1(y)

− ax,0(θ)by,0(φ)zi,j − ax,0(θ)by,1(φ)zi,j+1 − ax,1(θ)by,0(φ)zi+1,j

− ax,1(θ)by,1(φ)zi+1,j+1,

=ax,0(θ)B
∗
i (y) + ax,1(θ)B

∗
i+1(y) + by,0(φ)Bj(x) + by,1(φ)Bj+1(x)

− by,0(φ)ax,0(θ)zj,i − by,0(φ)ax,1(θ)zj,i+1 − by,1(φ)ax,0(θ)zj+1,i

− by,1(φ)ax,1(θ)zj+1,i+1,

=Ψ(y, x).

Thus, the rational quadratic FIS Ψ is symmetric in the given domain D whenever
α = α∗T . It completes the proof. �

Remark 4.2. For a monotonic surface data, the monotonic symmetric rational
quadratic FISs can be obtained with a choice of α = α∗T according to Theorem 4.1.
When we relax the above condition α = α∗T , we obtain a monotonic non-symmetric
rational quadratic FIS. Hence our fractal technique provides both symmetric and
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non-symmetric rational quadratic FISs due to the presence of scaling factors in its
structure. But the corresponding classical interpolant provides only a symmetric
surface as α = α∗T = [0](m−1)×m.

5. Examples and Discussion

In order to illustrate the comprehensive visual quality of the C1-rational qua-
dratic spline FISs in fitting a monotonic/symmetric surfaces, consider the increas-
ing and symmetric surface data given in Table 1 (cf. Section 1). For this surface
data, according to Theorem 4.1, we choose kx,1,j = 0, kx,2,j = 650, j = 1, 2, 3, 4,
and ky,1,i = 0, ky,2,i = 650, i = 1, 2, 3, 4. To generate monotonically increasing
quadratic FIS Ψ (cf. (16)), we determine the matrices of the scaling parameters
according to (19) and (20). Details of the scaling matrices used in the construction
of all the fractal boundary curves in Figs. 2(a)-(f) are given in Table 2.

Table 2. Matrices of the scaling parameters used in the construc-
tion of the fractal boundary curves.

Figs. Matrices of scaling parameters (α/α∗) Figs. Matrices of scaling parameters (α/α∗)

2(a) α = α∗T =









0.15 0.23 0.3
0.15 0.23 0.3
0.15 0.23 0.3
0.15 0.23 0.3









T

2(d) α = α∗T =









−0.02 −0.1 −0.02
−0.1 −0.1 −0.02
−0.1 −0.03 −0.003
−0.01 −0.02 −0.004









T

2(b) α = α∗T =









0.01 0.01 0.01
0.01 0.01 0.01
0.15 0.23 0.3
0.15 0.23 0.3









T

2(e) α =









0.15 0.23 0.3
0.15 0.23 0.3
0.15 −0.0035 0.3
0.15 −0.0043 −0.0042









T

2(c) α = α∗T =









0.15 0.23 0.3
0.15 0.23 0.3
0.01 0.01 0.01
0.01 0.01 0.01









T

2(f) α∗ =









0.15 0.23 0.3
0.15 −0.002 −0.002
0.15 0.23 0.3
0.15 0.23 0.3









For the given surface data, the homeomorphisms in x-direction are L1(x) =
1
3x + 2

3 , L2(x) = 1
3x + 5

3 , and L3(x) = 1
3x + 8

3 . The matrices α of the scal-
ing parameters given in Table 2 are used in IFSs Ij , j = 1, 2, 3, 4 (cf. (12)) to
generate increasing fractal boundary curves iteratively in x-direction that interpo-
lates the data sets T1 = {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)}, T2={(1, 2, 4), (2, 4, 8),
(3, 6, 12), (4, 8, 16)}, T3 = {(1, 3, 9), (2, 6, 18), (3, 9, 27), (4, 12, 36)}, and T4 = {(1, 4,
16), (2, 8, 32), (3, 12, 48), (4, 16, 64)}. For the given symmetric surface data, the
homeomorphisms L∗

i (y) in y-direction are same as Lj(x) for i = j, i = 1, 2, 3. The
scaling matrices α∗ given in Table 2 are used in IFSs I∗

i , i = 1, 2, 3, 4 ( cf. (14))
to generate the y-direction increasing fractal boundary curves iteratively that in-
terpolates the data sets T ∗

1 = T1, T
∗
2 = T2, T

∗
3 = T3, and T ∗

4 = T4. According
to Theorem 4.2, the fractal boundary curves in x-direction and y-direction match
whenever α = α∗T . Owing to this reason, we have generated both x-direction and
y-direction fractal boundary curves in Figs. 2(a)-(c) with the choice α = α∗T . By
comparing Fig. 2(a) and Fig. 2(b), we can observe the effects of scaling param-
eters in the fractal boundary curves B1(x) = B∗

1(y) and B2(x) = B∗
2(y). Next

a comparison between Fig. 2(a) and Fig. 2(c) reveals the role of scaling param-
eters in modifying the shape of the fractal boundary curves B3(x) = B∗

3 (y) and
B4(x) = B∗

4(y). The fractal boundary curves in Fig. 2(d) are obtained by mod-
ifying the scaling factors in negative direction for all fractal boundary curves in
Fig. 2(a). Next, the x-direction fractal boundary curves in Fig. 2(e) are generated
using the scaling matrix α (see Table 2) in the IFS (12). Similarly, the y-direction
fractal boundary curves in Fig. 2(f) are constructed using the scaling matrix α∗
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(see Table 2) in the IFS (14). The x-direction fractal boundary curves in Fig. 2(e)
and y-direction fractal boundary curves in Fig. 2(f) are not identical because the
scaling matrices used in their construction violating the relation α = α∗T (see Table
2).

Utilizing the above constructed fractal boundary curves through (16), we con-
struct the rational quadratic FISs in Figs. 3(a)-(g). Using the fractal boundary
curves in Fig. 2(a) in (16), a C1-rational quadratic FIS is computed and plotted in
Fig. 3(a). Next we generate an increasing rational quadratic FIS in Fig. 3(b) by
availing the fractal boundary curves in Fig. 2(b) through (16). By comparing the
FIS in Fig. 3(b) with the FIS in Fig. 3(a), visually pleasing changes are observed
in the surface patch pertaining to [1, 4]× [1, 2] and [1, 2]× [1, 4], and changes in rest
of the surface are negligible. Similarly, we construct a C1-rational quadratic FIS
in Fig. 3(c) with the choice of fractal boundary curves in Fig. 2(c). Furthermore,
eye-catching changes are observed almost every where in the FIS in Fig. 3(c) when
compared with the FIS in Fig. 3(a). The quadratic FISs in Figs. 3(a)-(c) are
monotonically increasing and symmetric in nature.

Now we generate an increasing non-symmetric rational quadratic FIS in Fig. 3(d)
with fractal boundary curves as in Figs. 2(e)-2(f) in (16). When the FIS in Fig.
3(d) compared with the FIS in Fig. 3(a), we have found visually pleasing changes in
the fractal surface pertaining to [1, 4]× [3, 4]. A rational quadratic FIS is generated
iteratively in Fig. 3(e) by using the fractal boundary curves: Fig. 2(d) in x-direction
and Fig. 2(f) in y-direction. The qualitative changes in the shape of Fig. 3(e) are
observed by comparing it with Fig. 3(a) and Fig. 3(d). Another rational quadratic
FIS is generated in Fig. 3(f) by using the fractal boundary curves: Fig. 2(e) in x-
direction and Fig. 2(d) in y-direction. It is easy to notice that the rational quadratic
FISs in Fig. 3(f) and Fig. 3(c) look alike except for the surface patch pertaining
to [1, 2]× [3, 4]. The last increasing rational quadratic FIS is obtained in Fig. 3(g)
using the fractal boundary curves in Fig. 2(a) and Fig. 2(c) in x-direction and
y-direction respectively in (16). The rational quadratic FIS in Fig. 3(g) is similar
to the mirror image of the rational quadratic FIS in Fig. 3(e). Finally, a rational
quadratic FIS in Fig. 3(h) is generated with the arbitrary selection of the scaling
parameters as α = [0.1]3×4 and α∗ = [−0.25]4×3 in (16). It is easy to visualize that
rational quadratic FIS in Fig. 3(h) is not increasing as α and α∗ do not satisfy
the conditions of Theorem 4.1. This observation demonstrates the importance
of Theorems 4.1-4.2 in acquiring monotonic (symmetric/non-symmetric) rational
quadratic FISs for a given monotonic and symmetric surface data.

The rational quadratic FISs in Figs.3(d)-(g) are not symmetric with respect
to the plane y = x as α 6= α∗T . From the above examples, we can conclude that
whenever there is a change in the x-direction or y-direction fractal boundary curves,
we will have the changes in the corresponding C1-rational quadratic FIS. By varying
the matrices of scaling parameters, it is possible to simulate monotonic surfaces that
are symmetric/non-symmetric in nature. For a given surface, an optimal rational
quadratic FIS can be obtained by using optimization methods like genetic algorithm
or evolution program for appropriate scaling matrices.

6. Convergence Analysis of Monotonic Rational Quadratic FIS

In this section, an upper bound of the error between the monotonic rational qua-
dratic FIS Ψ and an original function Φ ∈ C4(D) is estimated. We use the notation:
|αj |∞ := max{|αi,j | : i = 1, 2, . . . ,m − 1}, j = 1, 2, . . . , n, |α|∞ := max{|αj |∞ :
j = 1, 2, . . . , n}, h = max{hi : i = 1, 2, . . . ,m − 1}; |α∗

i |∞ := max{|α∗
i,j | :
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(a): Increasing fractal boundary curves
in x-direction and y-direction.
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Fig. 2(a).
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x-direction and y-direction with negative

scaling parameters.
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Figure 2. Rational quadratic fractal boundary curves.

j = 1, 2, . . . , n − 1}, i = 1, 2, . . . ,m, |α∗|∞ := max{|α∗
i |∞ : i = 1, 2, . . . ,m},

h∗ = max{h∗j : j = 1, 2, . . . , n− 1} in the following theorem:
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(a): Increasing symmetric rational
quadratic spline FIS using Fig. 3(a).
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(b): Increasing symmetric rational
quadratic FIS using Fig. 3(b).
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(c): Increasing symmetric rational
quadratic FIS using Fig. 3(c).
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(d): Increasing non-symmetric
rational quadratic FIS using Figs.

3(e)-(f).

1

2

3

4

1

2

3

4
0

5

10

15

20

(e): Increasing non-symmetric
rational quadratic FIS using Figs.

3(d) and 3(f).
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(f): Increasing non-symmetric
rational quadratic FIS using Figs.

3(e) and 3(d).
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(g): Increasing non-symmetric
rational quadratic FIS using Figs.

3(a) and 3(c).
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(h): Non-increasing rational
quadratic FIS.

Figure 3. C1-rational quadratic FISs.

Theorem 6.1. Let Ψ and S, respectively be the monotonic rational quadratic FIS
and classical monotonic rational quadratic spline surface interpolant for the mono-
tonic surface data {(xi, yj, zi,j) : i = 1, 2, . . . ,m, j = 1, 2, . . . , n} generated from an
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original function Φ ∈ C4(D). Let the partial derivatives zxi,j , z
y
i,j, i = 1, 2, . . . ,m, j =

1, 2, . . . , n, satisfy the necessary conditions for monotonicity, and the scaling ma-
trices α and α∗ are selected with respect to (19) and (20) respectively. Then

∥

∥Φ−Ψ
∥

∥

∞
≤

2|α|∞
1− |α|∞

(Λx + Ux(α)) +
2|α∗|∞

1− |α∗|∞
(Λy + Uy(α

∗)) + h
∥

∥

∥

∂Φ

∂x

∥

∥

∥

∞

+h
∥

∥

∥

∂S

∂x

∥

∥

∥

∞
+ h∗ max

1≤i≤m
Ai(Φ) max

1≤i≤m

[

max
1≤j≤n−1

{∣

∣

∣

∂Φ(xi, yj)

∂y
− zyi,j

∣

∣

∣
,

∣

∣

∣

∂Φ(xi, yj+1)

∂y
− zyi,j+1

∣

∣

∣

}]

+ h∗4 max
1≤i≤m

{

max
1≤j≤n−1

Bi,j(Φ)
}

,

where Bi,j(Φ) =
1

384c∗i
{‖
∂Φi

∂y
‖∞‖

∂4Φi

∂y4
‖∞ +

2

3
h∗j‖

∂4Φi

∂y4
‖2∞ + 2‖

∂2Φi

∂y2
‖∞‖

∂3Φi

∂y3
‖∞},

∥

∥

∥

∂kΦi

∂yk

∥

∥

∥

∞
=max

{
∣

∣

∣

∂kΦ(xi, y)

∂yk

∣

∣

∣
; y ∈ J

}

, k = 1, 2, 3, 4, Ai(Φ) =
‖∂Φi

∂y
‖∞

4c∗i
,

c∗i is constant such that min
0≤φ≤1

|Ei,j(φ)| ≥ c∗i > 0,

Ei,j(φ) = △∗
i,jφ

2 + (zyi,j + zyi,j+1)φ(1 − φ) +△∗
i,j(1− φ)2,

and the constants Λx, Ux(α), Λy, Uy(α
∗) are defined in the proof.

Proof. Since Ψ and S, respectively are the monotonic rational quadratic FIS and
the classical monotonic rational quadratic spline surface interpolant with respect
to the given monotonic surface data, from (16) and Remark 3.1, we have

(33)

{

|Ψ(x, y)− S(x, y)| ≤ by,0(φ)‖Bj − Sj‖∞ + by,1(φ)‖Bj+1 − Sj+1‖∞

+ ax,0(θ)‖B
∗
i − S∗

i ‖∞ + ax,1(θ)‖B
∗
i+1 − S∗

i+1‖∞.

Using the error estimation between the rational quadratic FIF and the classical
quadratic interpolant Sj , from [cf. Theorem 10, [13]], we have

(34) ‖Bj − Sj‖∞ ≤
|αj |∞

1− |αj |∞
(Λx,j + Ux,j(α)), j = 1, 2, . . . , n,

Λx,j = max
1≤i≤m−1

{2(|zi,j|+ |zi+1,j |)},

Ux,j(α) = max
1≤i≤m−1

{U∗
x,i,j(α) + V ∗

x,i,j(α)W
∗
x,i,j(α)},

U∗
x,i,j(α) = 2|zm,j − z1,j |+ |z1,j |+ |zm,j|+

|ux,4,i,j + 2αi,jux,5,i,j|

|πx,2,i,j − πx,1,i,j|
,

V ∗
x,i,j(α) = |ux,2,i,j|+ |ux,1,i,j|+

|ux,3,i,jai + αi,jux,4,i,j + α2
i,jux,5,i,j|

|πx,2,i,j − πx,1,i,j |
,

W ∗
x,i,j(α) =

2|zm,j − z1,j|

|ux,2,i,j − ux,1,i,j|
+

|zx1,j + zxm,j|

|πx,2,i,j − πx,1,i,j |
,

πx,1,i,j = aiz
x
i,j − αi,jz

x
1,j, πx,2,i,j = aiz

x
i+1,j − αi,jz

x
m,j,

ux,1,i,j = zi,j − αi,jz1,j , ux,2,i,j = zi+1,j − αi,jzm,j,

ux,3,i,j = zi,jz
x
i+1,j + zi+1,jz

x
i,j , ux,5,i,j = zm,jz

x
1,j + z1,jz

x
m,j,

ux,4,i,j = −[zi+1,jz
x
1,j + zi,jz

x
m,j + ai(zm,jz

x
i,j + z1,jz

x
i+1,j)].

By re-iterating the above procedure for B∗
i , from [13], we obtain

(35) ‖B∗
i − S∗

i ‖∞ ≤
|α∗

i |∞
1− |α∗

i |∞
(Λy,i + Uy,i(α

∗)), i = 1, 2, . . . ,m,
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Λy,i and Uy,i(α
∗) are similar to the Λx,j and Ux,j(α) respectively. Since the blending

functions ax,0, ax,1, by,0, by,1 are bounded by 1, using (34) and (35) in (33), we have

|Ψ(x, y)− S(x, y)| ≤
|αj |∞

1− |αj |∞
(Λx,j + Ux,j(α)) +

|αj+1|∞
1− |αj+1|∞

(Λx,j+1 + Ux,j+1(α))

+
|α∗

i |∞
1− |α∗

i |∞
(Λy,i + Uy,i(α

∗)) +
|α∗

j+1|∞

1− |α∗
j+1|∞

(Λy,i+1 + Uy,i+1(α
∗))

≤
2|α|∞

1− |α|∞
(Λx + Ux(α)) +

2|α∗|∞
1− |α∗|∞

(Λy + Uy(α
∗)),

where Λx = max
1≤j≤n

Λx,j, Ux(α) = max
1≤j≤n

Ux,j(α), Λy and Uy(α
∗) are defined similar

to Λx and Ux(α) respectively. Since the above inequality is true for every (x, y) ∈
Di,j , i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , n− 1, we get the following estimation:

‖Ψ− S‖∞ ≤
2|α|∞

1− |α|∞
(Λx + Ux(α)) +

2|α∗|∞
1− |α∗|∞

(Λy + Uy(α
∗)).(36)

Expanding the classical rational quadratic FIS S ∈ C1(D) in Taylor series at the

point (xi, y) ∈ Di,j , we have S(x, y) = S(xi, y) + (x − xi)
∂S(ξ,y)

∂x
, (ξ, y) ∈ Di,j , and

hence

(37) |S(x, y)− S(xi, y)| ≤ h
∥

∥

∥

∂S

∂x

∥

∥

∥

∞
.

Similarly for the the original function Φ ∈ C4(D), we have

(38) |Φ(x, y)− Φ(xi, y)| ≤ h
∥

∥

∥

∂Φ

∂x

∥

∥

∥

∞
.

Now using (37)-(38), it is easy to see that

(39)















|Φ(x, y)− S(x, y)| ≤|Φ(x, y)− Φ(xi, y)|+ |Φ(xi, y)− S(xi, y)|

+ |S(xi, y)− S(x, y)|,

≤h
∥

∥

∥

∂Φ

∂x

∥

∥

∥

∞
+ h

∥

∥

∥

∂S

∂x

∥

∥

∥

∞
+ |Φ(xi, y)− S(xi, y)|.

From [19], it is known that

|Φ(xi, y)− S(xi, y)| ≤h
∗
jAi(Φ) max

1≤j≤n−1

{∣

∣

∣

∂Φ(xi, yj)

∂y
− zyi,j

∣

∣

∣
,

∣

∣

∣

∂Φ(xi, yj+1)

∂y
− zyi,j+1

∣

∣

∣

}

+ h∗4j max
1≤j≤n−1

Bi,j(Φ).

(40)

Substituting (40) in (39), we have

|Φ(x, y)− S(x, y)| ≤h
∥

∥

∥

∂Φ

∂x

∥

∥

∥

∞
+ h

∥

∥

∥

∂S

∂x

∥

∥

∥

∞
+ h

∗
jAi(Φ) max

1≤j≤n−1

{∣

∣

∣

∂Φ(xi, yj)

∂y
− z

y
i,j

∣

∣

∣
,

∣

∣

∣

∂Φ(xi, yj+1)

∂y
− z

y
i,j+1

∣

∣

∣

}

+ h
∗4
j max

1≤j≤n−1
Bi,j(Φ).

(41)

Since (41) is true for every (x, y) ∈ Di,j , i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , n− 1, the
uniform error bound between Φ and S is given by
(42)














‖Φ− S‖∞ ≤h
∥

∥

∥

∂Φ

∂x

∥

∥

∥

∞
+ h

∥

∥

∥

∂S

∂x

∥

∥

∥

∞
+ h

∗ max
1≤i≤m

Ai(Φ) max
1≤i≤m

[

max
1≤j≤n−1

{∣

∣

∣

∂Φ(xi, yj)

∂y

− z
y
i,j

∣

∣

∣,
∣

∣

∣

∂Φ(xi, yj+1)

∂y
− z

y
i,j+1

∣

∣

∣

}]

+ h
∗4 max

1≤i≤m

{

max
1≤j≤n−1

Bi,j(Φ)
}

.

Using (36) and (42) together with inequality ‖Ψ−Φ‖∞ ≤ ‖Ψ−S‖∞ + ‖S−Φ‖∞,
we obtain the desired estimate for ‖Ψ− Φ‖∞. �
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Convergence result: For the convergence results of monotonic rational qua-
dratic FIS Ψ, it is assumed that the estimations Ux(α), Uy(α

∗), max
1≤i≤m

Ai(Φ),

max
1≤i≤m

{

max
1≤j≤n−1

Bi,j(Φ)
}

, max
1≤i≤m

{

max
1≤j≤n−1

{
∣

∣

∣

∂Φ(xi,yj)
∂y

− zyi,j

∣

∣

∣
,
∣

∣

∣

∂Φ(xi,yj+1)
∂y

− zyi,j+1

∣

∣

∣

}

are bounded as h → 0+ and h∗ → 0+. Since |α|∞ < h
xm−x1

and |α∗|∞ < h∗

yn−y1
,

Theorem 6.1 gives that the monotonic rational quadratic FIS converges uniformly
to the original function as h→ 0+ and h∗ → 0+.

7. Conclusion

In this study, a new type of fractal surface construction scheme is developed over
a rectangular grid. The proposed interpolant not only stitch the data points ar-
ranged over the rectangular grid in a smooth fashion but also preserve the inherent
shape feature, namely the monotonicity/symmetric features of the surface data.
Data dependent optimal range restrictions on the scaling parameters have been de-
veloped to preserve the monotonicity feature of fractal boundary curves. One im-
portant notable thing is that the monotonic behavior of our rational quadratic FIS
completely depends only on the monotonic behavior of the fractal boundary curves.
The condition on the scaling matrices is developed to acquire the symmetric/non-
symmetric rational quadratic FISs for given symmetric surface data. Pleasingness
of graphical display and the power of the proposed fractal surface interpolant have
been demonstrated through practical examples. Our method offers different shapes
of monotonic rational quadratic FISs for the same surface data. An upper bound
of the uniform error between the monotonic rational quadratic FIS and an original
function is estimated. From this estimation, we conclude that the monotonic ratio-
nal quadratic FIS has linear convergence to the original function.
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